Pdf 146.00K An12

Total Page:16

File Type:pdf, Size:1020Kb

Pdf 146.00K An12 Application Note 12 October 1985 Circuit Techniques for Clock Sources Jim Williams Almost all digital or communication systems require some network shown is a replacement for this function. Figure 1d form of clock source. Generating accurate and stable clock is a version using two gates. Such circuits are particularly signals is often a difficult design problem. vulnerable to spurious operation but are attractive from a Quartz crystals are the basis for most clock sources. The component count standpoint. The two linearly biased gates combination of high Q, stability vs time and temperature, provide 360 degrees of phase shift with the feedback path and wide available frequency range make crystals a coming through the crystal. The capacitor simply blocks price-performance bargain. Unfortunately, relatively little DC in the gain path. Figure 1e shows a circuit based on information has appeared on circuitry for crystals and discrete components. Contrasted against the other cir- engineers often view crystal circuitry as a black art, best cuits, it provides a good example of the design flexibility left to a few skilled practitioners (see box, “About Quartz and certainty available with components specified in the Crystals”). linear domain. This circuit will oscillate over a wide range of crystal frequencies, typically 2MHz to 20MHz. In fact, the highest performance crystal clock circuitry does demand a variety of complex considerations and subtle The 2.2k and 33k resistors and the diodes compose a implementation techniques. Most applications, however, pseudo current source which supplies base drive. don’t require this level of attention and are relatively easy At 25°C the base current is: to serve. Figure 1 shows five (5) forms of simple crystal 1.2V –1V clocks. Types 1a through 1d are commonly referred to BE = 18µA as gate oscillators. Although these types are popular, 33k they are often associated with temperamental operation, To saturate the transistor, which would stop the oscilla- spurious modes or outright failure to oscillate. The pri- tor, requires VCE to go to near zero. The collector current mary reason for this is the inability to reliably identify the necessary to do this is: analog characteristics of the gates used as gain elements. 5V It is not uncommon in circuits of this type for gates from IC(sat) = = 5mA different manufacturers to produce markedly different 1k circuit operation. In other cases, the circuit works, but is with 18μA of base drive a beta of: influenced by the status of other gates in the same pack- 5mA age. Other circuits seem to prefer certain gate locations = 278 is required 18µA within the package. In consideration of these difficulties, gate oscillators are generally not the best possible choice in At 1mA the DC beta spread of 2N3904’s is 70 to ≅210. a production design; nevertheless, they offer low discrete The transistor should not saturate...even at supply volt- component count, are used in a variety of situations, and ages below 3V. bear mention. Figure 1a shows a CMOS Schmitt trigger biased into its linear region. The capacitor adds phase shift In similar fashion, the effects of temperature may also and the circuit oscillates at the crystal resonant frequency. be determined. Figure 1b shows a similar version for higher frequencies. VBE vs temperature over 25°C – 70°C is: The gate gives inverting gain, with the capacitors providing additional phase shift to produce oscillation. In Figure 1c, a –2.2mV/°C • 45° = –99mV. TTL gate is used to allow the 10MHz operating frequency. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear The low input resistance of TTL elements does not allow Technology Corporation. All other trademarks are the property of their respective owners. the high value, single resistor biasing method. The R-C-R an12fa AN12-1 Application Note 12 100kHz 1MHz 68pF 0.25μF 1k 68pF 2M 6.8M 74LS04 1k 74C14 4049 OUT OUT OUT 10MHz 68pF 43pF 68pF 68pF 68pF (1a) (1b) (1c) 0.1μF 1k 3k 5V 74LS041200pF 74LS04 1k 5V OUT 20MHz 5MHz 2.2k OUT 33k 2N3904 22pF ALL CRYSTALS PARALLEL RESONANT AT-CUT TYPES 100pF (1d) (1e) AN-12 F01 Figure 1. Typical Gate Oscillators and the Preferred Discrete Unit The compliance voltage of the current source will move: to the crystal’s resonance, the crystal “steals” energy from 2 • –2.2mV/°C • 45°C = –198mV. the RC, forcing it to run at the crystal’s frequency. The crystal activity is readily apparent in Trace A of Figure 3, Hence, a first order compensation occurs: which is the LT®1011’s “–” input. Trace B is the LT1011’s –198mV – 99mV = –99mV total shift. output. In circuits of this type, it is important to ensure that enough current is available to quickly start the crystal This remaining –99mV over temperature causes a shift resonating while simultaneously maintaining an RC time in base current: constant of appropriate frequency. Typically, the free run- 0.6V ning frequency should be set 5% to 10% above crystal 25°C current = = 18µA 33k resonance with a resistor feedback value calculated to allow about 100μA into the capacitor-crystal network. This 0.5V 70°C current = = 15µA type of circuit is not recommended for use above a few 33k hundred kHz because of comparator delays. 18µA – 15µA = 3µA 50k This 3μA shift (about 16%) provides a compensation for transistor h shift with temperature, which moves about 0UT FE – 20% from 25°C to 70°C. Thus the circuit’s behavior over 1k 85kHz 100pF LT1011 5V temperature is quite predictable. The resistor, diode and + V tolerances mean that only first order compensations 10k BE 10k for VBE and hFE over temperature are appropriate. 5V Figure 2 shows another approach. This circuit uses a 10k standard RC-comparator multivibrator circuit with the AN-12 F02 crystal connected directly across the timing capacitor. Because the free running frequency of the circuit is close Figure 2. Crystal Stabilized Relaxation Oscillator an12fa AN12-2 Application Note 12 Figures 4a and 4b use another comparator based approach. crystals operate in overtone mode. Because of this, oscil- In Figure 4a, the LT1016 comparator is set up with DC lation can occur at multiples of the desired frequency. The negative feedback. The 2k resistors set the common mode damper network rolls off gain at high frequency, insuring level at the device’s positive input. Without the crystal, proper operation. the circuit may be considered as a very wideband (50GHz All of the preceding circuits will typically provide tem- GBW) unity gain follower biased at 2.5V. With the crystal perature coefficients of 1ppm/°C with long term (1 year) inserted, positive feedback occurs and oscillation com- stability of 5ppm to 10ppm. Higher stability is achievable mences. Figure 4a is useful with AT-cut fundamental mode with more attention to circuit design and control of tem- crystals up to 10MHz. Figure 4b is similar, but supports perature. Figure 5 shows a Pierce class circuit with fine oscillation frequencies to 25MHz. Above 10MHz, AT-cut frequency trimming provided by the paralleled fixed and 5V 5V 1MHz TO 10MHz 10MHz TO 25MHz 2k CRYSTAL 2k (AT CUT) 22Ω 5V 5V + 820pF A = 1V/DIV V V + + Q + Q 2k LT1016 2k LT1016 B = 5V/DIV OUTPUT OUTPUT – Q – Q GND GND LATCH LATCH – V V – 2k 0.068μF 200pF 2k AN-12 F03 10μs/DIV AN-12 F04a AN-12 F04b Figure 3. Figure 2’s Waveforms Figure 4a. 1MHz to 10MHz Figure 4b. 10MHz to 25MHz Crystal Oscillator Crystal Oscillator 5V MAIN 15V 15V OUT TO SUPPLY LT1005 “OSCILLATOR READY” AND MAIN 5V POWER 0.1μF 10k 5.6k AUX VCONTROL Q2 OUT Q3 2N3904 33pF 5V 2N3904 10k 1000pF 1N914 OUTPUT 10pF (50Ω) 34.8k 34.8k 100k 15V 15V 8.2μF 100pF – + Q1 R SELECT 3k 2N3904 TYPICAL LT1001 600Ω + 1N914 2N6387 5.6k 330pF –15V DARLINGTON 3.3k 0.1μF RT THERMAL FEEDBACK 34.8k Oscillator 8.2k 22M * TRW MAR-6 RESISTOR 0.01μF RT = YELLOW SPRINGS INST. #44014 75°C = 35.39k 2k = BLILEY #BG61AH-55, 75°C TURNING POINT. 5MHz FREQUENCY Oven Control AN-12 F05 Figure 5. Ovenized Oscillator an12fa AN12-3 Application Note 12 variable capacitors. The transistor provides 180° of phase system the clock is associated with. For the crystal and shift with the loop components adding another 180°, circuit values specified, this clock will drift less than resulting in oscillation. The LT1005 voltage regulator and 1 × 10–9 over 0°C to 70°C with a time drift of 1 part the LT1001 op amp are used in a precision temperature 10–9 week. servo to control crystal temperature. The LT1001 extracts The oven approach to removing temperature effects of the differential bridge signal and drives the Darlington crystal clock frequency is the most effective and in wide stage to power the heater, which is monitored by the use. Ovens do, however, require substantial power and thermistor. In practice, the sensor is tightly coupled to warm-up time. In some situations, this is unacceptable. the heater. The RC feedback values should be optimized Another approach to offsetting temperature effects is for the thermal characteristics of the oven. In this case, to measure ambient temperature and insert a scaled the oven was constructed of aluminum tube stock 3" long compensation factor into the crystal clock’s frequency × 1" wide × 1/8" thick. The heater windings were dis- trimming network. This open loop correction technique tributed around the cylinder and the assembly placed relies on matching the clock frequency vs temperature within a small insulating Dewar flask. This allows 75°C characteristic, which is quite repeatable.
Recommended publications
  • Crystal Oscillators 1
    Crystal oscillators 1. Objectives The aim of the exercise is to get acquainted with issues concerning the generation of waveforms (including sinewaves) in the basic structures of crystal generators. In addition, the exercise aims to familiarize with surface mount technique SMT (Surface Mount Technology/ Technics or SMD – Surface mounting Devices). 2. Components and instrumentation. In the exercise, it is possible to test quartz generators operating in the three simplest and most popular system structures: • Colpitts-Pierce quartz generator with bipolar transistor, • quartz generator implemented on TTL gates, • quartz generator implemented on CMOS inverters 2.1. Colpittsa-Pierce’s oscillator with bipolar transistor. The Colpitts-Pierce quartz generator system working in parallel resonance is shown in Fig. 1. + UCC Rb C2 XT C1 Re UWY Fig. 1. Colpittsa-Pierce oscillator with BJT. Using, in the system, quartz resonators with resonance values up to several tens of MHz, the elements C1, Re in the generator system can be selected according to the graph shown in Fig.2. RezystorRe [Ohm] Frequency [MHz] Fig. 2. Selection of C1 and Re elements in the Colpitts-Pierce oscillator 2.2. Quartz oscillator implemented using TTL digital IC Fig. 3 presents a diagram of a quartz oscillator implemented using NAND gates in TTL technology. The oscillator works in series resonance. In this system, while maintaining the same resistance values, quartz resonators with a frequency from a few to 10 MHz can be used. 560 1k8 220 220 UWY XT Fig. 3. Cristal oscillator with serial resonance implemented with NAND gates in TTL technology In the laboratory exercise, it is proposed to implement the system using TTL series 74LS00 (pins of the IC are shown in in Fig.4).
    [Show full text]
  • Unit-1 Mphycc-7 Ujt
    UNIT-1 MPHYCC-7 UJT The Unijunction Transistor or UJT for short, is another solid state three terminal device that can be used in gate pulse, timing circuits and trigger generator applications to switch and control either thyristors and triac’s for AC power control type applications. Like diodes, unijunction transistors are constructed from separate P-type and N-type semiconductor materials forming a single (hence its name Uni-Junction) PN-junction within the main conducting N-type channel of the device. Although the Unijunction Transistor has the name of a transistor, its switching characteristics are very different from those of a conventional bipolar or field effect transistor as it can not be used to amplify a signal but instead is used as a ON-OFF switching transistor. UJT’s have unidirectional conductivity and negative impedance characteristics acting more like a variable voltage divider during breakdown. Like N-channel FET’s, the UJT consists of a single solid piece of N-type semiconductor material forming the main current carrying channel with its two outer connections marked as Base 2 ( B2 ) and Base 1 ( B1 ). The third connection, confusingly marked as the Emitter ( E ) is located along the channel. The emitter terminal is represented by an arrow pointing from the P-type emitter to the N-type base. The Emitter rectifying p-n junction of the unijunction transistor is formed by fusing the P-type material into the N-type silicon channel. However, P-channel UJT’s with an N- type Emitter terminal are also available but these are little used.
    [Show full text]
  • JRE SCHOOL of Engineering
    JRE SCHOOL OF Engineering PUT EXAMINATION SET-A MAY 2015 Subject Name Microwave Engineering Subject Code EEC 603 Roll No. of Student Max Marks 100 Max Duration 3 hrs Date 02/05/2015 Time 10:00 a.m. to 1:00 p.m. For Branches: EC Branch only (6th sem) Q. 1 Attempt any FOUR from the following. All question carry equal marks. (5 X 4 = 20) a) A TE11 wave is propagating in a air-filled circular waveguide of diameter 12cm at 2.5GHz, find the cutoff frequency, guide wavelength, wave impedance in the guide. b) Show that TM01 and TM10 modes do not exist in a rectangular waveguide. c) What is a microstrip line? Compare microstrip lines with striplines. Write advantages and disadvantages of both. Microstrip Transmission Line: It is also called open strip line because of the openness of its structure. It has very simple geometry. It is an unsymmetrical strip line that is nothing but a parallel plate transmission line having dielectric substrate, the on face of which is metallised ground and the other (top) face, has thin conducting strip of certain width ‘w’ and thickness ‘t’. The top ground plate is not present and so cover plate is used for shielding purpose. Modes are only quasi TEM, thus the theory of TEM coupled lines applies only. Losses: (i) Dielectric loss in substrate (ii) ohmic skin losses in conductor strip and ground plane. Advantages: (i) Simple construction (ii) easier integration with semiconductor device (iii) fabrication cosh is lower (iv) package and unpacked semiconductor chips can be attached to these lines.
    [Show full text]
  • Analysis of BJT Colpitts Oscillators - Empirical and Mathematical Methods for Predicting Behavior Nicholas Jon Stave Marquette University
    Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Analysis of BJT Colpitts Oscillators - Empirical and Mathematical Methods for Predicting Behavior Nicholas Jon Stave Marquette University Recommended Citation Stave, Nicholas Jon, "Analysis of BJT Colpitts sO cillators - Empirical and Mathematical Methods for Predicting Behavior" (2019). Master's Theses (2009 -). 554. https://epublications.marquette.edu/theses_open/554 ANALYSIS OF BJT COLPITTS OSCILLATORS – EMPIRICAL AND MATHEMATICAL METHODS FOR PREDICTING BEHAVIOR by Nicholas J. Stave, B.Sc. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin August 2019 ABSTRACT ANALYSIS OF BJT COLPITTS OSCILLATORS – EMPIRICAL AND MATHEMATICAL METHODS FOR PREDICTING BEHAVIOR Nicholas J. Stave, B.Sc. Marquette University, 2019 Oscillator circuits perform two fundamental roles in wireless communication – the local oscillator for frequency shifting and the voltage-controlled oscillator for modulation and detection. The Colpitts oscillator is a common topology used for these applications. Because the oscillator must function as a component of a larger system, the ability to predict and control its output characteristics is necessary. Textbooks treating the circuit often omit analysis of output voltage amplitude and output resistance and the literature on the topic often focuses on gigahertz-frequency chip-based applications. Without extensive component and parasitics information, it is often difficult to make simulation software predictions agree with experimental oscillator results. The oscillator studied in this thesis is the bipolar junction Colpitts oscillator in the common-base configuration and the analysis is primarily experimental. The characteristics considered are output voltage amplitude, output resistance, and sinusoidal purity of the waveform.
    [Show full text]
  • Thyristors.Pdf
    THYRISTORS Electronic Devices, 9th edition © 2012 Pearson Education. Upper Saddle River, NJ, 07458. Thomas L. Floyd All rights reserved. Thyristors Thyristors are a class of semiconductor devices characterized by 4-layers of alternating p and n material. Four-layer devices act as either open or closed switches; for this reason, they are most frequently used in control applications. Some thyristors and their symbols are (a) 4-layer diode (b) SCR (c) Diac (d) Triac (e) SCS Electronic Devices, 9th edition © 2012 Pearson Education. Upper Saddle River, NJ, 07458. Thomas L. Floyd All rights reserved. The Four-Layer Diode The 4-layer diode (or Shockley diode) is a type of thyristor that acts something like an ordinary diode but conducts in the forward direction only after a certain anode to cathode voltage called the forward-breakover voltage is reached. The basic construction of a 4-layer diode and its schematic symbol are shown The 4-layer diode has two leads, labeled the anode (A) and the Anode (A) A cathode (K). p 1 n The symbol reminds you that it acts 2 p like a diode. It does not conduct 3 when it is reverse-biased. n Cathode (K) K Electronic Devices, 9th edition © 2012 Pearson Education. Upper Saddle River, NJ, 07458. Thomas L. Floyd All rights reserved. The Four-Layer Diode The concept of 4-layer devices is usually shown as an equivalent circuit of a pnp and an npn transistor. Ideally, these devices would not conduct, but when forward biased, if there is sufficient leakage current in the upper pnp device, it can act as base current to the lower npn device causing it to conduct and bringing both transistors into saturation.
    [Show full text]
  • AN826 Crystal Oscillator Basics and Crystal Selection for Rfpic™ And
    AN826 Crystal Oscillator Basics and Crystal Selection for rfPICTM and PICmicro® Devices • What temperature stability is needed? Author: Steven Bible Microchip Technology Inc. • What temperature range will be required? • Which enclosure (holder) do you desire? INTRODUCTION • What load capacitance (CL) do you require? • What shunt capacitance (C ) do you require? Oscillators are an important component of radio fre- 0 quency (RF) and digital devices. Today, product design • Is pullability required? engineers often do not find themselves designing oscil- • What motional capacitance (C1) do you require? lators because the oscillator circuitry is provided on the • What Equivalent Series Resistance (ESR) is device. However, the circuitry is not complete. Selec- required? tion of the crystal and external capacitors have been • What drive level is required? left to the product design engineer. If the incorrect crys- To the uninitiated, these are overwhelming questions. tal and external capacitors are selected, it can lead to a What effect do these specifications have on the opera- product that does not operate properly, fails prema- tion of the oscillator? What do they mean? It becomes turely, or will not operate over the intended temperature apparent to the product design engineer that the only range. For product success it is important that the way to answer these questions is to understand how an designer understand how an oscillator operates in oscillator works. order to select the correct crystal. This Application Note will not make you into an oscilla- Selection of a crystal appears deceivingly simple. Take tor designer. It will only explain the operation of an for example the case of a microcontroller.
    [Show full text]
  • Relaxation Oscillators and Networks
    In J.G. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley & Sons, vol. 18, pp. 396-405, 1999 Relaxation Oscillators and Networks DeLiang Wang Department of Computer and Information Science and Center for Cognitive Science The Ohio State University Columbus, OH 43210-1277 Relaxation oscillations comprise a large class of nonlinear dynamical systems, and arise naturally from many physical systems such as mechanics, biology, chemistry, and engineering. Such periodic phenomena are characterized by intervals of time during which little happens, interleaved with intervals of time during which considerable changes take place. In other words, relaxation oscillations exhibit more than one time scale. The dynamics of a relaxation oscillator is illustrated by the mechanical system of a seesaw in Figure 1. At one side of the seesaw is there a water container which is empty at the beginning; in this situation the other side of the seesaw touches the ground. As the weight of water dripping from a tap into the container exceeds that of the other side, the seesaw flips and the container side touches the ground. At this moment, the container empties itself, and the seesaw returns quictly to its original position and the process repeats. AAA AAA Figure 1. An example of a relaxation oscillator: a seesaw with a water container at one end (adapted from (4)). Relaxation oscillations were first observed by van der Pol (1) in 1926 when studying properties of a triode circuit. Such a circuit exhibits self-sustained oscillations. van der Pol discovered that for a certain range of the system parameters the oscillation is almost sinusoidal, but for a different range the oscillation exhibits abrupt changes.
    [Show full text]
  • Crystals Load Capacitance Calculation And
    Load Capacitance PRINTED: 12/21/2012 TYPICAL OSCILLATOR CIRCUIT OSC CELL OSC CELL = oscillator circuit integrated into any IC. Rf = feedback resistor, sometimes integrated in IC or is required as external resistor Rf CLOCK SIGNAL Cg = capacitance of oscillator input for IC internal use Cd = capacitance of oscillator output Rd = Phase shift resistor, necessary at lower frequencies to meet oscillation condition that phase shift all the way around the oscillator loop need to add up to 360°. Y1 = Quartz crystal unit C1 and C1 = external load capacitors. CPCB1 and CPCB2 = stray capacitances of PCB traces Cg Cd The total LOAD CAPACITANCE of the oscillator circuit is the sum of all capacitances. OSC IN OSC OUT consisting of: 1. The two external capacitors (here called C1 and C2) 2. The IC input and output capacitances (here called Cg and Cd) 3. The stray capacitances of PCB traces (here called CPCB1 and CPCB2) CPCB1 Rd Commonly being only the values of the external capacitors known so that a correct calculation of the actual load capacitance is not possible. SIGNAL OUTPUT OPTIONALCLOCK In such case we use simlified formula to calculate the load capacitance as: C1 C2 CL C TOTAL C1 C2 STRAY CPCB2 Here C1 and C2 are the external capacitors in the cricuit, values should be known. Cstray is summarized value for IC input and output capacitance and the PCB traces. Y1 Cstray in a 3.3VDC circuit is often 3~4pF. C1 C2 Cstray in a 5.0VDC circuit often 5~7pF. However, we have also seen circuits that had large deviation from these values.
    [Show full text]
  • Electronic Circuits Lab
    ELECTRONIC CIRCUITS LAB 1 2 STATE INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH GENERAL INSTRUCTIONS Rough record and Fair record are needed to record the experiments conducted in the laboratory. Rough records are needed to be certified immediately on completion of the experiment. Fair records are due at the beginning of the next lab period. Fair records must be submitted as neat, legible, and complete. INSTRUCTIONS TO STUDENTS FOR WRITING THE FAIR RECORD In the fair record, the index page should be filled properly by writing the corresponding experiment number, experiment name , date on which it was done and the page number. On the right side page of the record following has to be written: 1. Title: The title of the experiment should be written in the page in capital letters. 2. In the left top margin, experiment number and date should be written. 3. Aim: The purpose of the experiment should be written clearly. 4. Apparatus/Tools/Equipments/Components used: A list of the Apparatus/Tools/ Equipments /Components used for doing the experiment should be entered. 5. Principle: Simple working of the circuit/experimental set up/algorithm should be written. 6. Procedure: steps for doing the experiment and recording the readings should be briefly described(flow chart/programs in the case of computer/processor related experiments) 7. Results: The results of the experiment must be summarized in writing and should be fulfilling the aim. 8. Inference: Inference from the results is to be mentioned. On the Left side page of the record following has to be recorded: 1. Circuit/Program: Neatly drawn circuit diagrams/experimental set up.
    [Show full text]
  • MEMS) Technology
    Microchip Oscillators and Clocks Using Microelectromechanical Systems (MEMS) Technology Author: John Clark and Graham Mostyn The next milestone will be next-generation MEMS res- Microchip Technology Inc. onators that achieve very low phase noise for high-end communication systems. Microchip acquired MEMS timing technology through OVERVIEW the purchases of Discera and Micrel in 2015. Since Dis- For decades, oscillators and clocks have relied on cera shipped its first production oscillators in 2008, quartz crystals for the creation of a stable frequency almost 100 million devices have been manufactured reference. Crystals perform very well for many applica- and sold. tions. However, microelectromechanical systems This paper describes the benefits of a MEMS-based (MEMS) technology, replacing quartz crystals with solution, the resonator technology, and the design of MEMS resonators, entered the marketplace ten years the final product. ago and is rapidly maturing. MEMS-based timing devices offer high reliability KEY FUNCTIONALITY (including AEC-Q100 certification for automotive use), extended operating temperatures, small size, and low Microchip’s MEMS-based oscillators and clocks offer power consumption. Video surveillance, automotive benefits over traditional quartz solutions (Figure 1). ADAS, general industrial applications, and data trans- These include stable frequency, small size, high reli- mission to 10 Gbps are prime areas of usage today. ability, flexibility, many programmable features, fast guaranteed start-up, and high integration. FIGURE 1: Benefits of Microchip MEMS-Based Oscillators and Clocks. 2017 Microchip Technology Inc. DS00002344A-page 1 MICROCHIP RESONATOR quency of the beam and minimize vibrational energy TECHNOLOGY loss to the substrate. This, in turn, maximizes its quality factor and frequency selectivity.
    [Show full text]
  • CLASS 331 OSCILLATORS January 2011
    CLASS 331 OSCILLATORS 331 - 1 331 OSCILLATORS 94.1 MOLECULAR OR PARTICLE RESONANT 34 .Particular frequency control TYPE (E.G., MASER) means 1 R AUTOMATIC FREQUENCY STABILIZATION 35 ..Electromechanical (e.g., motor) USING A PHASE OR FREQUENCY 36 R ..Reactance device (e.g., SENSING MEANS variable capacitors, saturable 2 .Plural oscillators controlled inductors, reactance tubes, 3 .Molecular resonance etc.) stabilization 36 C ...Capacitor controlled AFC 4 .Search sweep of oscillator 36 L ...Inductor controlled AFC 5 .Magnetron oscillator 1 A .AFC with logic elements 6 .Klystron oscillator 37 BEAT FREQUENCY 7 ..Plural controls 38 .Plural beating 8 .Transistorized controls 39 ..Single channel 9 .Oscillator with distributed 40 .Frequency or amplitude parameter-type discriminator adjustment or control 10 .Plural A.F.S. for a single 41 .Frequency stabilization oscillator 42 .With particular signal combining 11 ..Plural comparators or means (e.g., cavity mixer) discriminators 43 ..With filter in mixer output 12 ...With phase-shifted inputs circuit 13 ..Motor control of oscillator 44 WITH FREQUENCY CALIBRATION OR 14 .With intermittent comparison TESTING controls 45 POLYPHASE OUTPUT 15 .Amplitude compensation 46 PLURAL OSCILLATORS 16 .Tuning compensation 47 .Oscillator used to vary 17 .Particular error voltage control amplitude or frequency of (e.g., intergrating network) another oscillator 18 .With reference oscillator or 48 .Adjustable frequency source 49 .Selectively connected to common 19 ..Spectrum reference source output or oscillator substitution
    [Show full text]
  • Microcontroller Oscillator Circuit Design Considerations by Cathy Cox and Clay Merritt
    Freescale Semiconduct or, Inc... 2 CrystalOscillatorTheory 1 Introduction By CathyCoxandClayMerritt Considerations Microcontroller OscillatorCircuitDesign can beexpected,asignificantamountofpowerisrequiredtokeepanamplifierinlinearmode. digital NANDgateasananalogamplifierisnotlogical,butthishowoscillatorcircuitfunctions.As The voltageincreasesuntiltheNANDgateamplifiersaturates.Atfirstglance,thoughtofusinga energized, theloopgainmustbegreaterthanonewhilevoltageatXTALgrowsovermultiplecycles. overall loopgainequaltooneandanphaseshiftthatisintegermultipleof360 stabilize thefrequencyandsupply180 sists oftwoparts:aninvertingamplifierthatsuppliesavoltagegainand180 The Pierce-typeoscillatorcircuitshownin pitfalls. document istodevelopasystematicapproachgoodoscillatordesignandpointoutsomecommon ing crystalandmicrocontrollerfunctionswithoutthehelpofmatingspecifications.Theobjectivethis timing overawidetemperaturerangeusecrystaloscillator.PCBdesignershavethetaskofintegrat- The heartbeatofeverymicrocontrollerdesignistheoscillatorcircuit.Mostdesignsthatdemandprecise cy selectivefeedbackpath.ThecrystalcombinedwithC 1. 2.The M68HC11oscillatorcircuitpinsarelabeledXTALand EXTAL. forpowerconservation. STOP isaninternallygeneratedsignalthatdisablestheoscillator circuit EXTAL Cx STOP Figure 1PierceOscillator 2 ° phaseshiftfeedbackpath.Insteadystate,thiscircuithasan 1 Figure 1 Rf Y1 isusedonmostmicrocontrollers.Thiscircuitcon- x andC y formatunedPInetworkthattendsto XTAL Cy 2 ° phaseshiftandafrequen- Order thisdocument byAN1706/D ° . Uponbeing Freescale Semiconductor,
    [Show full text]