Japanese Citrus Fruit (Sudachi) Juice Is Associated with Increased Bioavailability of Calcium from Whole Small Fish and Suppressed Bone Resorption in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Japanese Citrus Fruit (Sudachi) Juice Is Associated with Increased Bioavailability of Calcium from Whole Small Fish and Suppressed Bone Resorption in Rats J Nutr Sci Vitaminol, 50, 177-183, 2004 Japanese Citrus Fruit (Sudachi) Juice Is Associated with Increased Bioavailability of Calcium from Whole Small Fish and Suppressed Bone Resorption in Rats Yoshitaka NIT1, Kazuhiro FUKUTA1, Kentaro SAKAI2 and Shigeru YAMAMOTO3 1Food TechnologyDivision , TokushimaPrefectural Industrial TechnologyCenter, Tokushima770-8021, Japan 2Department of Nutrition and Health Promotion, Faculty of Human Life Science,Hiroshima Jogakuin Univer sity, Hiroshima 732-0063, Japan 3Department of Nutrition, School of Medicine,The University of Tokushima, Tokushima770-8503, Japan (Received October 11, 2003) Summary Shirasuboshi (boiled and semi-dried whitebait) is a processed fish food that con tains abundant calcium. It is eaten whole and commonly consumed in Japan. In this study, the effect of sudachi (Citrus sudachi) juice on calcium, magnesium and phosphorus bioavail ability, and bone metabolism in rats was examined. After 14 d of diets low in calcium and phosphorus, male Sprague-Dawley rats were fed shirasuboshi diets containing dried shira suboshi powder treated with 20% (S20) or 40% (S40) sudachi juice, or distilled water (C) (0.5% Ca; 0.3% P) for 14 d. The apparent absorptions and retentions of calcium, magne sium and phosphorus from shirasuboshi were determined. Bone formation was calculated by measuring serum osteocalcin, and bone resorption by measuring urinary pyridinoline and deoxypyridinoline. The apparent absorption and retention of calcium and magnesium in the S20 group were significantly higher than in the C and S40 groups. Although serum osteo calcin was not affected by the addition of sudachi juice, the urinary pyridinoline and deoxy pyridinoline concentrations in the S40 group were significantly lower than in the C and S20 groups. Our results indicate that sudachi juice added to shirasuboshi was associated with increased calcium bioavailability and suppressed bone resorption in rats. Key Words calcium-absorption, citrus fruit, fish, bone resorption, rats The importance of adequate calcium intake for the solubilizing dietary calcium. development and maintenance of peak bone mass is Sudachi (Citrus sudachi) is a major citrus fruit grown well established (1). Insufficient calcium intake increas in Tokushima Prefecture, which is located on Shikoku es bone resorption (1, 2), decreases bone mass (3) and Island in Japan. There is a dietary habit of squeezing increases the risk of osteoporosis after menopause (4). sudachi juice on shirasuboshi in this area. The major A sufficient calcium intake is therefore required to pre organic acid component of sudachi juice is citric acid. vent bone loss. For these reasons, promoting diets high Previously, we found that sudachi juice solubilizes cal in calcium and exploring new ways of increasing the cium from shirasuboshi in vitro (11). Furthermore, we bioavailability of dietary calcium are very important. observed solubilization of calcium by sudachi juice fol Shirasuboshi (boiled and semi-dried whitebait) is a lowing in vitro peptic and peptic-pancreatic digestions processed fish food that is eaten whole and commonly of shirasuboshi (11). These results suggest that sudachi consumed in Japan. Although whole small fish with juice treatment may enhance the bioavailability of cal bones are potentially a good source of dietary calcium, cium from shirasuboshi. The present study was therefore bone calcium is unavailable for absorption due to its designed to examine the effect of sudachi juice on cal incorporation in insoluble hydroxyapatite crystals (5). cium, magnesium and phosphorus bioavailability, and There is very little information on the availability of cal bone metabolism in young male rats fed shirasuboshi cium from the bones of small fish (5, 6), and methods to diets. efficiently increase calcium availability from small fish MATERIALS AND METHODS have not been fully examined. It is thought that calcium must be ionized in order to Preparation of dried shirasuboshi powder. Shirasuboshi be absorbed in the intestine (7). Several reports have were purchased from Yoshimi Kaisan Co., Ltd. (Komat dealt with the significant effects of citric acid and citric sushima, Tokushima, Japan). The content of water in acid salts on the bioavailability of calcium (8, 9). the shirasuboshi was 38.7g/100g. Sudachi juice (pH Mehansho et al. (10) demonstrated that CCM (a combi 2.2) was purchased from Tokushima City Agricultural nation of calcium carbonate, citric acid and malic acid) Cooperatives (Tokushima, Japan). The concentrations of in orange juice enhances the bioavailability of calcium. citric acid and malic acid in the sudachi juice were These results suggest that citric acid is very effective in 60mg/mL and 3.5mg/mL, respectively. To 100g of 177 178 Nu Y et al. Table 1. Composition of experimental diets. 1C , the diet containing dried shirasuboshi powder treated with distilled water; S20 , the diet containing dried shirasuboshi powder treated with 20% sudachi juice; S40, the diet containing dried shirasuboshi powder treated with 40% sudachi juice .2 Containing (g/100g): protein, 63.6; fat, 5.2; carbohydrate, 0.2; (mg/100g): calcium , 750; magnesium, 190; phospho rus, 950. 3Prepared according to AIN -93G formulation except for calcium and phosphorus . fresh shirasuboshi, 20 or 40mL of sudachi juice was with the Guideline for the Care and Use of Laboratory added to make the experimental diets. Distilled water Animals at the University of Tokushima. was added to an equivalent amount of sudachi juice to Metabolism studies. During the periods of 11-14 d make the control diet. The shirasuboshi treated with and 25-28 d, the rats were placed in metabolic cages sudachi juice or distilled water was then dried for 12h at (Try Tec Co., Ltd., Osaka, Japan). The food intake was 80•Ž. Dried shirasuboshi were ground to a powder using measured, and feces and urine were collected separately a food cutter (DLC-XG; Conair Corp., Stamford, CN, USA) . for each period for the determination of apparent Animals and diets. Male Sprague-Dawley rats, 3 wk absorption and retention. The 0.1% carmine was added of age (Japan SLC Co., Ltd., Hamamatsu, Shizuoka, to each diet as a marker, and the feces were collected Japan) were preliminarily maintained on a stock diet until the marker was all excreted. Feces collected were (MF; Oriental Yeast Co., Ltd., Tokyo, Japan) for 7 d, and dried for 24h at 105•Ž, weighed, and ground with a the rats were then fed ad libitum a low-calcium blender. Contaminants, including hairs, were removed (0.01%), low-phosphorus (0.15%) diet for 14 d (Table by filtering through an 80-mesh stainless steel sieve . 1). The rats were then divided into three groups of six Urine was collected in a glass flask containing 1 N rats each. The three groups were fed ad libitum the hydrochloric acid, and filtered with No. 7 filter paper shirasuboshi diets containing dried shirasuboshi powder (Toyo Roshi Co., Ltd., Tokyo, Japan). treated with 20% (S20) or 40% (S40) sudachi juice, or Analytical methods. At the end of the study period , distilled water (C) (0.5% Ca; 0.3% P) for 14 d (Table 1) . the rats were anesthetized by ethyl ether and killed, and The diets were based on the AIN-93 G formulation (12) . blood samples and femurs were collected. Serum was The dried shirasuboshi powder was the main source of aliquoted after centrifugation (1, 500•~g) for 15min at protein, calcium and phosphorus in each diet, and the 4•Ž and stored at -40•Ž until analysis. Feces, right total level of fat was adjusted to 7% (w/w) with soybean femurs and food samples were dried, and then ashed for oil. The contents of energy, protein, fat, fiber, calcium 24h at 550•Ž in a muffle furnace (FO300; Yamato Sci and phosphorus were constant in each diet. The rats entific Co., Ltd., Tokyo, Japan). The temperature was were housed individually in stainless steel cages at gradually raised until 550•Ž. The ashed samples were room temperature (24•Ž) and 55% humidity with a dissolved in 1% hydrochloric acid. 12h light-dark cycle. All rats were given distilled water Calcium and magnesium concentrations were deter ad libitum. The animals were maintained in accordance mined by atomic absorption spectrophotometry (Z Effect of Citrus Fruit on Calcium Absorption 179 Table 2. Body weight gain, food intake and food efficiency in rats fed low Ca and P diet or dried shirasuboshi diet. Values are means•}SD, n=18 in (A) and n=6 per group in (B). 8100; Hitachi, Ltd., Tokyo, Japan) with strontium add Table 3. The apparent absorption and retention of cal ed to the sample at a final concentration of 3,000mg/L. cium, magnesium and phosphorus in rats fed low Ca Phosphorus was determined by a colorimetric method and P diet. using ammonium molybdenate (13). The apparent ab sorption and retention of calcium, magnesium and phosphorus were calculated by the following formulae: Apparent absorption (%)=[(intake-fecal excretion)/ (intake)]•~100, and apparent retention (%)=[(intake -fecal excretion-urinary excretion)/(intake)]•~100 . Values are means•}SD, n=18. Citric acid and malic acid in sudachi juice were mea sured by high-performance liquid chromatography (Organic Acids Analytic System; Japan Spectroscopic dex (SSI), which is an indicator of whole bone strength Co., Ltd., Tokyo, Japan) (14). (16-18). Biochemical analysis. The concentrations of cal In vitro solubilization of calcium from dried shirasuboshi cium, magnesium and inorganic phosphorus in serum powder. To 20mL of Ultra Pure Water (Milli-Q SO; Mil were measured by a colorimetric method using assay lipore Corp., Tokyo, Japan), 1g of dried shirasuboshi kits for each mineral (Calcium C, Magnesium B and powder was added and incubated on a shaker for 1h at Phosphor C; wako Pure Chemical Industries, Ltd.,. 37•Ž. Samples were centrifuged (18,000•~g) for 10 min Osaka, Japan). at 4•Ž and the amount of calcium in the supernatant The concentrations of calcitonin and osteocalcin in was determined by atomic absorption spectrophotome serum were measured by enzyme immunoassay (Penin try (Z-8100; Hitachi, Ltd.).
Recommended publications
  • Sustainable Production Technique of Satsuma Mandarin Using Plant
    Sustainable Production Technique of Satsuma Mandarin using Plant Growth Regulators under Climate Change January 2020 Keiko SATO Sustainable Production Technique of Satsuma Mandarin using Plant Growth Regulators under Climate Change A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Agricultural Science Keiko SATO Contents Summary 1 Abbreviations 5 Chapter 1 General introduction 6 Chapter 2 Effects of elevated temperatures on physiological fruit drop, peel puffing and coloring of satsuma mandarin Section 1 Effects on physiological fruit drop Introduction 17 Materials and Methods 18 Results 19 Discussion 21 Tables and Figures 24 Section 2 Effects on peel puffing and coloring Introduction 32 Materials and Methods 33 Results 35 Discussion 38 Tables and Figures 42 Chapter 3 Development of techniques to cope with elevated temperature by use of PGRs of satsuma mandarin Section 1 Development of techniques to reduce peel puffing Introduction 50 Materials and Methods 52 Results 56 Discussion 59 Tables and Figures 65 Section2 Development of handpicking techniques Introduction 74 Materials and Methods 75 Results 80 Discussion 82 Tables and Figures 88 Section 3 Development of enriched vegetative shoots and stable flowering technique in greenhouse Introduction 100 Materials and Methods 101 Results 104 Discussion 106 Tables and Figures 109 Chapter 4 General discussion 117 Acknowledgements 131 References 132 Summary Cultivation areas suitable for satsuma mandarin (Citrus unshiu Marc.) have average annual temperatures of 15–18°C and minimum winter temperatures of more than −5°C. 5 In Japan, the satsuma mandarin is cultivated mainly in the southwestern area of the Pacific Ocean.
    [Show full text]
  • GRAS Notice 658, Grapefruit Extract
    GRAS Notice (GRN) No. 658 GR 11111111111111111111 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION ., Notice to the US Food and Drug Administration that the use of Vancitrix™, a glycerin Citrus Extract, is Generally Recognized as Safe GRN ODDb58 Submitted and Prepared by the Notifier: r----------, (Pa~(C~~~~[)) Chemie Research & Manufacturing, Co., Inc. JUL 1 2016 OFFICE OF 18 March 2015 (Original subm ission) FOOI3> ADDITIVE SAFETY 07 June 2016 (Revised submission) THOMAS WRIGHT Table of Contents GRAS Exemption Claim 2 Name and Address of Notifier 2 Common or Usual Name 2 Conditions of Use 2 Basis for GRAS Determination 3 Data I Information Availability Statement 3 Characterization 3 Chemical Composition 4 Organic Certification 4 Manufacturing and Production 5 Company Overview 5 Raw Materials 5 Manufacturing 5 Specifications and Batch Analysis 7 Specifications and Quality Control 7 Ascorbic acid, Citric acid, Naringin and other Flavonoids 8 Screening for Pesticides I Bactericides 9 Heavy Metal Analysis 9 Minimum Inhibitory Concentration (MIC) 10 Microbial Assay (USP-51) 11 History of Consumption 12 Production 12 Safety Assessment 13 Toxicological Studies 13 Drug Interactions 13 Current Regulatory Status 14 Regulatory Status of Citrus Fruit 14 Regulatory Status of Additional Vancitrix™ Components 14 Intended Use 14 Estimated Daily Intake (EDI) 15 General Recognition I Basis for GRAS Determination 16 References 17 1 .. GRAS Exemption Claim Chemie Research & Manufacturing, Co., Inc. (the notifier) has determined that Vancitrix™ grapefruit extract, hereafter referred to as Vancitrix™, is Generally Recognized as Safe (GRAS) for its intended use, consistent with section 201 (s) of the Federal Food, Drug and Cosmetic Act.
    [Show full text]
  • Unforbidden Fruits: Preventing Citrus Smuggling by Introducing Varieties Culturally Significant to Ethnic Communities
    CRB Funded Research Reports Research Project Progress Report Unforbidden fruits: preventing citrus smuggling by introducing varieties culturally significant to ethnic communities David Karp, Tracy Kahn, Toni Siebert, Robert Krueger, Richard Lee and Georgios Vidalakis efore long, as you are driving down a country road, you Federal and state agencies strive mightily to stop smug- may be puzzled to see plantings of unfamiliar citrus glers, but it’s impossible for them to catch them all. Only a Band citrus relatives such as curry leaf, bael and etrog, small percentage of agricultural cargo is inspected, and in perhaps grown in greenhouses or on trellises. It might be even any case many of those who smuggle citrus do so for reli- more surprising to learn that the Citrus Research Board has gious and cultural purposes, not fully understanding the po- had a hand in the diffusion of these esoteric crops. tential impact. Unfortunately, these culprits are unlikely to The rationale is unusual but compelling: Although these be deterred by conventional interdiction strategies. crops could be profitable for a few nurseries that sell the trees, Complementary to interdiction, there’s another ap- and for the farmers that grow them, far more important is the proach -- reducing demand -- that can play a crucial role in benefit they could bring to California’s entire citrus industry suppressing smuggling. The concept is simple: if a product by avoiding economic damage from smuggling. As we know is readily available in California, smugglers won’t bother to all too well, illicit imports pose a grave danger of introducing bring it in.
    [Show full text]
  • Jupiters Reveals New Japanese Restaurant - Kiyomi
    MEDIA RELEASE Tuesday November 11, 2014 Jupiters reveals new Japanese restaurant - Kiyomi Jupiters Hotel & Casino will open the doors to Kiyomi, its newest restaurant and bar in December. The new venue will serve a modern, yet distinctly Japanese menu created by internationally recognised Restaurant Executive Chef Chase Kojima. Chase Kojima specialises in cutting-edge Japanese cuisine using unique combinations to create exciting and surprising dishes. After leading kitchens for Nobu in Las Vegas, Dubai, London, Los Angeles and the Bahamas, Chase founded Sokyo restaurant at The Star, Sydney in 2011. In its short history, Sokyo has built an enviable reputation culminating in the award of One Chef's Hat at the 2014 The Sydney Morning Herald Good Food Guide Awards. Dishes created by Chase for his second Australian restaurant Kiyomi at Jupiters include Scampi with Foie Gras, White Soy, Apple and Mizuna Salad, as well as Binchotan Duck Breast with Beetroot, Sansho Pepper and Wasabi, and Salmon Robata with Ssamjang Miso and Watercress. Chase said he loves being creative and cooking with only the freshest produce. "Kiyomi will centre around the delicious flavour, ‘Umami’,” he said. “We will be celebrating unique yet simple flavour combinations which bring the natural flavours of the produce to life. It is all about using simple garnishes, simple sauces and simple combinations to create truly delicious dishes,” he said. The name Kiyomi (a rare Japanese citrus fruit, a hybrid of mandarin and sweet orange) reflects both the creative blend of Japanese and Australian flavours as well as the extensive use of fresh, citrus flavours throughout the menu.
    [Show full text]
  • Use the Right Citrus-Based Cleaning Products to Avoid Corrosion Or Rust Bob Beckley, Project Leader
    United States Department of Agriculture Facilities Forest Service Technology & Development Program March 2006 0673–2319–MTDC 7300/7100/5100/2400/2300 Use the Right Citrus-Based Cleaning Products to Avoid Corrosion or Rust Bob Beckley, Project Leader itrus-based cleaning products are commonly found in metal on their chain saws. The crew stopped using citrus-based residential and commercial settings. The ingredients in products because they believed citric acid was causing the these products vary widely (figure 1). While some of damage. However, the damage probably was caused by a C water-based citrus cleaning product. What To Look for in a Citrus-Based Cleaning Product The Material Safety Data Sheets (MSDSs) for chemical products list their ingredients. The MSDS for a citrus-based cleaner should list D-Limonene among the ingredients. D- Limonene is in the terpene family, which includes citrus and pine oils. Terpenes are generally not corrosive or harmful to metals or most plastics and polymers. Terpenes won’t cause rusting, pitting, etching, or staining. Citrus-based terpenes can dissolve heavy petroleum greases and residues in about 30 Figure 1—Citrus-based cleaners are commonly used in residential and minutes when they are used at ambient temperatures. commercial settings, but users often are unaware of the difference between citrus oil-based cleaning products and water-based products. A citrus oil-based cleaning product will not cause corrosion these products can cause corrosion or rust, others do not. The or rust. Such products are made from the oil found in the difference is based on the ingredients. Hundreds of cleaning orange peel, rather than the pulp and juice of the orange.
    [Show full text]
  • Factors Affecting the Rate of Maturation of Citrus Fruits
    Proc. Fla. State Hort. Soc. 97: 40-44.1984. FACTORS AFFECTING THE RATE OF MATURATION OF CITRUS FRUITS Dan A. Kimball1 one sample a day for every day that fruit was received California Citrus Producers, Inc., from that particular packinghouse, and correlated with P. O. Box C, the accumulated temperatures (F°) during a given period. Lindsay, CA 93247 Climatic data were obtained from Lindsay-Strathmore Ir rigation District, which is centrally located in Tulare Additional index words, heat, navel, 'Valencia', limonin, county's citrus belt. Crop data were obtained from the Brix, acid. Tulare County Agricultural Commissioner's office. Limonin analyses were done by mixing reconstituted juice with Abstract. 'Washington navel' and 'Valencia' [Citrus sinensis diatomaceus earth, extracting with five 30-ml portions of (L.) Osb.] sample data (Brix/acid ratios) from routine pro chloroform using vacuum filtration, and evaporating the cessing plant tests were correlated directly with local climatic filtrate in a rotary evaporator. The flask from the rotary data throughout 7 seasons in California to yield linear re* evaporator was rinsed with several 2 ml portions of chloro lationships with r2 factors of 0.96 or better for navels. The form and analyzed, using a Perkin Elmer series 10 HPLC y-intercepts and slopes were found to strongly correlate with pump, LC-75 UV detector set at 210 nm, and a model R100 the accumulated maximum heat from the first 4 months after chart recorder. A CN column and precolumn were used bloom, crop load, and tree growth with r2 factors of 0.96. with a solvent system consisting of ethylene glycol mono- Equations were derived to enable (Brix/acid) ratio prediction.
    [Show full text]
  • FEMA GRAS Assessment of Natural Flavor Complexes Citrus-Derived
    Food and Chemical Toxicology 124 (2019) 192–218 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox FEMA GRAS assessment of natural flavor complexes: Citrus-derived T flavoring ingredients Samuel M. Cohena, Gerhard Eisenbrandb, Shoji Fukushimac, Nigel J. Gooderhamd, F. Peter Guengeriche, Stephen S. Hechtf, Ivonne M.C.M. Rietjensg, Maria Bastakih, ∗ Jeanne M. Davidsenh, Christie L. Harmanh, Margaret McGowenh, Sean V. Taylori, a Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198- 3135, USA b Food Chemistry & Toxicology, Kühler Grund 48/1, 69126 Heidelberg, Germany c Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan d Dept. of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom e Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA f Masonic Cancer Center, Dept. of Laboratory Medicine and Pathology, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th St. SE, Minneapolis, MN, 55455, USA g Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands h Flavor and Extract Manufacturers Association, 1101 17th Street, NW Suite 700, Washington, DC, 20036, USA i Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, NW Suite 700, Washington, DC,20036,USA ARTICLE INFO ABSTRACT Keywords: In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation Citrus of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication isthe Natural flavor complex first in a series and summarizes the evaluation of54 Citrus-derived NFCs using the procedure outlined in Smith Botanical et al.
    [Show full text]
  • Survey of Phenolic Compounds Produced in Citrus
    USDA ??:-Z7 S rveyof Phenolic United States Department of Agriculture C mpounds Produced IliIIiI Agricultural Research In Citrus Service Technical Bulletin Number 1856 December 1998 United States Department of Agriculture Survey of Phenolic Compounds Agricultural Produced in Citrus Research Service Mark Berhow, Brent Tisserat, Katherine Kanes, and Carl Vandercook Technical Bulletin Number 1856 December 1998 This research project was conducted at USDA, Agricultural Research Service, Fruit and Vegetable Chem­ istry laboratory, Pasadena, California, where Berhow was a research chemist, TIsserat was a research geneticist, Kanes was a research associate, and Vandercook, now retired, was a research chemist. Berhow and Tisserat now work at the USDA-ARS National Center for AgriCUltural Utilization Research, Peoria, Illinois, where Berhow is a research chemist and Tisserat is a research geneticist. Abstract Berhow, M., B. Tisserat, K. Kanes, and C. Vandercook. 1998. Survey of Mention of trade names or companies in this publication is solely for the Phenolic Compounds Produced in Citrus. U.S. Department ofAgriculture, purpose of providing specific information and does not imply recommenda­ Agricultural Research Service, Technical Bulletin No. 1856, 158 pp. tion or endorsement by the U. S. Department ofAgriculture over others not mentioned. A survey of phenolic compounds, especially flavanones and flavone and flavonol compounds, using high pressure liquid chromatography was While supplies last, single copies of this publication may be obtained at no performed in Rutaceae, subfamily Aurantioideae, representing 5 genera, cost from- 35 species, and 114 cultivars. The average number of peaks, or phenolic USDA, ARS, National Center for Agricultural Utilization Research compounds, occurring in citrus leaf, flavedo, albedo, and juice vesicles 1815 North University Street were 21, 17, 15, and 9.3, respectively.
    [Show full text]
  • Generation of Sexual and Somatic Hybrids in Acid Citrus Fruits
    GENERATION OF SEXUAL AND SOMATIC HYBRIDS IN ACID CITRUS FRUITS By ZENAIDA JOSEFINA VILORIA VILLALOBOS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Zenaida Josefina Viloria Villalobos This dissertation is dedicated to my darling mother Olivia and to the memory of my beloved father Dimas, and to my sisters Celina, Doris, Celmira, and Olivia, and brothers Dimas, Silfredo and Alejandro, with love. ACKNOWLEDGMENTS This work was completed with the generous collaboration of many people to whom I will always be grateful. First I wish to thank my supervisor Dr. Jude Grosser, for his guidance, suggestions, and financial assistance during the last period of my studies. I also want to thank the University of Zulia and Fondo Nacional de Ciencias, Tecnologia e Innovation for giving me the opportunity to do my doctoral studies. I thank very much Dr. Renee Goodrich, Dr. Frederick Gmitter, Dr. Michael Kane and Dr. Dennis Gray for being members of my committee and for their contributions to this work. Thanks go to Dr. Glem Wright (University of Arizona) for making it possible to generate more lemon progenies in this study. I appreciate very much the supervision and help in completing the canker screening study from Dr. Graham, Diana Drouillard and Diane Bright. I thank very much Dr. Ramon Littell and Belkys Bracho for their assistance on the statistical analysis of my experiments. Thanks go to the Division of Plant Industry (Lake Alfred, FL), particularly to Mrs.
    [Show full text]
  • FALL and WINTER 2017
    SID WAINER & SON® FALL and WINTER MENU PLANNER 2017 Farm -Fresh selections handpicked for your seasonal menu ® table of contents PURSLANE FEATURE.......................................................................................4 SEPTEMBER PRODUCE PLANNER..................................................................6 SPECIALTY FEATURE.......................................................................................9 TAMARILLOS FEATURE....................................................................................10 OCTOBER PRODUCE PLANNER.....................................................................12 YUZU FEATURE................................................................................................14 NOVEMBER PRODUCE PLANNER.................................................................16 DECEMBER PRODUCE PLANNER..................................................................18 CARDONES FEATURE.....................................................................................20 JANUARY PRODUCE PLANNER.....................................................................22 FEBRUARY PRODUCE PLANNER...................................................................24 WINTER SQUASH FEATURE............................................................................26 MARCH PRODUCE PLANNER.........................................................................28 BURDOCK FEATURE.......................................................................................30 The fall and winter harvest are so important
    [Show full text]
  • Holdings of the University of California Citrus Variety Collection 41
    Holdings of the University of California Citrus Variety Collection Category Other identifiers CRC VI PI numbera Accession name or descriptionb numberc numberd Sourcee Datef 1. Citron and hybrid 0138-A Indian citron (ops) 539413 India 1912 0138-B Indian citron (ops) 539414 India 1912 0294 Ponderosa “lemon” (probable Citron ´ lemon hybrid) 409 539491 Fawcett’s #127, Florida collection 1914 0648 Orange-citron-hybrid 539238 Mr. Flippen, between Fullerton and Placentia CA 1915 0661 Indian sour citron (ops) (Zamburi) 31981 USDA, Chico Garden 1915 1795 Corsican citron 539415 W.T. Swingle, USDA 1924 2456 Citron or citron hybrid 539416 From CPB 1930 (Came in as Djerok which is Dutch word for “citrus” 2847 Yemen citron 105957 Bureau of Plant Introduction 3055 Bengal citron (ops) (citron hybrid?) 539417 Ed Pollock, NSW, Australia 1954 3174 Unnamed citron 230626 H. Chapot, Rabat, Morocco 1955 3190 Dabbe (ops) 539418 H. Chapot, Rabat, Morocco 1959 3241 Citrus megaloxycarpa (ops) (Bor-tenga) (hybrid) 539446 Fruit Research Station, Burnihat Assam, India 1957 3487 Kulu “lemon” (ops) 539207 A.G. Norman, Botanical Garden, Ann Arbor MI 1963 3518 Citron of Commerce (ops) 539419 John Carpenter, USDCS, Indio CA 1966 3519 Citron of Commerce (ops) 539420 John Carpenter, USDCS, Indio CA 1966 3520 Corsican citron (ops) 539421 John Carpenter, USDCS, Indio CA 1966 3521 Corsican citron (ops) 539422 John Carpenter, USDCS, Indio CA 1966 3522 Diamante citron (ops) 539423 John Carpenter, USDCS, Indio CA 1966 3523 Diamante citron (ops) 539424 John Carpenter, USDCS, Indio
    [Show full text]
  • Improvement of Subtropical Fruit Crops: Citrus
    IMPROVEMENT OF SUBTROPICAL FRUIT CROPS: CITRUS HAMILTON P. ÏRAUB, Senior Iloriiciilturist T. RALPH ROBCNSON, Senior Physiolo- gist Division of Frnil and Vegetable Crops and Diseases, Bureau of Plant Tndusiry MORE than half of the 13 fruit crops known to have been cultivated longer than 4,000 years,according to the researches of DeCandolle (7)\ are tropical and subtropical fruits—mango, oliv^e, fig, date, banana, jujube, and pomegranate. The citrus fruits as a group, the lychee, and the persimmon have been cultivated for thousands of years in the Orient; the avocado and papaya were important food crops in the American Tropics and subtropics long before the discovery of the New World. Other types, such as the pineapple, granadilla, cherimoya, jaboticaba, etc., are of more recent introduction, and some of these have not received the attention of the plant breeder to any appreciable extent. Through the centuries preceding recorded history and up to recent times, progress in the improvement of most subtropical fruits was accomplished by the trial-error method, which is crude and usually expensive if measured by modern standards. With the general accept- ance of the Mendelian principles of heredity—unit characters, domi- nance, and segregation—early in the twentieth century a starting point was provided for the development of a truly modern science of genetics. In this article it is the purpose to consider how subtropical citrus fruit crops have been improved, are now being improved, or are likel3^ to be improved by scientific breeding. Each of the more important crops will be considered more or less in detail.
    [Show full text]