Geomorphology and Quaternary History of the Australian Continental Dunefields R. J. WASSON
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tanami Regional Exploration Project (Tre)
TanamI Project - Regional Exploration MMP Variation NORTHERN STAR hllOilRCCS vfHMtD Exploration Operations Mining Management Plan and Public Report NORTHERN STAR (TANAMI) PTY LTD TANAMI REGIONAL EXPLORATION PROJECT (TRE) VARIATION Request for Additional Information MR2017/0336 DECEMBER 2017 Document Distribution List: NT Department of Primary industry and Resources Central Land Council Tanomi Gold ML Northern Star Resources Ltd I, MICHAEL MULRONEY - CHIEF GEOLOGICAL OFFICER declare that to the best of my knowledge the information contained in this Mining Management Plan is true and correct and commit to undertake the works detailed in this plan in accordance with all the relevant Local, Northern Territory and Commonwealth Government legislation. SiGNATU DATE: Northern Star (Tanami) Pty Ltd Page 1 of 22 Tanami Project – Regional Exploration MMP Variation Contents 1. AMENDMENTS ........................................................................................................................................... 3 1.0 Operator Details .................................................................................................................................... 4 1.1 Executive Summary .......................................................................................................................... 5 2.0 Project Details ....................................................................................................................................... 6 2.1 Proposed Activities ........................................................................................................................ -
Australia: State of the Environment 1996: Chapter 4
Chapter 4 . Biodiversity ‘Still Flying’ from the painting of a Wandering Albatross by Richard Prepared by Weatherly. Denis Saunders (Chair), CSIRO Division of Wildlife and Ecology Andrew Beattie, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Susannah Eliott (Research Assistant/Science Writer), Centre for Science Communication, University of Technology, Sydney Marilyn Fox, School of Geography, University of New South Wales Burke Hill, CSIRO Division of Fisheries Bob Pressey, New South Wales National Parks and Wildlife Service Duncan Veal, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Jackie Venning, State of Environment Reporting, South Australian Department of Environment and Natural Resources Mathew Maliel (State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (Facilitator) Charlie Zammit (former State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (former Facilitator) 4-1 . Australia: State of the Environment 1996 . Contents Introduction. 4-4 Pressure . 4-7 Human populations . 4-9 Urban development . 4-9 Tourism and recreation . 4-9 Harvesting resources and land use. 4-10 Fisheries . 4-10 Forestry . 4-11 Pastoralism. 4-12 Agriculture . 4-12 Introduced species . 4-16 Vertebrates . 4-16 Invertebrates. 4-17 Plants. 4-18 Micro-organisms. 4-20 Native species out of place . 4-20 Pollution . 4-21 Mining . 4-22 Climate change . 4-22 State . 4-23 The state of ecosystem diversity . 4-23 Biogeographic regionalisations for Australia . 4-23 Ecosystem diversity. 4-26 The state of species diversity. 4-30 Number and distribution of species . 4-31 Status of species . -
An Environmental Profile of the Loddon Mallee Region
An Environmental Profile of the Loddon Mallee Region View from Mount Alexander looking East, May 1998. Interim Report March 1999 Loddon Mallee Regional Planning Branch CONTENTS 1. EXECUTIVE SUMMARY …………………………………………………………………………….. 1 2. INTRODUCTION …………………………………………………………………………………….. 4 Part A Major Physical Features of the Region 3. GEOGRAPHY ………………………………………………………………………… 5 3.1 GEOGRAPHICAL FEATURES ………………………………………………………………………………………………… 5 3.1.1 Location ………………………………………………………………………………………... 5 3.1.2 Diversity of Landscape ……………………………………………………………………….…. 5 3.1.3 History of Non-Indigenous Settlement ……………………………………………………………. 5 3.2 TOPOGRAPHY………………………………………………………………………………………………………………….. 6 3.2.1 Major Landforms ………………………………………………………………………..………. 6 3.2.1.1 Southern Mountainous Area …………………………………………………………….…………..…. 6 3.2.1.2 Hill Country …………………………………………………………………………………….…….………. 6 3.2.1.3 Riverine ………………………………………………………………………………………….……………. 6 3.2.1.4 Plains …………………………………………………………………………………………….….……….. 6 3.2.1.5 Mallee …………………………………………………………………………………………….….………. 7 3.3 GEOLOGY …………………………………………………………………………………………….. 8 3.3.1 Major Geological Features …………………………………………………………….………… 8 3.3.2 Earthquakes …………………………………………………………………………………….. 10 4. CLIMATE ……………………………………………………………………………… 11 4.1 RAINFALL …………………………………………………………………………………………………………………..….. 11 4.2 TEMPERATURE ……………………………………………………………………………….………. 12 4.2.1 Average Maximum and Minimum Temperatures …………………………………………….………… 12 4.2.1 Temperature Anomalies ………………………………………………………………….……… 13 4.2.3 Global Influences on Weather……………………………………………………………………. -
Phylogenetic Structure of Vertebrate Communities Across the Australian
Journal of Biogeography (J. Biogeogr.) (2013) 40, 1059–1070 ORIGINAL Phylogenetic structure of vertebrate ARTICLE communities across the Australian arid zone Hayley C. Lanier*, Danielle L. Edwards and L. Lacey Knowles Department of Ecology and Evolutionary ABSTRACT Biology, Museum of Zoology, University of Aim To understand the relative importance of ecological and historical factors Michigan, Ann Arbor, MI 48109-1079, USA in structuring terrestrial vertebrate assemblages across the Australian arid zone, and to contrast patterns of community phylogenetic structure at a continental scale. Location Australia. Methods We present evidence from six lineages of terrestrial vertebrates (five lizard clades and one clade of marsupial mice) that have diversified in arid and semi-arid Australia across 37 biogeographical regions. Measures of within-line- age community phylogenetic structure and species turnover were computed to examine how patterns differ across the continent and between taxonomic groups. These results were examined in relation to climatic and historical fac- tors, which are thought to play a role in community phylogenetic structure. Analyses using a novel sliding-window approach confirm the generality of pro- cesses structuring the assemblages of the Australian arid zone at different spa- tial scales. Results Phylogenetic structure differed greatly across taxonomic groups. Although these lineages have radiated within the same biome – the Australian arid zone – they exhibit markedly different community structure at the regio- nal and local levels. Neither current climatic factors nor historical habitat sta- bility resulted in a uniform response across communities. Rather, historical and biogeographical aspects of community composition (i.e. local lineage per- sistence and diversification histories) appeared to be more important in explaining the variation in phylogenetic structure. -
PETROLEUM SYSTEM of the GIPPSLAND BASIN, AUSTRALIA by Michele G
uses science for a changing world PETROLEUM SYSTEM OF THE GIPPSLAND BASIN, AUSTRALIA by Michele G. Bishop1 Open-File Report 99-50-Q 2000 This report is preliminary and has not been reviewed for conformity with the U. S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade names is for descriptive purposes only and does not imply endorsements by the U. S. government. U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Consultant, Wyoming PG-783, contracted to USGS, Denver, Colorado FOREWORD This report was prepared as part of the World Energy Project of the U.S. Geological Survey. In the project, the world was divided into 8 regions and 937 geologic provinces. The provinces have been ranked according to the discovered oil and gas volumes within each (Klett and others, 1997). Then, 76 "priority" provinces (exclusive of the U.S. and chosen for their high ranking) and 26 "boutique" provinces (exclusive of the U.S. and chosen for their anticipated petroleum richness or special regional economic importance) were selected for appraisal of oil and gas resources. The petroleum geology of these priority and boutique provinces is described in this series of reports. The purpose of this effort is to aid in assessing the quantities of oil, gas, and natural gas liquids that have the potential to be added to reserves within the next 30 years. These volumes either reside in undiscovered fields whose sizes exceed the stated minimum- field-size cutoff value for the assessment unit (variable, but must be at least 1 million barrels of oil equivalent) or occur as reserve growth of fields already discovered. -
Survey of the Underground Signs of Marsupial Moles in the WA Great Victoria Desert
Survey of the underground signs of marsupial moles in the WA Great Victoria Desert Report to Tropicana Joint Venture and the Department of Natural Resources, Environment and the Arts, Northern Territory Government Joe Benshemesh Martin Schulz September 2008 Marsupial moles in the WA Great Victoria Desert Benshemesh & Schulz 2008 Contents Summary.......................................................................................................................3 Introduction..................................................................................................................5 Methods........................................................................................................................7 Methods........................................................................................................................8 Sites.........................................................................................................................8 Trenches.................................................................................................................9 Moleholes ..............................................................................................................9 Additional data ....................................................................................................9 Results..........................................................................................................................12 Characteristics attributes of backfilled tunnels in WA GVD.............................12 -
(A) Global Distribution of Hyperarid and Dryland Areas Figure 9.2
a Figure 9.2 (a) Global distribution of hyperarid and dryland areas Drylands Dry subhumid areas Dry subhumid areas DrylandsSemiarid areas AridSemiarid areas areas DrylandsDryDry subhumidsubhumid areasareas HyperaridArid areas areas SemiaridSemiaridDryDry subhumidsubhumid areasareas areasareas AridArid areasareasHyperarid areas SemiaridSemiarid areasareas HyperaridHyperarid areasareas Map produced by ZOÏ Environment Network, September 2010 Source: UNEAridAridP W orld areasareas Conservation Monitoring Centre DrylandsHyperaridHyperarid areasareas Map produced by ZOÏ Environment Network, September 2010 MapMap producedproduced byby ZOÏZOÏ EnvironmentEnvironment Network,Network, SeptemberSeptember 20102010 Source: UNEDryP subhumidWorld Conservation areas Monitoring Centre Source:Source:b UNEUNEPP WWorldorld ConservationConservation MonitoringMonitoring CentreCentre DrylandsSemiarid areas Arid areas Figure 9.2 DryDry subhumidsubhumid areasareas Hyperarid areas SemiaridSemiarid areasareas (b) Regions MapMap producedproduced byby ZOÏZOÏ EnvironmentEnvironment Network,Network, SeptemberSeptember 20102010 Source:Source: UNEUNEPPAridArid WW areasorldareasorld ConservationConservation MonitoringMonitoring CentreCentre vulnerable to HyperaridHyperarid areasareas Map produced by ZOÏ Environment Network, September 2010 Source: UNEP World Conservation Monitoring Centre desertification MapMap producedproduced byby ZOÏZOÏ EnvironmentEnvironment Network,Network, SeptemberSeptember 20102010 Source:Source: UNEUNEPP WWorldorld ConservationConservation MonitoringMonitoring -
Miocene Wood from the Latrobe Valley Coal Measures, Victoria
Miocene wood from the LaTrobe Valley coal measures, Victoria,. Australia DAVID R. GREENWOOD GREENWOOD, DAVID R., 30.9.2005. Miocene wood from the LaTrobe Valley coal measures, Victoria, Australia. Alcheringa 29, 351-363. ISSN 0311 5518. An initial study of a collection of fossil conifer wood is reported from the late early Miocene Yallourn Clays, an interseam unit intergrading into the base of the early to middle Miocene Yallourn seam of the LaTrobe Valley, Victoria in southeastern Australia. The fossil wood shares characteristics with the modern genera Dacrycarpus and Dacrydium. On the basis of contiguous, uniseriate tracheid pitting and 1-2 podocarpoid cross field pits, it is placed in the form genus Podocarpoxylon, and the new species P. latrobensis. The wood is compared with extant Podocarpaceae and other Australian fossil woods. Its ring anatomy is consistent with low temperature or rainfall seasonality in the early Miocene. David R. Greenwood [[email protected]], Sustainability Group, Victoria University, St Albans campus, PO Box 14428, Melbourne City MC, VIC 8001, Australia; received 18.7.2003; revised 6.1.2005. Current address; Environmental Science, Brandon University, 270-18th Street, Brandon, MB, Canada, R7A 6A9. Key words: Miocene, wood, Podocarpaceae, coal, LaTrobe Valley, Australia MIOCENE vegetation in Australia is primarily Australia (Taylor et al. 1990), a wood character known from fossil pollen and the macrofossil that is consistent with deciduous forests record of leaves or reproductive organs. Bishop (Greenwood 2001). The paucity of systematic & Bamber (1985), Leisman (1986), and Bamford & analysis of Australian Cenozoic wood is McLoughlin (2000), are the sole recent systematic perplexing given the abundance of material readily accounts of Australian Cenozoic fossil wood, available and the attention given to systematic although early and more recent Australian analysis of modern taxa of Australian forest trees workers noted the presence and quality of (e.g. -
The Geology and Prospectivity of the Southern Margin of the Murray Basin
VIMP Report 4 The geology and prospectivity of the southern margin of the Murray Basin by M.D. BUSH, R.A. CAYLEY, S. ROONEY, K. SLATER, & M.L. WHITEHEAD March 1995 Bibliographic reference: BUSH, M.D., CAYLEY, R.A., ROONEY, S., SLATER, K., & WHITEHEAD, M.L., 1995. The geology and prospectivity of the southern margin of the Murray Basin. Geological Survey of Victoria. VIMP Report 4. © Crown (State of Victoria) Copyright 1995 Geological Survey of Victoria ISSN 1323 4536 ISBN 0 7306 7412 6 This report and attached map roll may be purchased from: Business Centre, Department of Agriculture, Energy & Minerals, Ground Floor, 115 Victoria Parade, Fitzroy 3065 For further technical information contact: General Manager, Geological Survey of Victoria, P O Box 2145, MDC Fitzroy 3065 Acknowledgments The preparation of this report has benefited from discussions with a number of colleagues from the Geological Survey of Victoria, notably David Taylor, Alan Willocks, Roger Buckley and Iain McHaffie. The authors would also like to thank Gayle Ellis for the formatting and Roger Buckley for the editing of this report. GEOLOGY AND PROSPECTIVITY - SOUTHERN MARGIN MURRAY BASIN 1 CONTENTS Abstract 3 1 Introduction 4 2 Geological history 5 2.1 Adelaide Fold Belt 5 2.2 Lachlan Fold Belt 5 3 Summary of rock units 8 3.1 Early to Middle Cambrian (The Glenelg Zone) 8 3.2 Middle to Late Cambrian (The Glenelg Zone and the Stawell Zone) 8 3.3 Cambro-Ordovician (The Stawell Zone) 9 3.4 Ordovician (The Glenelg Zone) 10 3.5 Ordovician (The Bendigo-Ballarat Zone) 10 3.6 Late -
Geology and Mineral Resources of the Northern Territory
Geology and mineral resources of the Northern Territory Ahmad M and Munson TJ (compilers) Northern Territory Geological Survey Special Publication 5 Chapter 26: Victoria Basin BIBLIOGRAPHIC REFERENCE: Dunster JN and Ahmad M, 2013. Chapter 26: Victoria Basin: in Ahmad M and Munson TJ (compilers). ‘Geology and mineral resources of the Northern Territory’. Northern Territory Geological Survey, Special Publication 5. Disclaimer While all care has been taken to ensure that information contained in this publication is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of its information. The Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this publication, or that it is suitable for your intended use. You should not rely upon information in this publication for the purpose of making any serious business or investment decisions without obtaining independent and/or professional advice in relation to your particular situation. The Northern Territory of Australia disclaims any liability or responsibility or duty of care towards any person for loss or damage caused by any use of, or reliance on the information contained in this publication. Victoria Basin Current as of March 2010 Chapter 26: VICTORIA BASIN JN Dunster and M Ahmad INTRODUCTION estimate of the age of the group. The minimum age of the succession is constrained by an inferred age of about The Neoproterozoic Victoria Basin is exposed in the Victoria 635 Ma or younger for the Moonlight Valley Tillite of River area of the northwestern NT, where it unconformably the overlying Wolfe Basin, based on correlations of this overlies the Palaeo–Mesoproterozoic Birrindudu Basin unit with the Olympic and Elatina formations from the (Figure 26.1). -
Desert-2.Pdf
Desert Contens Top Ten Facts PG 1 front cover 1 All Deserts are all different but they all have low amounts of rain PG 2 contens 2 Deserts normally have less than 40 CM a year 3 The Sahara desert is in Northern Africa and is over 12 different countries PG 3 top ten facts 4 Sahara desert is the largest desert in the Earth PG 4 whether and climate 5 Only around 20% of the Deserts on Earth are covered in sand 6 Around one third of the Earth's surface is covered in Desert PG 5 desert map 7 The largest cold Desert on Earth is Antarctica PG 6 animals and people that live there 8 Located in South America, the Atacama Desert is the driest place in the world PG 7 what grows there 9 Lots of animals live in Deserts such as the wild dog 10 The Arabian Desert in the Middle East is the second largest hot desert on Earth but is substantially smaller than the Sahara. This is a list of the deserts in Wether And Climate the world Arabian Desert. ... Kalahari Desert. ... Wether Mojave Desert. ... Sonoran Desert. ... Chihuahuan Desert. ... This is a map showing Deserts are usually very, very dry. Even the wettest deserts get less than ten Thar Desert. ... the deserts in the world inches of precipitation a year. In most places, rain falls steadily throughout the Gibson Desert. year. But in the desert, there may be only a few periods of rains per year with a lot of time between rains. -
Thylacomyidae
FAUNA of AUSTRALIA 25. THYLACOMYIDAE KEN A. JOHNSON 1 Bilby–Macrotis lagotis [F. Knight/ANPWS] 25. THYLACOMYIDAE DEFINITION AND GENERAL DESCRIPTION The family Thylacomyidae is a distinctive member of the bandicoot superfamily Perameloidea and is represented by two species, the Greater Bilby, Macrotis lagotis, and the Lesser Bilby, M. leucura. The Greater Bilby is separated from the Lesser Bilby by its greater size: head and body length 290–550 mm versus 200–270 mm; tail 200–290 mm versus 120–170 mm; and weight 600–2500 g versus 311–435 g respectively (see Table 25.1). The dorsal pelage of the Greater Bilby is blue-grey with two variably developed fawn hip stripes. The tail is black around the full circumference of the proximal third, contrasting conspicuously with the pure white distal portion, which has an increasingly long dorsal crest. The Lesser Bilby displays a delicate greyish tan above, described by Spencer (1896c) as fawn-grey and lacks the pure black proximal portion in the tail. Rather, as its specific name implies, the tail is white throughout, although a narrow band of slate to black hairs is present on the proximal third of the length. Finlayson (1935a) noted that the Greater Bilby lacks the strong smell of the Lesser Bilby. The skull of the Lesser Bilby is distinguished from the Greater Bilby by its smaller size (basal length 60-66 mm versus 73–104 mm; [Troughton 1932; Finlayson 1935a]), the more inflated and smoother tympanic bullae (Spencer 1896c), the absence of a fused sagittal crest in old males and the distinctly more cuspidate character in the crowns in the unworn molars (Finlayson 1935a).