Robert POLLACK [email protected] (Updated January 6, 2021)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raport De Activitate Pe Anul 2009
Raport de Activitate - 2009 Colectivul IMAR January 26, 2010 1 Lucrari publicate la finele lui 2008 si necontinute in Raportul pe 2008 1.1 In reviste cotate ISI 1. Belinschi, Serban; Nica, Alexandru: On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution, Indiana University Mathematics Journal, volum 57, No.4 (2008), pag. 1679 – 1713 2. D. Beltit¸˘a,K.-H. Neeb: A non-smooth continuous unitary representation of a Banach-Lie group, Journal of Lie Theory 18 (2008), no. 4, pag. 933–936. 3. C. Calinescu, J. Lepowsky, A. Milas Vertex-algebraic structure of the principal subspaces (1) of certain A1 -modules, II: higher level case , Journal of Pure and Applied Algebra, 212 (2008), pag. 1928– 1950 4. Dorin Cheptea, Kazuo Habiro, Gwenael Massuyeau: A functorial LMO invariant for Lagrangian cobordisms, Geometry & Topology 12:2 (2008), pag. 1091 – 1170 (MR 2403806) 5. Alexandru Constantinescu Hilbert Function and Betti Numbers of Algebras with Lefschetz Property of Order m, Communications in Algebra, 36 (2008), pag. 4704 – 4720 6. Bruno Benedetti, Alexandru Constantinescu, Matteo Varbaro Dimension, Depth and Zero-Divisors of the Algebra of Basic k-Covers of a Graph, Le Matematiche, Volume LXIII, Issue II, (2008) , pag. 117–156. 7. Alexandru Constantinescu, Le Dinh Nam The Standard Graded Property for Vertex Cover Algebras of Quasi-Trees, Le Matematiche, Volume LXIII, Issue II, (2008), pag. 173–183. 8. I.Aberbach, F. Enescu: Lower bounds for Hilbert-Kunz multiplicities in local rings of fixed dimension, Mich. Math. Journal vol. 57 (2008) special volume in honor of M. Hochster, pag. 1-16 9. -
2011 Mathematics Newsletter
AUTUMN 2011 NEWSLETTER OF THE DEPARTMENT OF MATHEMATICS AT THE UNIVERSITY OF WASHINGTON Mathematics NEWS 1 DEPARTMENT OF MATHEMATICS NEWS MESSAGE FROM THE CHAIR It has been another exciting year The positive developments reported in this newsletter stand for our department. The work of in contrast to a backdrop of (global) financial and politi- the faculty has been recognized cal uncertainty. In the fourth year of the financial crisis, in a number of ways, includ- the end is not yet in sight. Repeated cuts in state support, ing the AMS Bôcher Prize and coupled with tuition increases, spell a fundamental shift the SIAM Kleinman Prize pre- in the funding of state universities. At the same time, the sented to Gunther Uhlmann, need to re-tool to pursue new career paths in a changing and the NSF CAREER award to economy, the return of soldiers from overseas deployments, Max Lieblich. As you will see on and the coming of age of the baby-boom echo generation page 15, the numbers of majors bring increasing numbers of students to our campus and to in the Mathematics program and the joint ACMS (Applied our department. and Computational Mathematical Sciences) program have Until the situation settles, new resources are generally made continued to rise, as have the numbers of degrees awarded. available to us in the form of temporary allocations instead In addition, these programs attract outstanding students of tenure-track faculty positions, which would require long- who continue to make us proud. For example, Math majors term financial commitments. This policy is understandable. -
[The PROOF of FERMAT's LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] the World's Most Famous Math Problem the World's Most Famous Math Problem
0Eft- [The PROOF of FERMAT'S LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] The World's Most Famous Math Problem The World's Most Famous Math Problem [ THE PROOF OF FERMAT'S LAST THEOREM AND OTHER MATHEMATICAL MYSTERIES I Marilyn vos Savant ST. MARTIN'S PRESS NEW YORK For permission to reprint copyrighted material, grateful acknowledgement is made to the following sources: The American Association for the Advancement of Science: Excerpts from Science, Volume 261, July 2, 1993, C 1993 by the AAAS. Reprinted by permission. Birkhauser Boston: Excerpts from The Mathematical Experience by Philip J. Davis and Reuben Hersh © 1981 Birkhauser Boston. Reprinted by permission of Birkhau- ser Boston and the authors. The Chronicleof Higher Education: Excerpts from The Chronicle of Higher Education, July 7, 1993, C) 1993 Chronicle of HigherEducation. Reprinted by permission. The New York Times: Excerpts from The New York Times, June 24, 1993, X) 1993 The New York Times. Reprinted by permission. Excerpts from The New York Times, June 29, 1993, © 1993 The New York Times. Reprinted by permission. Cody Pfanstieh/ The poem on the subject of Fermat's last theorem is reprinted cour- tesy of Cody Pfanstiehl. Karl Rubin, Ph.D.: The sketch of Dr. Wiles's proof of Fermat's Last Theorem in- cluded in the Appendix is reprinted courtesy of Karl Rubin, Ph.D. Wesley Salmon, Ph.D.: Excerpts from Zeno's Paradoxes by Wesley Salmon, editor © 1970. Reprinted by permission of the editor. Scientific American: Excerpts from "Turing Machines," by John E. Hopcroft, Scientific American, May 1984, (D 1984 Scientific American, Inc. -
On Selmer Groups of Geometric Galois Representations Tom Weston
On Selmer Groups of Geometric Galois Representations Tom Weston Department of Mathematics, Harvard University, Cambridge, Mass- chusetts 02140 E-mail address: [email protected] iii Dedicated to the memory of Annalee Henderson and to Arnold Ross Contents Introduction ix Acknowledgements xii Notation and terminology xv Fields xv Characters xv Galois modules xv Schemes xv Sheaves xvi Cohomology xvi K-theory xvi Part 1. Selmer groups and deformation theory 1 Chapter 1. Local cohomology groups 3 1. Local finite/singular structures 3 2. Functorialities 4 3. Local exact sequences 5 4. Examples of local structures 6 5. Ordinary representations 7 6. Cartier dual structures 8 7. Local structures for archimedean fields 9 Chapter 2. Global cohomology groups 11 1. Selmer groups 11 2. Functorialities 13 3. The global exact sequence 13 4. A finiteness theorem for Selmer groups 14 5. The Kolyvagin pairing 16 6. Shafarevich-Tate groups 18 7. The Bockstein pairing 20 Chapter 3. Annihilation theorems for Selmer groups 21 1. Partial geometric Euler systems 21 2. The key lemmas 22 3. The annihilation theorem 25 4. Right non-degeneracy of the Bockstein pairing 27 5. A δ-vanishing result 28 Chapter 4. Flach systems 31 1. Minimally ramified deformations 31 v vi CONTENTS 2. Tangent spaces and Selmer groups 34 3. Good primes 36 4. Flach systems 38 5. Cohesive Flach systems 39 6. Cohesive Flach systems of Eichler-Shimura type 40 Chapter 5. Flach systems of Eichler-Shimura type 43 1. The map on differentials 43 2. The Tate pairing 45 3. A special case 47 4. -
Mathematisches Forschungsinstitut Oberwolfach Arithmetic Geometry
Mathematisches Forschungsinstitut Oberwolfach Report No. 38/2016 DOI: 10.4171/OWR/2016/38 Arithmetic Geometry Organised by Gerd Faltings, Bonn Johan de Jong, New York Peter Scholze, Bonn 7 August – 13 August 2016 Abstract. Arithmetic geometry is at the interface between algebraic geom- etry and number theory, and studies schemes over the ring of integers of number fields, or their p-adic completions. An emphasis of the workshop was on p-adic techniques, but various other aspects including Hodge theory, Arakelov theory and global questions were discussed. Mathematics Subject Classification (2010): 11G99. Introduction by the Organisers The workshop Arithmetic Geometry was well attended by over 50 participants from various backgrounds. It covered a wide range of topics in algebraic geometry and number theory, with some focus on p-adic questions. Using the theory of perfectoid spaces and related techniques, a number of results have been proved in recent years. At the conference, Caraiani, Gabber, Hansen and Liu reported on such results. In particular, Liu explained general p-adic versions of the Riemann–Hilbert and Simpson correspondences, and Caraiani reported on results on the torsion in the cohomology of Shimura varieties. This involved the geometry of the Hodge–Tate period map, which Hansen extended to a general Shimura variety, using the results reported by Liu. Moreover, Gabber proved degeneration of the Hodge spectral sequence for all proper smooth rigid spaces over nonarchimedean fields of characteristic 0, or even in families, by proving a spreading out result for proper rigid spaces to reduce to a recent result in p-adic Hodge theory. -
Rapport Annuel 2014-2015
RAPPORT ANNUEL 2014-2015 Présentation du rapport annuel 1 Programme thématique 2 Autres activités 12 Grandes Conférences et colloques 16 Les laboratoires du CRM 20 Les prix du CRM 30 Le CRM et la formation 34 Les partenariats du CRM 38 Les publications du CRM 40 Comités à la tête du CRM 41 Le CRM en chiffres 42 Luc Vinet Présentation En 2014-2015, contrairement à ce qui était le cas dans (en physique mathématique) à Charles Gale de l’Université les années récentes, le programme thématique du CRM a McGill et le prix CRM-SSC (en statistique) à Matías été consacré à un seul thème (très vaste !) : la théorie des Salibián-Barrera de l’Université de Colombie-Britannique. nombres. L’année thématique, intitulée « La théorie des Les Grandes conférences du CRM permirent au grand public nombres : de la statistique Arithmétique aux éléments Zêta », de s’initier à des sujets variés, présentés par des mathémati- a été organisée par les membres du CICMA, un laboratoire ciens chevronnés : Euler et les jets d’eau de Sans-Souci du CRM à la fine pointe de la recherche mondiale, auxquels il (par Yann Brenier), la mesure des émotions en temps réel faut ajouter Louigi Addario-Berry (du Groupe de probabilités (par Chris Danforth), le mécanisme d’Anticythère (par de Montréal). Je tiens à remercier les quatre organisateurs de James Evans) et l’optique et les solitons (par John Dudley). cette brillante année thématique : Henri Darmon de l’Univer- L’année 2014-2015 fut également importante du point de sité McGill, Chantal David de l’Université Concordia, Andrew vue de l’organisation et du financement du CRM. -
Henri Darmon
Henri Darmon Address: Dept of Math, McGill University, Burnside Hall, Montreal, PQ. E-mail: [email protected] Web Page: http://www.math.mcgill.ca/darmon Telephone: Work (514) 398-2263 Home: (514) 481-0174 Born: Oct. 22, 1965, in Paris, France. Citizenship: Canadian, French, and Swiss. Education: 1987. B.Sc. Mathematics and Computer Science, McGill University. 1991. Ph.D. Mathematics, Harvard University. Thesis: Refined class number formulas for derivatives of L-series. University Positions: 1991-1994. Princeton University, Instructor. 1994-1996. Princeton University, Assistant Professor. 1994-1997. McGill University, Assistant Professor. 1997-2000. McGill University, Associate Professor. 2000- . McGill University, Professor. 2005-2019. James McGill Professor, McGill University. Other positions: 1991-1994. Cercheur hors Qu´ebec, CICMA. 1994- . Chercheur Universitaire, CICMA. 1998- . Director, CICMA (Centre Interuniversitaire en Calcul Math´ematique Alg´ebrique). 1999- . Member, CRM (Centre de Recherches Math´ematiques). 2005-2014. External member, European network in Arithmetic Geometry. Visiting Positions: 1991. IHES, Paris. 1995. Universit´a di Pavia. 1996. Visiting member, MSRI, Berkeley. 1996. Visiting professor and guest lecturer, University of Barcelona. 1997. Visiting Professor, Universit´e Paris VI (Jussieu). 1997. Visitor, Institut Henri Poincar´e. 1998. Visiting Professor and NachDiplom lecturer, ETH, Zuric¨ h. 1999. Visiting professor, Universit`a di Pavia. 2001. Visiting professor, Universit`a di Padova. 2001. Korea Institute for Advanced Study. 2002. Visiting professor, RIMS and Saga University (Japan). 1 2003. Visiting Professor, Universit´e Paris VI, Paris. 2003. Visiting professor, Princeton University. 2004. Visiting Professor, Universit´e Paris VI, Paris. 2006. Visiting Professor, CRM, Barcelona, Spain. 2008. Visiting Professor, Universit´e Paris-Sud (Orsay). -
Algebra & Number Theory
Algebra & Number Theory Volume 4 2010 No. 2 mathematical sciences publishers Algebra & Number Theory www.jant.org EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Andrei Okounkov Princeton University, USA John H. Coates University of Cambridge, UK Raman Parimala Emory University, USA J-L. Colliot-Thel´ ene` CNRS, Universite´ Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hel´ ene` Esnault Universitat¨ Duisburg-Essen, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universitat,¨ Germany Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Ronald Solomon Ohio State University, USA Andrew Granville Universite´ de Montreal,´ Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Kansas, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale -
Mathematics Calendar
Mathematics Calendar The most comprehensive and up-to-date Mathematics Calendar information is available on e-MATH at http://www.ams.org/mathcal/. August 2005 Brown, Antonio Campillo, Max Karoubi, Jean-Louis Loday, Susan Montgomery, Adrian Ocneanu, Jose Antonio de la Pena,˜ Vladimir Mathematical Modeling of Infectious Diseases: Dynamics and Popov, Hans-Jurgen Schneider, Aron Simis, Frank Sottile, Richard Control, Institute for Mathematical Sciences, National University Stanley, Boris Tsygan, Mariusz Wodzicki. of Singapore, Singapore 118402. (May 2005, p. 568) Organizing and Scientific Committee: Walter Ferrer Santos (Co- Information: KP Chua, Administrative Officer, Institute for Mathe- ord.), Gerardo Gonzalez-Sprinberg, Alfredo Jones, Alvaro Rittatore, matical Sciences, National University of Singapore, 3 Prince George’s Andrea Solotar. Park, Singapore 118402; tel: (+65) 6874 1893; Facsimile: (+65) 6873 8292; http://www.ims.nus.edu.sg. Deadline: May 1st, 2005. Information:http://www.cmat.edu.uy/cmat/eventos/16cla/en; 1–5 14th USENIX Security Symposium, Baltimore, Maryland. (May Walter Ferrer: email: [email protected] 2005, p. 568) Description: The USENIX Security Symposium brings together 1–December 23 Pattern Formation in Large Domains, Isaac researchers, practitioners, system administrators, system pro- Newton Institute for Mathematical Sciences, Cambridge, England. grammers, and others interested in the latest advances in security (Aug. 2004, p. 834) of computer systems. Organizers: J.H.P. Dawes (Cambridge), M. Golubitsky (Houston), Information: Contact: Conference Department, email: conference@ P.C. Matthews (Nottingham), A.M. Rucklidge (Leeds). usenix.org; tel: 510-528-8649; http://www.usenix.org/sec05/. Information: http://www.newton.cam.ac.uk/programmes/PFD/; Isaac Newton Institute for Mathematical Sciences, 20 Clarkson 1–9 XVI Coloquio Latinoamericano de Algebra, Colonia, Uruguay. -
CV and Bibliography Karl Rubin Education 1981 Ph.D., Mathematics, Harvard University 1977 M.A., Mathematics, Harvard University 1976 A.B
Karl Rubin phone: 949-824-1645 Department of Mathematics fax: 508-374-0599 UC Irvine [email protected] Irvine, CA 92697-3875 http://www.math.uci.edu/~krubin CV and Bibliography Karl Rubin Education 1981 Ph.D., Mathematics, Harvard University 1977 M.A., Mathematics, Harvard University 1976 A.B. summa cum laude, Mathematics, Princeton University Employment 2019{ Distinguished Professor Emeritus, University of California Irvine 2004{2020 Thorp Professor of Mathematics, University of California Irvine 2013{2016 Chair, Department of Mathematics, UC Irvine 1997{2006 Professor, Stanford University 1996{1999 Distinguished University Professor, Ohio State University 1987{1996 Professor, Ohio State University 1988{1989 Professor, Columbia University 1984{1987 Assistant Professor, Ohio State University 1982{1983 Instructor, Princeton University Selected visiting positions Universit¨atErlangen-N¨urnberg Harvard University Institute for Advanced Study (Princeton) Institut des Hautes Etudes Scientifiques (Paris) Mathematical Sciences Research Institute (Berkeley) Max-Planck-Institut f¨urMathematik (Bonn) Selected honors and awards 2012 Fellow of the American Mathematical Society 1999 Humboldt-Forschungspreis (Humboldt Foundation Research Award) 1994 Guggenheim Fellowship 1992 AMS Cole Prize in Number Theory 1988 NSF Presidential Young Investigator Award 1987 Ohio State University Distinguished Scholar Award 1985 Sloan Fellowship 1981 NSF Postdoctoral Fellowship 1979 Harvard University Graduate School of Arts and Sciences Fellow 1976 NSF Graduate Fellowship -
Algebraic Tori in Cryptography
Fields Institute Communications Volume 00, 0000 Algebraic tori in cryptography Karl Rubin Department of Mathematics, Stanford University, Stanford CA 94305, USA [email protected] Alice Silverberg Department of Mathematics, Ohio State University, Columbus OH 43210, USA [email protected] Abstract. We give a mathematical interpretation in terms of algebraic tori of the LUC and XTR cryptosystems and a conjectured generaliza- tion. 1 Introduction In a series of papers culminating in [7], Edouard Lucas introduced and explored the properties of certain recurrent sequences that became known as Lucas functions. Since then, generalizations and applications of Lucas functions have been studied (see [17, 18, 20]), and public key discrete log based cryptosystems (such as LUC) have been based on them (see [8, 12, 13, 19, 1]). The Lucas functions arise when studying quadratic field extensions. Cryptographic applications of generalizations to cubic and sextic field extensions are given in [4] and [3, 6], respectively. The cryptosystem in [6] is called XTR. An approach for constructing a generalization of these cryptosystems to the case of degree 30 extensions is suggested in [3, 2]. The × idea of these cryptosystems is to represent certain elements of Fqn (for n = 2, 6, and 30, respectively) using only ϕ(n) elements of Fq, and do a variant of the Diffie- Hellman key exchange protocol. For XTR and LUC, traces are used to represent the elements. In [2], symmetric functions are proposed in place of the trace (which is the first symmetric function). In [11] we use algebraic tori to construct public key cryptosystems. These × systems are based on the discrete log problem in a subgroup of Fqn in which the elements can be represented by only ϕ(n) elements of Fq. -
Edray Herbert Goins, Teoría De Números, Geometría Algebraica
MATEMÁTICOS ACTUALES Edray Herbert Goins, Teoría de números, geometría algebraica Edray Herber Goins nació en el centro-sur de Los Ángeles y, teniendo en cuenta el reconocimiento que figura en el encabezamiento de su tesis, este matemático parece haber sido orientado por su madre, Eddi Beatrice Goins, y también por su padrino, William Herber Dailey. Él escribe esto: Al autor le gustaría dar el máximo crédito a su madre, Eddi Beatrice Goins, y a su padrino, William Herber Dailey, por su constante orientación, apoyo y protección a lo largo de los años. Edray Goins fue criado junto con su hermano. Del resumen de la charla “Black Mathematician: My Journey from South Central to Studying Dessins d'Enfants” que dio en 2015 en la Universidad de Michigan, en el "Coloquio del Dr. Marjorie Lee Browne" obtenemos los siguientes detalles. En 1939, Annie Beatrice Brown dio a luz en Marshall, Texas, a Eddi Beatrice Brown. Pasó la mayoría de los años 1936- 1942 tomando clases de educación en Bishop College, alternando su tiempo entre tomar clases de educación y ser una madre que se queda en casa. Eddi Beatrice Brown se convirtió en maestra, se casó con Goins, y en 1972 dio a luz a Edray Herber Goins, el protagonista de esta biografía, en el centro-sur de Los Ángeles. Edray siempre ha dicho que su madre y otros maestros en el sistema de Escuelas Públicas Unificadas de Los Ángeles, a las que él asistió, le alentaron y motivaron a estudiar mucho y asumir desafíos de aprendizaje adicionales [Referencia 9]: Incluso a temprana edad, Edray mostraba sed de conocimientos.