Accenture Third Annual State of Cyber Resilience Report

Total Page:16

File Type:pdf, Size:1020Kb

Accenture Third Annual State of Cyber Resilience Report THIRD ANNUAL STATE OF CYBER RESILIENCE INNOVATE FOR CYBER RESILIENCE LESSONS FROM LEADERS TO MASTER CYBERSECURITY EXECUTION CONTENTS ABOUT THE AUTHORS ...................................3 WHY LEADERS ARE MORE SUSTAIN WHAT THEY HAVE CYBER RESILIENT ........................................ 16 Maintain existing investments ................38 SECURE INNOVATION ....................................4 Stop more attacks ....................................18 Perform better at the basics ...................39 AT A GLANCE .................................................5 Find breaches faster ...............................20 Fix breaches faster .................................. 22 MASTERING CYBERSECURITY THE STATE OF CYBER RESILIENCE ................. 7 EXECUTION ................................................. 40 Reduce breach impact ............................ 24 WHERE ARE WE NOW? ABOUT THE RESEARCH ............................... 41 WHAT MAKES LEADERS SUCCESSFUL ........ 27 Investment in innovation grows ............... 8 Our methodology ...................................43 The basics seem better .............................9 INVEST FOR OPERATIONAL SPEED Demographics .........................................45 Progress masks hidden threats ............... 10 Prioritize moving fast .............................. 28 Reporting structure.................................46 Unsustainable cost increases ..................12 Choose turbo-charging technologies ....30 Budget authorization .............................. 47 Security investments are failing ..............14 DRIVE VALUE FROM NEW INVESTMENTS Scale more .............................................. 32 Train more ...............................................34 Collaborate more ....................................36 Copyright © 2020 Accenture. All rights reserved. 2 ABOUT THE AUTHORS KELLY BISSELL RYAN M. LASALLE PAOLO DAL CIN GLOBAL LEAD – MANAGING DIRECTOR – MANAGING DIRECTOR – ACCENTURE SECURITY ACCENTURE SECURITY ACCENTURE SECURITY [email protected] [email protected] [email protected] Kelly leads the Accenture Security business Ryan leads the North America practice for Paolo leads the Europe and Latin America globally. With more than 25 years of security Accenture Security. He is responsible for nurturing practice for Accenture Security. He has 20 years industry experience, Kelly specializes in breach the talented teams that bring transformative of experience leading complex projects for incident response, identity management, privacy solutions to better defend and protect our clients. Accenture clients. He is an expert in security and data protection, secure software development, Over the course of nearly two decades, He has strategy, business resilience, cyber defense and and cyber risk management. His role as the worked with Accenture clients in the commercial, offense, cloud protection, security analytics, threat Accenture Security lead spans strategic consulting, non-profit and public sectors helping them identify intelligence, application security, data protection proactive risk management and digital identity and implement emerging technology solutions and managed security services. He has authored to cyber defense, response and remediation to meet their business needs. Ryan is a Ponemon several articles on security and is a frequent services, and managed security services—across Institute Fellow and is active with the Greater speaker at security events. Paolo taught information all industries. Kelly is also affiliated to OASIS, a Washington Board of Trade. and communication technology (ICT) security at non-profit consortium that drives the development, the Universities of Udine, Modena and Milan. convergence, and adoption of open standards for Twitter: https://twitter.com/Labsguy the global information society. Twitter: https://twitter.com/Paolo_DalCin Twitter: https://twitter.com/ckellybissell Copyright © 2020 Accenture. All rights reserved. 3 SECURE INNOVATION At first glance, the basics of cybersecurity are distinct groups: the first an elite group—17 What is one key to secure innovation? Leaders improving and cyber resilience is on the rise. Our percent—that achieve significantly higher levels show us that they scale, train and collaborate latest research shows that most organizations are of performance compared to the rest. These more. So, while non-leaders measure their getting better at preventing direct cyberattacks. organizations set the bar for innovation and success by focusing on the destination— But in the shape-shifting world of cybersecurity, achieve high-performing cyber resilience. The improved cyber resilience—the leaders focus attackers have already moved on to indirect second is the group forming the vast majority of on how to get there using warp speed to detect, targets, such as vendors and other third parties our sample—74 percent—who are average mobilize and remediate. in the supply chain. It is a situation that creates performers, but far from being laggards in cyber new battlegrounds even before they have resilience. This second group has lessons to learn In the Accenture Third Annual State of Cyber mastered the fight in their own back yard. At the from our leaders while leaders, too, have further Resilience report we take a deep dive into what same time, cybersecurity cost increases are room for improvement. sets leaders apart. Based on our research among reaching unsustainable levels and, despite the 4,644 executives and backed by our knowledge hefty price tags, security investments often fail Being innovative in security is different to any and deep industry expertise, our findings aim to to deliver. As a result, many organizations face other aspect of the business. Caution is help organizations innovate securely and build a tipping point. necessary. After all, a fail fast approach is not an cyber resilience to help grow with confidence. option for security where attack vulnerabilities There is good news for organizations wondering could be catastrophic. Growing investments in In this cybersecurity report, we show how if they will ever move beyond simply gaining innovation illustrate organizations’ commitment organizations are coping with cybersecurity ground on the cyber attacker. Our analysis to prevention and damage limitation. And it is demands since our last analysis and explore reveals there is a group of standout organizations here that leaders excel. By focusing on the what our large sample of non-leaders can do that appear to have cracked the cybersecurity technologies that provide the greatest benefit to master cybersecurity execution and drive code for innovation. Detailed modeling of and sustaining what they have, they are finding innovation success. cybersecurity performance has identified two themselves moving fast and first in the race to cyber resilience. Copyright © 2020 Accenture. All rights reserved. 4 AT A GLANCE State of Cyber Resilience A group of leading organizations are doing things differently Innovation investment is growing 4x 4x 3x 2x better at stopping better at finding better at fixing better at reducing Cybersecurity attacks breaches faster breaches faster breach impact basics are better BUT... HOW DO THEY DO IT? There are hidden threats Invest for Drive value Sustain Costs are unsustainable operational from new what they speed investments have Investments are failing Copyright © 2020 Accenture. All rights reserved. 5 The cyber-resilient business brings What is together the capabilities of cybersecurity, business continuity and enterprise cyber resilience. It applies fluid security strategies to respond quickly to threats, resilience? so it can minimize the damage and continue to operate under attack. As a result, the cyber-resilient business can introduce innovative offerings and business models securely, strengthen customer trust, and grow with confidence. Copyright © 2020 Accenture. All rights reserved. 6 THE STATE OF CYBER RESILIENCE Investment The basics Progress Unsustainable Security in innovation seem better masks hidden cost increases investments grows (p.8) (p.9) threats (p.10) (p.12) are failing (p.14) The number of Direct attacks are Indirect attacks Sixty-nine percent Failures lead to leaders spending down 11 percent over against weak links in say staying ahead gaps in protection, more than 20 percent the last year and the supply chain now of attackers is a lower detection of IT budgets on security breaches are account for 40 percent constant battle rates, longer business advanced technology down by 27 percent. of security breaches. and the cost is impact and more investments has unsustainable. customer data loss. doubled in the last three years. Copyright © 2020 Accenture. All rights reserved. 7 WHERE ARE WE NOW? Investment in innovation grows Increasingly, the online world has grown complex The good news is that most organizations, on Figure 1. Percentage of leaders spending more and threatening. Many organizations are finding average, spend 10.9 percent of their IT budgets than 20 percent of their IT budgets on advanced it hard to reconcile the level of their on cybersecurity programs. Leaders spend technology investments cybersecurity innovation investments with the slightly more at 11.2 percent which is insufficient cyber resilience outcomes for their business. to account for their dramatically higher levels of Even worse, choosing the wrong strategy to performance. And their investments in advanced invest in cybersecurity technologies can cost the
Recommended publications
  • BEST PRACTICES for UTILITY CYBERSECURITY Prepared by Doug Morrill, Associate Director and Sam Crawford, Phd, Managing Consultant, Navigant Consulting, Inc
    ENERGY BEST PRACTICES FOR UTILITY CYBERSECURITY Prepared by Doug Morrill, Associate Director and Sam Crawford, PhD, Managing Consultant, Navigant Consulting, Inc. May 2017 GENERAL DISCLAIMER: This presentation was prepared by Navigant Consulting, Inc. (Navigant) for informational purposes only. The term “best practices” is used to reference practices which the authors currently believe to be generally accepted and recommended practices, and the views expressed in this paper are those of the authors and do not necessarily represent the views of Navigant. Further, Navigant does not make any express or implied warranty or representation concerning the information contained in this presentation, or as to merchantability or fitness for a particular purpose or function. The intended audience for this guide includes network engineers, cybersecurity professionals, cybersecurity program managers and others that are interested in a general overview and comment on the highlights of cybersecurity for the utility industry. It assumes a reasonable level of general network architecture and administration as well as basic understanding of the major components of electric utility information and operations technology. The guide is not meant to be comprehensive or to be used as the foundation for a robust and complete cybersecurity program.1 1. This paper includes a high-level overview of best practices from various existing standards and includes Navigant’s unique, informed analysis and interpretation of the frameworks in the context of current security threats in the industry and future technologies. These standards include the North American Electrical Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) requirements, the National Institute of Standards and Technology (NIST), the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), and others.
    [Show full text]
  • DOE Cybersecurity Strategy and Implementation Plan to Improve the Cybersecurity and Resilience of the Department’S Networks and Systems
    U.S. Department of Energy CYBERSECURITY STRATEGY 2018-2020 U.S. Department of Energy Cybersecurity Strategy 2018 - 2020 MESSAGE FROM THE DEPUTY SECRETARY Advancing cybersecurity is a core priority for the Department of Energy (DOE). Our Department is approaching the cybersecurity challenge as an enterprise effort, incorporating assets and capabilities from across our programs and National Laboratories. This DOE CybersecurityStrategy will focus attention on our critical cybersecurity mission of protecting our Federal systems and networks. This Strategy, in concert with the recently-published DOE Multiyear Plan for Energy Sector Cybersecurity, is a significant step toward achieving better coordination of key cyber operations across the Department. In my role as chair of the DOE Cyber Council, I have had the privilege of meeting and working with IT and cybersecurity policy and technical leaders across the Department to advance an enterprise-wide approach to cybersecurity. This Strategy and Implementation Plan reflects the outcome of our efforts and identifies the steps we will take to ensure that cyber resources are allocated across DOE as effectively as possible. It is a crucial roadmap for how to translate our cybersecurity priorities into action to protect the Department's most valuable assets. This plan lays out a number of specific things we must do - or continue to do - in order to ensure the enterprise­ wide success of our collective cybersecurity mission: • Sharing cyber threat data in near-real time, as well as mitigating those threats by expediting and elevating the analysis of that data using U.S. intelligence assets. • Developing common identity services to allow better collaboration and visibility.
    [Show full text]
  • Common Cybersecurity Vulnerabilities in Industrial Control Systems
    Common Cybersecurity Vulnerabilities in Industrial Control Systems May 2011 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, or any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights. ACKNOWLEDGMENTS Trent Nelson, Project Manager, Idaho National Laboratory; May Chaffin, Cyber Researcher, Idaho National Laboratory iii iv EXECUTIVE SUMMARY The U.S. Department of Homeland Security (DHS) National Cyber Security Division’s Control Systems Security Program (CSSP) performs cybersecurity vendor assessments, ICS-CERT operations, and asset owner cybersecurity evaluations with the Cyber Security Evaluation Tool (CSET) evaluations for industrial control systems (ICS) to reduce risk and improve the security of ICS and its components used in critical infrastructures throughout the United States. ICS differs from other computer systems because of legacy-inherited cybersecurity weaknesses and the significance of the impact of potential exploitation to the U.S. In 2009,a report titled “Common Cyber Security Vulnerabilities Observed in DHS Industrial Control Systems Assessments” compiled common vulnerabilities identified during 15 security assessments of new ICS products and production ICS installations from 2004 through 2008. Three additional ICS product assessments were performed in 2009 and 2010. This newer, 2010 version is an update to the 2009 version and has been developed to proactively create greater awareness within the ICS community.
    [Show full text]
  • Cybersecurity: Are We Ready in Latin America and the Caribbean?
    OBSERVATORY CYBERSECURITY IN LATIN AMERICA AND THE CARIBBEAN Cybersecurity Are We Ready in Latin America and the Caribbean? 2016 Cybersecurity Report www.cybersecurityobservatory.com Organization of American States Organization of American States Copyright © 2016 Inter-American Development Bank. This work is subject to Creative Commons Attribution-NonCom- mercial-NoDerivs IGO 3.0 (CG-IGO 3.0 BY-NC-ND)(http://crea- tivecommons.org/licenses/by-nc-nd/3.0/igo/legalcode) and may be reproduced for any non-commercial use providing the respective recognition of the IDB and the OAS. No derivative works allowed. Any disputes regarding the use of the work that cannot be re- solved amicably shall be submitted to arbitration under the UNCITRAL rules. Use of the name of the IDB and/or the OAS for any purpose other than the respective recognition and use of the logo of the IDB and/or OAS are not authorized by this CC-IGO license and require an additional licensing agreement from the corresponding organization. Note that the URL link includes additional terms and condi- tions of this license. The opinions expressed in this publication are of the au- thors and do not necessarily reflect the point of view of the Inter-American Development Bank, its Executive Directors, or the countries they represent, or the Organization of American States or the countries that comprise it. Inter-American Development Bank Organization of American States Luis Alberto Moreno Luis Almagro President Secretary General Project Coordination Project Coordination Miguel Porrúa Belisario Contreras e-Government Lead Specialist Cybersecurity Program Manager Global Cyber Security IDB-OAS Technical Team Capacity Centre University of Oxford Kerry-Ann Barrett Prof.
    [Show full text]
  • Stronger Together
    STRONGER TOGETHER State and Local Cybersecurity Collaboration STRONGER TOGETHER: State and Local Cybersecurity Collaboration Executive Summary With a dramatic uptick in ransomware attacks across the country, governors, state chief information officers (CIOs) and state government executives are designing and implementing programs to strengthen local partnerships in cybersecurity. State governments are increasingly providing services to county and municipal governments, including endpoint protection, shared service agreements for cyber defensive tools, incident response and statewide cybersecurity awareness and training. This publication outlines promising programs that states have initiated to enhance collaboration with their local government counterparts for cyber resilience. It also provides high-level recommendations for state officials looking to strengthen partnerships with local government officials on cybersecurity. At a minimum, increased engagement can provide a more accurate threat picture to enhance state and local governments’ cyber posture. However, there is a need to move beyond information sharing to leverage limited resources for enhanced cyber capabilities. Introduction The majority of all publicized ransomware attacks in the United States have targeted local governments, according to 2019 estimates.1 Some, like the August 2019 Texas Cyber Incident, the attack on Louisiana public schools and the Baltimore cyber disruption, have been well publicized. However, one can assume that many other incidents are publicly unknown. Additionally, in the 2018 Deloitte-NASCIO Cybersecurity Study, more than 70 percent of state chief information security officers (CISOs) identified ransomware as a very high or somewhat higher threat than other cyber threats. Ransomware is just one example demonstrating the need for broader engagement between states and locals. Some states have little to no engagement with their local counterparts, especially where 100 percent of state resources are exclusively directed toward state agencies.
    [Show full text]
  • National Cybersecurity Challenges and NIST
    National Cybersecurity Challenges and NIST Donna F. Dodson Chief Cybersecurity Advisor ITL Associate Director for Cybersecurity Though no-one knows for sure, corporate America is believed to lose anything from $100 billion to $1 trillion a year from online theft of proprietary information—trade secrets, research findings, internal costs, marketing plans, personal information, credit-card numbers, bank-account details and much more – Babbage (blog), The Economist, May 11, 2012 The internet of things (to be hacked) Cybersecurity is now a part of all our lives. “Patches” and other security updates arrive for phones, tablets and PCs. Consultants remind us all not to open unknown files or plug unfamiliar memory sticks into computers…Now a new phase in this contest is emerging: “the internet of things”. This involved embedding miniature computers in objects and connecting them to the internet using wireless technology. Cisco, a technology company, predicts that 50 billion connected devices will be in circulation by the end of decade, up from 11 billion last year. The Economist, July 12, 2014 NIST Focus Areas § Standards, Guidance, Tools and Metrics (Computer Security Division) § Cybersecurity Outreach and Education (National Initiative for Cybersecurity Education) § Vibrant Identity Management Ecosystem (National Strategy for Trusted Identities in Cyberspace) § Standards based Cybersecurity Blueprints (National Cybersecurity Center of Excellence) § Secure and Resilient Critical Infrastructure (Executive Order- Improving Critical Infrastructure
    [Show full text]
  • An Overview of Cybersecurity Regulations and Standards for Medical Device Software
    _________________________________________________________________________________________________________________Proceedings of the Central European Conference on Information and Intelligent Systems 237 An Overview of Cybersecurity Regulations and Standards for Medical Device Software Nadica Hrgarek Lechner MED-EL Elektromedizinische Geräte GmbH Fürstenweg 77, 6020 Innsbruck, Austria [email protected] Abstract. This paper discusses current cybersecurity 1970, Ware finalized a report about security controls regulations and standards for medical device for computer systems and emphasized that design of a software set by government agencies and agencies secure system must provide protection against the developing industry and international standards such various types of vulnerabilities such as accidental as the FDA (Food and Drug Administration), CFDA disclosure, deliberate penetration, active infiltration, (China Food and Drug Administration), ISO and physical attack (Ware, 1970). Ware (1970) stated (International Organization for Standardization), IEC the following general characteristics as desirable in a (International Electrotechnical Commission), UL secure system: flexible, responsive to changing (Underwriters Laboratories), and others. The operational characteristics, auditable, reliable, concepts described within this paper can be utilized manageable, adaptable, dependable, and assuring by medical device manufacturers in order to establish configuration integrity. a cybersecurity program as part of their quality Burns et al.
    [Show full text]
  • GAO-19-128, WEAPON SYSTEMS CYBERSECURITY: DOD Just
    United States Government Accountability Office Report to the Committee on Armed Services, U.S. Senate October 2018 WEAPON SYSTEMS CYBERSECURITY DOD Just Beginning to Grapple with Scale of Vulnerabilities GAO-19-128 October 2018 WEAPON SYSTEMS CYBERSECURITY DOD Just Beginning to Grapple with Scale of Vulnerabilities Highlights of GAO-19-128, a report to the Committee on Armed Services, U.S. Senate Why GAO Did This Study What GAO Found DOD plans to spend about $1.66 The Department of Defense (DOD) faces mounting challenges in protecting its trillion to develop its current portfolio of weapon systems from increasingly sophisticated cyber threats. This state is due major weapon systems. Potential to the computerized nature of weapon systems; DOD’s late start in prioritizing adversaries have developed advanced weapon systems cybersecurity; and DOD’s nascent understanding of how to cyber-espionage and cyber-attack develop more secure weapon systems. DOD weapon systems are more capabilities that target DOD systems. software dependent and more networked than ever before (see figure). Cybersecurity—the process of protecting information and information systems—can reduce the likelihood Embedded Software and Information Technology Systems Are Pervasive in that attackers are able to access our Weapon Systems (Represented via Fictitious Weapon System for Classification systems and limit the damage if they Reasons) do. GAO was asked to review the state of DOD weapon systems cybersecurity. This report addresses (1) factors that contribute to the current state of DOD weapon systems’ cybersecurity, (2) vulnerabilities in weapons that are under development, and (3) steps DOD is taking to develop more cyber resilient weapon systems.
    [Show full text]
  • Chemical Sector: Cybersecurity Framework Implementation Guidance
    Cybersecurity and Infrastructure Security Agency | U.S. Department of Homeland Security Chemical Sector Cybersecurity Framework Implementation Guidance Cybersecurity and Infrastructure Security Agency | U.S. Department of Homeland Security Table of Contents Introduction ............................................................................................................................................................... 1 Framework Overview and Benefits .......................................................................................................................... 2 Potential Benefits of Implementing the Framework ........................................................................................... 4 Risk Management and the Framework ............................................................................................................... 5 Framework Structure ................................................................................................................................................ 6 Framework Core .................................................................................................................................................... 7 Framework Profile ............................................................................................................................................... 10 Framework Implementation Tiers .................................................................................................................. 10 Framework Implementation ..................................................................................................................................
    [Show full text]
  • Computer Science and Cybersecurity Standards
    North Dakota Computer Science and Cybersecurity Standards Kindergarten through Twelfth Grade 2019 North Dakota Department of Public Instruction Kirsten Baesler, State Superintendent 600 East Boulevard Avenue, Dept. 201 Bismarck, North Dakota 58505-0440 www.nd.gov/dpi North Dakota Computer Science and Cybersecurity Standards Writing Team Alicia Marsh Karie Trupka Ray Hintz Bismarck Public Schools Circle of Nations School Missouri River Area Career and Tech Center Amy Soma LeAnn Nelson Sarah Francetich Fargo Public Schools Bismarck Public Schools University of Jamestown Angela Fischer Bismarck Public Lesley Allan Theresa Ostgarden Schools Williston Public Schools Grand Forks Public Schools Ashleigh Blikre Rugby Public Matt Frohlich Tom Stokke Schools Bismarck State College University of North Dakota Brenda Cain Michelle Bullis Tricia Gaffaney Fargo Public Schools Fairmount Public Schools Jamestown Public Schools Jennifer Neset Misti Werle Ullrich Reichenbach II Stanley Community Schools Bismarck Public Schools Fargo Public Schools Review Committee Anne Denton Jeremy Neuharth Matthew Evans North Dakota State University Sycorr/TechND Microsoft Corporation Bethlehem Groneberg Jerome Gunderson Sean Wiese uCodeGirl Grand Forks Public Schools North Dakota Information Technology Dept Brian Slator John Rodenbiker Taya Spelhaug North Dakota State University Fargo Public Schools Board of Education Microsoft TechSpark Courtney Stoltz Gateway to Science 1 Project Support Staff Matt Scherbenske Chuck Gardner Deputy Director Director of Curriculum North Dakota Department of Public Instruction Cyber Innovation Center 600 E. Boulevard Ave., Dept. 201 6300 E. Texas St, Suite 100 Bismarck, ND 58505-0440 Bossier City, LA 71111 701-328-2629 318-759-1600 Ben Cronkright Tracy Becker Facilitator Director North Central Comprehensive Center at McREL International North Dakota Department of Career and Technical Education 4601 DTC Blvd, Suite 500 600 E.
    [Show full text]
  • UL Global Cybersecurity Services & Standards
    CONNECTED TECHNOLOGIES UL Global Cybersecurity Services & Standards Cybersecurity Assurance Program (CAP) for network-connectable products & systems addresses security concerns As cyber attacks become more sophisticated, harder to protect against, and more costly than ever, security precautions are critical. It is estimated that by 2018, 66% of networks will have an IoT security breach*. Customers worldwide are asking UL to help support their organizations bring safer and more secure products and systems to market. The U.S. government’s Cybersecurity National Action Plan (CNAP) refers to the need of enhanced cybersecurity capabilities within the U.S. government and across the country. Purchasers would like to address security in their supply chain by having an independent trusted third party, like UL, perform assessments on connected products and on the vendors that manufacture, install, operate and maintain those products. UL Cybersecurity Assurance Program (UL CAP) UL cybersecurity services for network-connectable products and systems include: UL helps mitigate safety and performance risks inherent in technologies comprising the Internet of Things (IoT) with • Testing security criteria based on UL 2900 cybersecurity the UL Cybersecurity Assurance Program (UL CAP). Using the standards or specified requirements UL 2900 series of cybersecurity standards, we offer testable • Testing leading to certification based on UL 2900 cybersecurity criteria for network-connectable products and cybersecurity standards systems to assess software vulnerabilities
    [Show full text]
  • Cybersecurity and Human Rights
    01 CYBERSECURITY AND HUMAN RIGHTS CAROLINA ROSSINI AND NATALIE GREEN, PUBLIC KNOWLEDGE EXECUTIVE SUMMARY This will serve as an introduction to cybersecurity with a particular focus on the policy aspect of cyber security, including how cyber security is addressed in international relations and the impact cyber security has on human rights. By the end of the module, you should be able to answer the following questions: • decisions? • What arerole the do main“definitions” human rightsplay in concerns cybersecurity when debates, dealing withdiscussions, cybersecurity? and policy • Are there international laws and standards that apply to cybersecurity? Do they address human rights concerns? • How is cybersecurity addressed regionally and internationally? BACKGROUND: HISTORY AND DEFINITIONS includingSince the firstthe Internet, computer are worm often was cornerstones unleashed fromin the which late 1980’s discussions to the aroundrecent cybersecurity,2014 Sony Pictures Internet Entertainment governance, hack, and Internet the security freedom and stabilitybegin. Threats of cyberspace, to cybersecurity can include computer viruses, spam, identity theft, data breaches, milliondenial of people service falling attacks, victim and to cybercrime. cybercrimes Attackers each year can andrange tens from of thousands hackers to of activists to petty criminals to2, the businesses threats to to our national security governments.1 are real - but With so areover the 370 known viruses in existence cybersecurity.threats to our human rights online. Before looking
    [Show full text]