<<

13.9 Reactions of : Substitution and Elimination 591

MEDICALLYSPEAKING as Antifungal Agents

>˜ÞÊ« i˜œÃÊ>˜`ÊÌ iˆÀÊ`iÀˆÛ>̈ÛiÃÊiÝ ˆLˆÌÊ̜«ˆV>Ê>˜Ìˆv՘}>Ê«Àœ«‡ / iÃiÊVœ“«œÕ˜`Ã]Ê>ÃÊÜiÊ>Ãʓ>˜ÞÊœÌ iÀÃ]Ê>ÀiÊÕÃi`ʈ˜Ê iÀ̈iðÊ/ iÃiÊ>}i˜ÌÃÊ>ÀiÊLiˆiÛi`Ê̜ʈ˜ÌiÀviÀiÊÜˆÌ ÊÌ iÊViÊ“i“‡ Ì iÊÌÀi>̓i˜ÌʜvÊ>Ì iÌi½ÃÊvœœÌ]ʍœVŽÊˆÌV ]Ê >˜`ÊÀˆ˜}ܜÀ“°Ê LÀ>˜iÊv՘V̈œ˜ÊœvÊv՘}ˆ°Ê/ iÊvœœÜˆ˜}Ê>ÀiʍÕÃÌÊ>ÊviÜÊiÝ>“«ið /œ˜>vÌ>ÌiÊ ˆÃÊ Ì iÊ >V̈ÛiÊ ˆ˜}Ài`ˆi˜ÌÊ ˆ˜Ê /ˆ˜>V̈˜/ ]Ê "`œÀÊ >ÌiÀÃ/ ]Ê>˜`Ê iÃi˜iÝ/ °

OH O Cl Cl I S N

O Cl I N Alcohols and Phenols Cl Cl OH para-Chloro- Haloprogin Tolnaftate meta-xylenol

Klein, D. (2012). Alcohols and Phenols. En Organic Chemistry (pp. 591- 600). USA: Wiley. 13.9 Reactions of Alcohols: Substitution and Elimination

SN1 Reactions with Alcohols !SSEENIN3ECTION TERTIARYALCOHOLSWILLUNDERGOASUBSTITUTIONREACTIONWHENTREATEDWITH a hydrogen halide.

OH HX X ± H2O

7ESAWTHATTHISREACTIONPROCEEDSVIAAN3N1 mechanism.

Proton transfer Loss of a leaving group Nucleophilic attack H + – – + OH H Br O H2O Br Br H

Recall that an SN1 mechanism has two core steps (loss of leaving group and nucleophilic attack). 7HENTHESTARTINGMATERIALISAN WESAWTHATANADDITIONALSTEPISREQUIREDINORDERTO PROTONATETHEHYDROXYLGROUPlRST4HISREACTIONPROCEEDSVIAACARBOCATIONINTERMEDIATEANDIS therefore most appropriate for tertiary alcohols. Secondary alcohols undergo SN1 more slowly, and primary alcohols will not undergo SNATANAPPRECIABLERATE7HENDEALINGWITHAPRIMARY alcohol, an SNPATHWAYISREQUIREDINORDERTOCONVERTANALCOHOLINTOANALKYLHALIDE

SN2 Reactions with Alcohols Primary and secondary alcohols will undergo substitution reactions with a variety of reagents, all of which proceed via an SNPROCESS)NTHISSECTION WEWILLEXPLORETHREESUCHREACTIONSTHAT all employ an SNPROCESS

Espacio de Formación Multimodal

klein_c13_564-621hr.indd 591 11/8/10 2:11 PM

596 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 597

E1 and E2 Reactions with Alcohols 13.10 Reactions of Alcohols: Oxidation 2ECALLFROM3ECTIONTHATALCOHOLSUNDERGOELIMINATIONREACTIONSINACIDICCONDITIONS )N3ECTION WESAWTHATALCOHOLSCANBEFORMEDVIAAREDUCTIONPROCESS)NTHISSECTION WE will explore the reverse process, called oxidation, which involves an increase in oxidation state. H2SO4 OH ± H O heat 2 Oxidation OH O

This transformation follows an E1 mechanism: H Reduction The outcome of an oxidation process depends on whether the starting alcohol is primary, Proton transfer Loss of LG Proton transfer SECONDARY ORTERTIARY,ETSlRSTCONSIDERTHEOXIDATIONOFAPRIMARYALCOHOL O OH O O HOS HO H O [O] [O] –H O O + 2 H H H OH O + H R R H R OH H H Primary alcohol Carboxylic acid Recall that the two core steps of an E1 mechanism are loss of a leaving group followed by a Notice that a primary alcohol has two protons at the A position (the carbon atom bearing the PROTONTRANSFER(OWEVER WHENTHESTARTINGMATERIALISANALCOHOL ANADDITIONALSTEPISlRST HYDROXYLGROUP !SARESULT PRIMARYALCOHOLSCANBEOXIDIZEDTWICE4HElRSTOXIDATIONPRO- required in order to protonate the hydroxyl group. This reaction proceeds via a carbocation duces an aldehyde, and then oxidation of the aldehyde produces a carboxylic acid. intermediate and is therefore best for tertiary alcohols. Also recall that elimination generally Secondary alcohols only have one proton at the A position so they can only be oxidized favors the more substituted alkene. once, forming a ketone.

OH O OH [O] H SO 2 4 ± ¡ heat R R R R H

Major Minor Secondary alcohol Ketone LOOKING AHEAD Generally speaking, the ketone is not further oxidized. Tertiary alcohols do not have any pro- 4HISTRANSFORMATIONCANALSOBEACCOMPLISHEDVIAAN%PATHWAYIFTHEHYDROXYLGROUPISlRST œÀÊ>˜ÊiÝVi«Ìˆœ˜Ê̜ÊÌ ˆÃÊ tons at the A position, and as a result, they generally do not undergo oxidation: converted into a better leaving group, such as a tosylate. A strong base can then be employed to }i˜iÀ>ÊÀՏi]ÊÃiiÊ-iV̈œ˜Ê ACCOMPLISHAN%REACTION Óä°££]ÊÜ iÀiÊÜiÊ܈Êi>À˜Ê OH >LœÕÌÊ>ÊëiVˆ>ÊœÝˆ`ˆâˆ˜}Ê [O] no reaction Ài>}i˜ÌÊÌ >ÌÊV>˜ÊœÝˆ`ˆâiÊ>Ê R R Ži̜˜iÊ̜ÊvœÀ“Ê>˜ÊiÃÌiÀ° R TsCl NaOEt OH py OTs E2 A large number of reagents are available for oxidizing primary and secondary alcohols. The most common oxidizing reagent is chromic acid (H#R/), which can be formed either from CHROMIUMTRIOXIDE#R/) or from sodium dichromate (Na#RO7) in aqueous acidic solution.

O 4HE % PROCESS ALSO GENERALLY PRODUCES THE MORE SUBSTITUTED ALKENE AND NO CARBOCATION ± H3O REARRANGEMENTSAREOBSERVEDIN%PROCESSES Cr O O Acetone Chromium trioxide O HO Cr OH CONCEPTUAL CHECKPOINT O O O + – – + 13.21 *Ài`ˆVÌÊÌ iÊ«Àœ`ÕVÌÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° H2SO4 Na O Cr O Cr O Na Chromic acid H2O OH O O H SO 2 4 1) TsCl, py heat OH Sodium dichromate ­>®Ê Ê ­L®Ê 2) NaOEt ? ? 4HEMECHANISMOFOXIDATIONWITHCHROMICACIDHASTWOMAINSTEPS-ECHANISM 4HE lRSTSTEPINVOLVESFORMATIONOFACHROMATEESTER ANDTHESECONDSTEPISAN%PROCESSTOFORMA carbon-oxygen P bond (rather than a carbon-carbon P bond).

klein_c13_564-621hr.indd 596 11/8/10 2:11 PM klein_c13_564-621hr.indd 597 11/8/10 2:11 PM 13.9 Reactions of Alcohols: Substitution and Elimination 591 592 CHAPTER 13 Alcohols and Phenols

MEDICALLYSPEAKING 1. Primary alcohols will react with HBr via an SNPROCESS

Phenols as Antifungal Agents Nucleophilic attack ± Proton transfer loss of a leaving group >˜ÞÊ« i˜œÃÊ>˜`ÊÌ iˆÀÊ`iÀˆÛ>̈ÛiÃÊiÝ ˆLˆÌÊ̜«ˆV>Ê>˜Ìˆv՘}>Ê«Àœ«‡ / iÃiÊVœ“«œÕ˜`Ã]Ê>ÃÊÜiÊ>Ãʓ>˜ÞÊœÌ iÀÃ]Ê>ÀiÊÕÃi`ʈ˜Ê H iÀ̈iðÊ/ iÃiÊ>}i˜ÌÃÊ>ÀiÊLiˆiÛi`Ê̜ʈ˜ÌiÀviÀiÊÜˆÌ ÊÌ iÊViÊ“i“‡ Ì iÊÌÀi>̓i˜ÌʜvÊ>Ì iÌi½ÃÊvœœÌ]ʍœVŽÊˆÌV ]Ê >˜`ÊÀˆ˜}ܜÀ“°Ê + – / OH H Br O Br Br LÀ>˜iÊv՘V̈œ˜ÊœvÊv՘}ˆ°Ê/ iÊvœœÜˆ˜}Ê>ÀiʍÕÃÌÊ>ÊviÜÊiÝ>“«ið /œ˜>vÌ>ÌiÊ ˆÃÊ Ì iÊ >V̈ÛiÊ ˆ˜}Ài`ˆi˜ÌÊ ˆ˜Ê /ˆ˜>V̈˜ ]Ê H ± H O S 2 2 "`œÀÊ >ÌiÀÃ/ ]Ê>˜`Ê iÃi˜iÝ/ ° N

OH O Cl 4HEHYDROXYLGROUPISlRSTPROTONATED CONVERTINGITINTOANEXCELLENTLEAVINGGROUP FOLLOWED by an S PROCESS4HISREACTIONWORKSWELLFOR("RBUTDOESNOTWORKWELLFOR(#L4O Cl I S N N REPLACETHEHYDROXYLGROUPWITHCHLORIDE :N#L is used as a catalyst. O Cl I N OH HCl Cl ZnCl Cl Cl OH 2 para-Chloro- Haloprogin Clioquinol Tolnaftate The catalyst is a Lewis acid that converts the hydroxyl group into a better leaving group. meta-xylenol

Nuc attack Nuc attack ± on a Lewis acid – loss of LG ZnCl2 + – OH ZnCl2 O Cl Cl H SN2 2. !SSEENIN3ECTION ANALCOHOLCANBECONVERTEDINTOATOSYLATE FOLLOWEDBYNUCLEOPHILIC 13.9 Reactions of Alcohols: Substitution and Elimination attack.

SN1 Reactions with Alcohols OH OTs – X !SSEENIN3ECTION TERTIARYALCOHOLSWILLUNDERGOASUBSTITUTIONREACTIONWHENTREATEDWITH TsCl X py a hydrogen halide. SN2 Bad Good OH HX X leaving group py= leaving group ± H2O N

7ESAWTHATTHISREACTIONPROCEEDSVIAAN3N1 mechanism. pyridine

5SINGTOSYLCHLORIDEANDPYRIDINE THEHYDROXYLGROUPISCONVERTEDINTOATOSYLATEGROUPAN Proton transfer Loss of a leaving group Nucleophilic attack excellent leaving group), which is susceptible to an SNPROCESS.OTICETHESTEREOCHEMICAL H OUTCOMEOFTHEPREVIOUSREACTION4HECONlGURATIONOFTHECHIRALITYCENTERISNOTINVERTED + – – + OH H Br O H2O Br Br during formation of the tosylate, but it is inverted during the SNPROCESS4HENETRESULTIS H INVERSIONOFCONlGURATION

Recall that an S 1 mechanism has two core steps (loss of leaving group and nucleophilic attack). OH Br N 1) TsCl, py 7HENTHESTARTINGMATERIALISANALCOHOL WESAWTHATANADDITIONALSTEPISREQUIREDINORDERTO 2) NaBr PROTONATETHEHYDROXYLGROUPlRST4HISREACTIONPROCEEDSVIAACARBOCATIONINTERMEDIATEANDIS R S therefore most appropriate for tertiary alcohols. Secondary alcohols undergo SN1 more slowly, and primary alcohols will not undergo SNATANAPPRECIABLERATE7HENDEALINGWITHAPRIMARY 3. 0RIMARYANDSECONDARYALCOHOLSREACTWITH3/#L or PBr via an SNPROCESS alcohol, an SNPATHWAYISREQUIREDINORDERTOCONVERTANALCOHOLINTOANALKYLHALIDE

SOCl2 Cl py SN2 Reactions with Alcohols Primary and secondary alcohols will undergo substitution reactions with a variety of reagents, OH all of which proceed via an SNPROCESS)NTHISSECTION WEWILLEXPLORETHREESUCHREACTIONSTHAT all employ an SNPROCESS PBr3 Br

klein_c13_564-621hr.indd 591 11/8/10 2:11 PM klein_c13_564-621hr.indd 592 11/8/10 2:11 PM

596 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 597 598 CHAPTER 13 Alcohols and Phenols

E1 and E2 Reactions with Alcohols 13.10 Reactions of Alcohols: Oxidation MECHANISM 13.8 OXIDATION OF AN ALCOHOL WITH CHROMIC ACID 2ECALLFROM3ECTIONTHATALCOHOLSUNDERGOELIMINATIONREACTIONSINACIDICCONDITIONS )N3ECTION WESAWTHATALCOHOLSCANBEFORMEDVIAAREDUCTIONPROCESS)NTHISSECTION WE STEP 1 will explore the reverse process, called oxidation, which involves an increase in oxidation state. O Fast and O H2SO4 R R OH ± H O reversible heat 2 Oxidation OH ± HO Cr OH O Cr OH ± H O OH O H H 2 R O R O This transformation follows an E1 mechanism: Chromate ester H Reduction STEP 2 The outcome of an oxidation process depends on whether the starting alcohol is primary, R O O R Proton transfer Loss of LG Proton transfer – SECONDARY ORTERTIARY,ETSlRSTCONSIDERTHEOXIDATIONOFAPRIMARYALCOHOL HH ± ± ± O Cr OH O H3O HCrO3 O H E2 OH O O R O R HOS HO H O [O] [O] –H O O + 2 H H H Chromate ester OH O + H R R H R OH H H Primary alcohol Aldehyde Carboxylic acid Recall that the two core steps of an E1 mechanism are loss of a leaving group followed by a Notice that a primary alcohol has two protons at the A position (the carbon atom bearing the PROTONTRANSFER(OWEVER WHENTHESTARTINGMATERIALISANALCOHOL ANADDITIONALSTEPISlRST HYDROXYLGROUP !SARESULT PRIMARYALCOHOLSCANBEOXIDIZEDTWICE4HElRSTOXIDATIONPRO- required in order to protonate the hydroxyl group. This reaction proceeds via a carbocation duces an aldehyde, and then oxidation of the aldehyde produces a carboxylic acid. intermediate and is therefore best for tertiary alcohols. Also recall that elimination generally Secondary alcohols only have one proton at the A position so they can only be oxidized favors the more substituted alkene. PRACTICALLYSPEAKING once, forming a ketone. Breath Tests to Measure Blood Alcohol Level OH O OH [O] H SO Ì >˜œÊˆÃÊ>Ê«Àˆ“>ÀÞÊ>Vœ œ°Ê/ iÀivœÀi]ÊiÌ >˜œÊ܈ÊÀi>VÌÊÜˆÌ Ê œÝˆ`ˆâˆ˜}Ê>}i˜Ìʈ˜ÊÌ iÊÌÕLi]Ê>˜`Ê>ÊVœœÀÊV >˜}iʜVVÕÀðÊ/ iÊ 2 4 ± ¡ heat R R R R «œÌ>ÃÃˆÕ“Ê `ˆV Àœ“>ÌiÊ ˆ˜Ê >Vˆ`ˆVÊ Vœ˜`ˆÌˆœ˜ÃÊ ÌœÊ «Àœ`ÕViÊ >VïVÊ iÝÌi˜ÌÊ œvÊ Ì iÊ VœœÀÊ V >˜}iÊ }ˆÛiÃÊ >˜Ê ˆ˜`ˆV>̈œ˜Ê œvÊ Ì iÊ Lœœ`Ê H >Vˆ`° >Vœ œÊVœ˜Ìi˜Ì°Ê Major Minor Secondary alcohol Ketone / iÊ Ài>Ì >ÞâiÀ/ ʈÃÊL>Ãi`ʜ˜ÊÌ iÊÃ>“iʈ`i>]ÊLÕÌʈÌʈÃʓœÀiÊ O >VVÕÀ>Ìi°Êʓi>ÃÕÀi`ÊۜÕ“iʜvÊLÀi>Ì ÊˆÃÊLÕLLi`ÊÌ ÀœÕ} Ê>˜Ê LOOKING AHEAD Generally speaking, the ketone is not further oxidized. Tertiary alcohols do not have any pro- ± ± 2– H ± 3± >µÕiœÕÃÊ >Vˆ`ˆVÊ ÃœṎœ˜Ê œvÊ «œÌ>ÃÃˆÕ“Ê `ˆV Àœ‡ 4HISTRANSFORMATIONCANALSOBEACCOMPLISHEDVIAAN%PATHWAYIFTHEHYDROXYLGROUPISlRST œÀÊ>˜ÊiÝVi«Ìˆœ˜Ê̜ÊÌ ˆÃÊ tons at the A position, and as a result, they generally do not undergo oxidation: OH Cr2O7 Cr converted into a better leaving group, such as a tosylate. A strong base can then be employed to }i˜iÀ>ÊÀՏi]ÊÃiiÊ-iV̈œ˜Ê OH “>Ìi]Ê >˜`Ê Ì iÊ V >˜}iÊ ˆ˜Ê VœœÀÊ ˆÃÊ “i>ÃÕÀi`Ê ÜˆÌ Ê >˜Ê ՏÌÀ>ۈœi̇ۈÈLiÊ ­16‡6-®Ê ëiVÌÀœ‡ ACCOMPLISHAN%REACTION Óä°££]ÊÜ iÀiÊÜiÊ܈Êi>À˜Ê OH Reddish orange Acetic acid Green >LœÕÌÊ>ÊëiVˆ>ÊœÝˆ`ˆâˆ˜}Ê [O] « œÌœ“iÌiÀÊ ­-iV̈œ˜Ê £Ç°££®°Ê œ˜ÌÀ>ÀÞÊ ÌœÊ no reaction Ài>}i˜ÌÊÌ >ÌÊV>˜ÊœÝˆ`ˆâiÊ>Ê R R «œ«Õ>ÀÊLiˆiv]ʈÌʈÃʘœÌÊ«œÃÈLiÊ̜ÊLi>ÌÊÌ iÊ Ži̜˜iÊ̜ÊvœÀ“Ê>˜ÊiÃÌiÀ° R ˜ÊÌ iÊ«ÀœViÃÃ]ÊiÌ >˜œÊˆÃʜ݈`ˆâi`]Ê>˜`ÊÌ iÊV Àœ“ˆÕ“ÊÀi>}i˜ÌÊ ÌiÃÌÊLÞÊÃÕVŽˆ˜}Ê>ÊLÀi>Ì Ê“ˆ˜ÌÊ TsCl NaOEt ˆÃÊÀi`ÕVi`°Ê/ iʘiÜÊV Àœ“ˆÕ“ÊVœ“«œÕ˜`ʈÃÊ>Ê`ˆvviÀi˜ÌÊVœœÀ]Ê œÀÊ Àˆ˜Ãˆ˜}Ê ÜˆÌ Ê >Ê LÀi>Ì Ê OH py OTs A large number of reagents are available for oxidizing primary and secondary alcohols. The E2 >˜`ÊÌ iÀivœÀi]ÊÌ iÊ«Àœ}ÀiÃÃʜvÊÌ iÊÀi>V̈œ˜ÊV>˜ÊLiʓœ˜ˆÌœÀi`Ê vÀià i˜iÀ°Ê / iÃiÊ ÌiV ‡ most common oxidizing reagent is chromic acid (H#R/), which can be formed either from LÞÊÌ iÊVœœÀÊV >˜}iÊvÀœ“ÊÀi``ˆÃ ‡œÀ>˜}iÊ̜Ê}Àii˜°Ê/ ˆÃÊÀi>V‡ ˜ˆµÕiÃÊ “ˆ} ÌÊ vœœÊ >Ê CHROMIUMTRIOXIDE#R/) or from sodium dichromate (Na#RO7) in aqueous acidic solution. ̈œ˜ÊvœÀ“i`ÊÌ iÊL>ÈÃÊvœÀʓ>˜ÞʜvÊÌ iÊi>ÀÞÊLÀi>Ì ÊÌiÃÌÃÊÌ >ÌÊ «iÀܘ]ÊLÕÌÊÌ iÞÊܜ˜½ÌÊ O >ÃÃiÃÃi`ÊÌ iʏiÛiÊœvÊLœœ`Ê>Vœ œ°Ê Ài>Ì ÊÌiÃÌÃÊÌ >ÌÊṎˆâiÊ vœœÊ Ì iÊ «œÌ>ÃÃˆÕ“Ê 4HE % PROCESS ALSO GENERALLY PRODUCES THE MORE SUBSTITUTED ALKENE AND NO CARBOCATION ± H3O Ì ˆÃÊÀi>V̈œ˜Ê>ÀiÊÃ̈ÊVœ““iÀVˆ>ÞÊ>Û>ˆ>Li°Ê/ iÊÌiÃÌÊVœ˜ÃˆÃÌÃÊ `ˆV Àœ“>Ìi° REARRANGEMENTSAREOBSERVEDIN%PROCESSES Cr O O Acetone œvÊ>ÊÌÕLi]ÊÜ iÀiʜ˜iÊi˜`ʈÃÊvˆÌÌi`ÊÜˆÌ Ê>ʓœÕÌ «ˆiViÊ>˜`ÊÌ iÊ Chromium trioxide O œÌ iÀÊi˜`Ê >ÃÊ>ÊL>}°Ê/ iʈ˜Ãˆ`iʜvÊÌ iÊÌÕLiÊVœ˜Ì>ˆ˜ÃÊÜ`ˆÕ“Ê `ˆV Àœ“>ÌiÊÌ >ÌʈÃÊ>`ÜÀLi`ʜ˜ÌœÊÌ iÊÃÕÀv>ViʜvÊ>˜Êˆ˜iÀÌÊ܏ˆ`]Ê HO Cr OH ÃÕV Ê>ÃÊȏˆV>Ê}i°ÊÃÊÌ iÊÕÃiÀÊLœÜÃÊ>ˆÀÊÌ ÀœÕ} ÊÌ iÊÌÕLiÊ>˜`Ê CONCEPTUAL CHECKPOINT O vˆÃÊÕ«ÊÌ iÊL>}]ÊÌ iÊ>Vœ œÊˆ˜ÊÌ iÊÕÃiÀ½ÃÊLÀi>Ì ÊÀi>VÌÃÊÜˆÌ ÊÌ iÊ O O + – – + 13.21 *Ài`ˆVÌÊÌ iÊ«Àœ`ÕVÌÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° H2SO4 Na O Cr O Cr O Na Chromic acid H2O OH O O H SO 2 4 1) TsCl, py heat OH Sodium dichromate ­>®Ê Ê ­L®Ê 2) NaOEt ? ? 4HEMECHANISMOFOXIDATIONWITHCHROMICACIDHASTWOMAINSTEPS-ECHANISM 4HE lRSTSTEPINVOLVESFORMATIONOFACHROMATEESTER ANDTHESECONDSTEPISAN%PROCESSTOFORMA carbon-oxygen P bond (rather than a carbon-carbon P bond).

klein_c13_564-621hr.indd 596 11/8/10 2:11 PM klein_c13_564-621hr.indd 597 11/8/10 2:11 PM klein_c13_564-621hr.indd 598 11/8/10 2:11 PM 13.9 Reactions of Alcohols: Substitution and Elimination 591 592 CHAPTER 13 Alcohols and Phenols 13.9 Reactions of Alcohols: Substitution and Elimination 593

MEDICALLYSPEAKING 1. Primary alcohols will react with HBr via an SNPROCESS 4HEMECHANISMSFORTHESETWOPATHWAYSAREVERYSIMILAR4HElRSTFEWSTEPSCONVERTABADLEAVING group into a good leaving group, then the halide attacks in an SNPROCESS-ECHANISM  Phenols as Antifungal Agents Nucleophilic attack ± Proton transfer loss of a leaving group >˜ÞÊ« i˜œÃÊ>˜`ÊÌ iˆÀÊ`iÀˆÛ>̈ÛiÃÊiÝ ˆLˆÌÊ̜«ˆV>Ê>˜Ìˆv՘}>Ê«Àœ«‡ / iÃiÊVœ“«œÕ˜`Ã]Ê>ÃÊÜiÊ>Ãʓ>˜ÞÊœÌ iÀÃ]Ê>ÀiÊÕÃi`ʈ˜Ê H MECHANISM 13.6 THE REACTION BETWEEN SOCl AND AN ALCOHOL iÀ̈iðÊ/ iÃiÊ>}i˜ÌÃÊ>ÀiÊLiˆiÛi`Ê̜ʈ˜ÌiÀviÀiÊÜˆÌ ÊÌ iÊViÊ“i“‡ Ì iÊÌÀi>̓i˜ÌʜvÊ>Ì iÌi½ÃÊvœœÌ]ʍœVŽÊˆÌV ]Ê >˜`ÊÀˆ˜}ܜÀ“°Ê + – 2 OH H Br O Br Br / ± LÀ>˜iÊv՘V̈œ˜ÊœvÊv՘}ˆ°Ê/ iÊvœœÜˆ˜}Ê>ÀiʍÕÃÌÊ>ÊviÜÊiÝ>“«ið /œ˜>vÌ>ÌiÊ ˆÃÊ Ì iÊ >V̈ÛiÊ ˆ˜}Ài`ˆi˜ÌÊ ˆ˜Ê /ˆ˜>V̈˜ ]Ê H H2O Bad / / SN2 "`œÀÊ >ÌiÀà ]Ê>˜`Ê iÃi˜iÝ ° leaving group

OH O Cl 4HEHYDROXYLGROUPISlRSTPROTONATED CONVERTINGITINTOANEXCELLENTLEAVINGGROUP FOLLOWED – OH SOCl Cl S N by an SNPROCESS4HISREACTIONWORKSWELLFOR("RBUTDOESNOTWORKWELLFOR(#L4O 2 ± ± Cl I py SO2 Cl REPLACETHEHYDROXYLGROUPWITHCHLORIDE :N#L is used as a catalyst. O Cl I Cl N OH HCl Cl Cl S ZnCl Cl Cl OH 2 O – Cl para-Chloro- Haloprogin Clioquinol Tolnaftate The catalyst is a Lewis acid that converts the hydroxyl group into a better leaving group. meta-xylenol H H N + Cl + Nuc attack Nuc attack ± O O Cl O Cl on a Lewis acid – loss of LG S – S S ZnCl2 O + – Cl O O OH ZnCl2 O Cl Cl H SN2 Good leaving group 2. !SSEENIN3ECTION ANALCOHOLCANBECONVERTEDINTOATOSYLATE FOLLOWEDBYNUCLEOPHILIC 13.9 Reactions of Alcohols: Substitution and Elimination attack.

SN1 Reactions with Alcohols OH OTs – X The reaction mechanism for PBr has similar characteristics, including conversion of the !SSEENIN3ECTION TERTIARYALCOHOLSWILLUNDERGOASUBSTITUTIONREACTIONWHENTREATEDWITH TsCl X HYDROXYLGROUPINTOABETTERLEAVINGGROUPFOLLOWEDBYNUCLEOPHILICATTACK-ECHANISM  py a hydrogen halide. SN2 Bad Good OH HX X leaving group py= leaving group ± H2O N

7ESAWTHATTHISREACTIONPROCEEDSVIAAN3N1 mechanism. pyridine

5SINGTOSYLCHLORIDEANDPYRIDINE THEHYDROXYLGROUPISCONVERTEDINTOATOSYLATEGROUPAN Proton transfer Loss of a leaving group Nucleophilic attack MECHANISM 13.7 THE REACTION BETWEEN PBr3 AND AN ALCOHOL excellent leaving group), which is susceptible to an SNPROCESS.OTICETHESTEREOCHEMICAL H OUTCOMEOFTHEPREVIOUSREACTION4HECONlGURATIONOFTHECHIRALITYCENTERISNOTINVERTED Br + – – + OH H Br O H2O Br Br during formation of the tosylate, but it is inverted during the SNPROCESS4HENETRESULTIS P Br H H + INVERSIONOFCONlGURATION Br – OH O Br SN2 Br P ± Br ± HOPBr2 Recall that an S 1 mechanism has two core steps (loss of leaving group and nucleophilic attack). OH Br N 1) TsCl, py Bad Br 7HENTHESTARTINGMATERIALISANALCOHOL WESAWTHATANADDITIONALSTEPISREQUIREDINORDERTO 2) NaBr leaving group PROTONATETHEHYDROXYLGROUPlRST4HISREACTIONPROCEEDSVIAACARBOCATIONINTERMEDIATEANDIS Good R S leaving group therefore most appropriate for tertiary alcohols. Secondary alcohols undergo SN1 more slowly, and primary alcohols will not undergo SNATANAPPRECIABLERATE7HENDEALINGWITHAPRIMARY 3. 0RIMARYANDSECONDARYALCOHOLSREACTWITH3/#L or PBr via an SNPROCESS alcohol, an SNPATHWAYISREQUIREDINORDERTOCONVERTANALCOHOLINTOANALKYLHALIDE

SOCl2 Cl py SN2 Reactions with Alcohols Notice the similarity among all of the SNPROCESSESTHATWEHAVESEENINTHISSECTION!LLINVOLVE Primary and secondary alcohols will undergo substitution reactions with a variety of reagents, OH the conversion of the hydroxyl group into a better leaving group followed by nucleophilic attack. all of which proceed via an SNPROCESS)NTHISSECTION WEWILLEXPLORETHREESUCHREACTIONSTHAT )FANYOFTHESEREACTIONSOCCURSATACHIRALITYCENTER INVERSIONOFCONlGURATIONISTOBEEXPECTED all employ an SNPROCESS PBr3 Br

klein_c13_564-621hr.indd 591 11/8/10 2:11 PM klein_c13_564-621hr.indd 592 11/8/10 2:11 PM klein_c13_564-621hr.indd 593 11/8/10 2:11 PM

13.10 Reactions of Alcohols: Oxidation 597 598 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 599

13.10 Reactions of Alcohols: Oxidation 7HENAPRIMARYALCOHOLISOXIDIZEDWITHCHROMICACID ACARBOXYLICACIDISOBTAINED)TISGENERALLY MECHANISM 13.8 OXIDATION OF AN ALCOHOL WITH CHROMIC ACID DIFlCULTTOCONTROLTHEREACTIONTOPRODUCETHEALDEHYDE )N3ECTION WESAWTHATALCOHOLSCANBEFORMEDVIAAREDUCTIONPROCESS)NTHISSECTION WE STEP 1 will explore the reverse process, called oxidation, which involves an increase in oxidation state. R O Fast and R O OH O O reversible Na Cr O Oxidation OH ± HO Cr OH O Cr OH ± H O 2 2 7 OH O H H 2 R H2SO4 , H2O RH R OH R O R O

Chromate ester Alcohol Aldehyde Carboxylic H Reduction Difficult to isolate acid STEP 2 The outcome of an oxidation process depends on whether the starting alcohol is primary, R O O R )NORDERTOPRODUCETHEALDEHYDEASTHElNALPRODUCT ITISNECESSARYTOUSEAMORESELECTIVEOXIDIZ- SECONDARY ORTERTIARY,ETSlRSTCONSIDERTHEOXIDATIONOFAPRIMARYALCOHOL HH ± – O Cr OH O ± H O ± HCrO ing reagent, one that will react with the alcohol but will not react with the aldehyde. Many such H E2 3 3 REAGENTSAREAVAILABLE INCLUDINGPYRIDINIUMCHLOROCHROMATE0## 0##ISFORMEDFROMTHEREAC- OH O O R O R [O] [O] tion between pyridine, chromium trioxide, and hydrochloric acid. Chromate ester R H R H R OH H + – Primary alcohol Aldehyde Carboxylic acid N ± CrO3 ± HCl NH CrO3Cl Notice that a primary alcohol has two protons at the A position (the carbon atom bearing the HYDROXYLGROUP !SARESULT PRIMARYALCOHOLSCANBEOXIDIZEDTWICE4HElRSTOXIDATIONPRO- Pyridine Pyridinium Chlorochromate duces an aldehyde, and then oxidation of the aldehyde produces a carboxylic acid. Secondary alcohols only have one proton at the A position so they can only be oxidized PRACTICALLYSPEAKING PCC once, forming a ketone. Breath Tests to Measure Blood Alcohol Level 7HEN0##ISUSEDASTHEOXIDIZINGAGENT ANALDEHYDEISPRODUCEDASTHEMAJORPRODUCT5NDER these conditions, the aldehyde is not further oxidized to the carboxylic acid. OH O [O] ¡ Ì >˜œÊˆÃÊ>Ê«Àˆ“>ÀÞÊ>Vœ œ°Ê/ iÀivœÀi]ÊiÌ >˜œÊ܈ÊÀi>VÌÊÜˆÌ Ê œÝˆ`ˆâˆ˜}Ê>}i˜Ìʈ˜ÊÌ iÊÌÕLi]Ê>˜`Ê>ÊVœœÀÊV >˜}iʜVVÕÀðÊ/ iÊ R R R R «œÌ>ÃÃˆÕ“Ê `ˆV Àœ“>ÌiÊ ˆ˜Ê >Vˆ`ˆVÊ Vœ˜`ˆÌˆœ˜ÃÊ ÌœÊ «Àœ`ÕViÊ >VïVÊ iÝÌi˜ÌÊ œvÊ Ì iÊ VœœÀÊ V >˜}iÊ }ˆÛiÃÊ >˜Ê ˆ˜`ˆV>̈œ˜Ê œvÊ Ì iÊ Lœœ`Ê OH O H >Vˆ`° >Vœ œÊVœ˜Ìi˜Ì°Ê PCC CH Cl Secondary alcohol Ketone / iÊ Ài>Ì >ÞâiÀ/ ʈÃÊL>Ãi`ʜ˜ÊÌ iÊÃ>“iʈ`i>]ÊLÕÌʈÌʈÃʓœÀiÊ R 2 2 RH O >VVÕÀ>Ìi°Êʓi>ÃÕÀi`ÊۜÕ“iʜvÊLÀi>Ì ÊˆÃÊLÕLLi`ÊÌ ÀœÕ} Ê>˜Ê LOOKING AHEAD Generally speaking, the ketone is not further oxidized. Tertiary alcohols do not have any pro- ± Primary Aldehyde ± 2– H ± 3± >µÕiœÕÃÊ >Vˆ`ˆVÊ ÃœṎœ˜Ê œvÊ «œÌ>ÃÃˆÕ“Ê `ˆV Àœ‡ œÀÊ>˜ÊiÝVi«Ìˆœ˜Ê̜ÊÌ ˆÃÊ tons at the A position, and as a result, they generally do not undergo oxidation: OH Cr2O7 Cr alcohol }i˜iÀ>ÊÀՏi]ÊÃiiÊ-iV̈œ˜Ê OH “>Ìi]Ê >˜`Ê Ì iÊ V >˜}iÊ ˆ˜Ê VœœÀÊ ˆÃÊ “i>ÃÕÀi`Ê ÜˆÌ Ê >˜Ê ՏÌÀ>ۈœi̇ۈÈLiÊ ­16‡6-®Ê ëiVÌÀœ‡ Óä°££]ÊÜ iÀiÊÜiÊ܈Êi>À˜Ê OH Ethanol Reddish orange Acetic acid Green -ETHYLENECHLORIDE#(#L ISTYPICALLYTHESOLVENTUSEDWHEN0##ISEMPLOYED >LœÕÌÊ>ÊëiVˆ>ÊœÝˆ`ˆâˆ˜}Ê [O] « œÌœ“iÌiÀÊ ­-iV̈œ˜Ê £Ç°££®°Ê œ˜ÌÀ>ÀÞÊ ÌœÊ no reaction Secondary alcohols are oxidized only once to form a ketone, which is stable under oxidizing con- Ài>}i˜ÌÊÌ >ÌÊV>˜ÊœÝˆ`ˆâiÊ>Ê R R «œ«Õ>ÀÊLiˆiv]ʈÌʈÃʘœÌÊ«œÃÈLiÊ̜ÊLi>ÌÊÌ iÊ DITIONS4HEREFORE ASECONDARYALCOHOLCANBEOXIDIZEDEITHERWITHCHROMICACIDORWITH0## Ži̜˜iÊ̜ÊvœÀ“Ê>˜ÊiÃÌiÀ° R ˜ÊÌ iÊ«ÀœViÃÃ]ÊiÌ >˜œÊˆÃʜ݈`ˆâi`]Ê>˜`ÊÌ iÊV Àœ“ˆÕ“ÊÀi>}i˜ÌÊ ÌiÃÌÊLÞÊÃÕVŽˆ˜}Ê>ÊLÀi>Ì Ê“ˆ˜ÌÊ ˆÃÊÀi`ÕVi`°Ê/ iʘiÜÊV Àœ“ˆÕ“ÊVœ“«œÕ˜`ʈÃÊ>Ê`ˆvviÀi˜ÌÊVœœÀ]Ê œÀÊ Àˆ˜Ãˆ˜}Ê ÜˆÌ Ê >Ê LÀi>Ì Ê A large number of reagents are available for oxidizing primary and secondary alcohols. The Na Cr O >˜`ÊÌ iÀivœÀi]ÊÌ iÊ«Àœ}ÀiÃÃʜvÊÌ iÊÀi>V̈œ˜ÊV>˜ÊLiʓœ˜ˆÌœÀi`Ê vÀià i˜iÀ°Ê / iÃiÊ ÌiV ‡ 2 2 7 most common oxidizing reagent is chromic acid (H#R/), which can be formed either from H2SO4 , H2O LÞÊÌ iÊVœœÀÊV >˜}iÊvÀœ“ÊÀi``ˆÃ ‡œÀ>˜}iÊ̜Ê}Àii˜°Ê/ ˆÃÊÀi>V‡ ˜ˆµÕiÃÊ “ˆ} ÌÊ vœœÊ >Ê CHROMIUMTRIOXIDE#R/) or from sodium dichromate (Na#RO7) in aqueous acidic solution. ̈œ˜ÊvœÀ“i`ÊÌ iÊL>ÈÃÊvœÀʓ>˜ÞʜvÊÌ iÊi>ÀÞÊLÀi>Ì ÊÌiÃÌÃÊÌ >ÌÊ «iÀܘ]ÊLÕÌÊÌ iÞÊܜ˜½ÌÊ OH O O >ÃÃiÃÃi`ÊÌ iʏiÛiÊœvÊLœœ`Ê>Vœ œ°Ê Ài>Ì ÊÌiÃÌÃÊÌ >ÌÊṎˆâiÊ vœœÊ Ì iÊ «œÌ>ÃÃˆÕ“Ê ± H3O Ì ˆÃÊÀi>V̈œ˜Ê>ÀiÊÃ̈ÊVœ““iÀVˆ>ÞÊ>Û>ˆ>Li°Ê/ iÊÌiÃÌÊVœ˜ÃˆÃÌÃÊ `ˆV Àœ“>Ìi° Cr R R RR O O Acetone œvÊ>ÊÌÕLi]ÊÜ iÀiʜ˜iÊi˜`ʈÃÊvˆÌÌi`ÊÜˆÌ Ê>ʓœÕÌ «ˆiViÊ>˜`ÊÌ iÊ Secondary Ketone Chromium trioxide O œÌ iÀÊi˜`Ê >ÃÊ>ÊL>}°Ê/ iʈ˜Ãˆ`iʜvÊÌ iÊÌÕLiÊVœ˜Ì>ˆ˜ÃÊÜ`ˆÕ“Ê PCC `ˆV Àœ“>ÌiÊÌ >ÌʈÃÊ>`ÜÀLi`ʜ˜ÌœÊÌ iÊÃÕÀv>ViʜvÊ>˜Êˆ˜iÀÌÊ܏ˆ`]Ê alcohol HO Cr OH CH2Cl2 ÃÕV Ê>ÃÊȏˆV>Ê}i°ÊÃÊÌ iÊÕÃiÀÊLœÜÃÊ>ˆÀÊÌ ÀœÕ} ÊÌ iÊÌÕLiÊ>˜`Ê O vˆÃÊÕ«ÊÌ iÊL>}]ÊÌ iÊ>Vœ œÊˆ˜ÊÌ iÊÕÃiÀ½ÃÊLÀi>Ì ÊÀi>VÌÃÊÜˆÌ ÊÌ iÊ O O 3ODIUMDICHROMATEISLESSEXPENSIVE BUT0##ISMOREGENTLEANDOFTENPREFERREDIFOTHERSENSITIVE + – – + H2SO4 Na O Cr O Cr O Na Chromic acid functional groups are present in the compound. H2O O O Sodium dichromate 4HEMECHANISMOFOXIDATIONWITHCHROMICACIDHASTWOMAINSTEPS-ECHANISM 4HE lRSTSTEPINVOLVESFORMATIONOFACHROMATEESTER ANDTHESECONDSTEPISAN%PROCESSTOFORMA carbon-oxygen P bond (rather than a carbon-carbon P bond).

klein_c13_564-621hr.indd 597 11/8/10 2:11 PM klein_c13_564-621hr.indd 598 11/8/10 2:11 PM klein_c13_564-621hr.indd 599 11/8/10 2:11 PM 592 CHAPTER 13 Alcohols and Phenols 13.9 Reactions of Alcohols: Substitution and Elimination 593 594 CHAPTER 13 Alcohols and Phenols

1. Primary alcohols will react with HBr via an SNPROCESS 4HEMECHANISMSFORTHESETWOPATHWAYSAREVERYSIMILAR4HElRSTFEWSTEPSCONVERTABADLEAVING group into a good leaving group, then the halide attacks in an SNPROCESS-ECHANISM  SKILLBUILDER Nucleophilic attack ± Proton transfer loss of a leaving group 13.6 PROPOSING REAGENTS FOR THE CONVERSION OF AN ALCOHOL INTO AN ALKYL HALIDE H + – MECHANISM 13.6 THE REACTION BETWEEN SOCl2 AND AN ALCOHOL OH H Br O Br Br LEARN the skill `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° ± H H2O Bad SN2 leaving group OH Cl

4HEHYDROXYLGROUPISlRSTPROTONATED CONVERTINGITINTOANEXCELLENTLEAVINGGROUP FOLLOWED – OH SOCl Cl by an SNPROCESS4HISREACTIONWORKSWELLFOR("RBUTDOESNOTWORKWELLFOR(#L4O 2 ± ± py SO2 Cl REPLACETHEHYDROXYLGROUPWITHCHLORIDE :N#L is used as a catalyst. Cl OH HCl Cl Cl S SOLUTION ZnCl2 O – / ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜ÊˆÃÊ>ÊÃÕLÃ̈ÌṎœ˜Ê«ÀœViÃÃ]ÊÜÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊ̜ÊÕÃiÊ-N£ÊVœ˜`ˆ‡ Cl ̈œ˜ÃʜÀÊ- ÓÊVœ˜`ˆÌˆœ˜Ã°Ê/ iʎiÞÊv>V̜ÀʈÃÊÌ iÊÃÕLÃÌÀ>Ìi°Ê/ iÊÃÕLÃÌÀ>ÌiÊ iÀiʈÃÊÃiVœ˜`>ÀÞ]ÊÃœÊ The catalyst is a Lewis acid that converts the hydroxyl group into a better leaving group. STEP 1 N H H ˜>ÞâiÊÌ iÊÃÕLÃÌÀ>Ìi° iˆÌ iÀÊ-N£ÊœÀÊ-NÓÊVœÕ`ÊÌ iœÀïV>ÞÊܜÀŽ°ÊœÜiÛiÀ]ÊÜiÊ`œ˜½ÌÊ >ÛiÊ>ÊV œˆViʈ˜ÊÌ ˆÃÊV>Ãi°Ê/ iÊ N + Cl + ÌÀ>˜ÃvœÀ“>̈œ˜ÊÀiµÕˆÀiÃʈ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜]ÊÜ ˆV ÊV>˜Êœ˜ÞÊLiÊ>VVœ“«ˆÃ i`Êۈ>Ê-NÓÊ Nuc attack Nuc attack ± O O Cl O Cl STEP 2 – S – S S ­>˜Ê-N£Ê«ÀœViÃÃÊܜՏ`Ê}ˆÛiÊÀ>Vi“ˆâ>̈œ˜]Ê>ÃÊÜiÊÃ>Üʈ˜Ê-iV̈œ˜ÊÇ°x®°Ê˜Ê>``ˆÌˆœ˜]ÊÌ iÊÃÕLÃÌÀ>ÌiÊ on a Lewis acid loss of LG ˜>ÞâiÊÌ iÊ ZnCl2 O ܜՏ`ʏˆŽiÞÊ՘`iÀ}œÊ>ÊV>ÀLœV>̈œ˜ÊÀi>ÀÀ>˜}i“i˜ÌʈvÊÃÕLiVÌi`Ê̜Ê-N£ÊVœ˜`ˆÌˆœ˜Ã°ÊœÀÊLœÌ Ê + – Cl O O ÃÌiÀiœV i“ˆV>Ê OH ZnCl2 O Cl Cl œÕÌVœ“iÊ>˜`Ê œvÊÌ iÃiÊÀi>ܘÃ]Ê>˜Ê-NÓÊ«ÀœViÃÃʈÃÊÀiµÕˆÀi`°Ê H `iÌiÀ“ˆ˜iÊÜ iÌ iÀÊ- ÓÊ 7iÊ Ã>ÜÊ Ì ÀiiÊ `ˆvviÀi˜ÌÊ Ài>}i˜ÌÃÊ vœÀÊ «iÀvœÀ“ˆ˜}Ê >˜Ê - ÓÊ «ÀœViÃÃ°Ê 7ˆÌ Ê >Ê Ì Àii]Ê Ì iÊ SN2 Good N N ˆÃÊÀiµÕˆÀi`° leaving group Þ`ÀœÝޏÊ}ÀœÕ«ÊˆÃÊVœ˜ÛiÀÌi`ʈ˜ÌœÊ>ÊLiÌÌiÀʏi>ۈ˜}Ê}ÀœÕ«]ÊvœœÜi`ÊLÞʘÕViœ« ˆˆVÊ>ÌÌ>VŽ°Ê˜ÞÊ 2. !SSEENIN3ECTION ANALCOHOLCANBECONVERTEDINTOATOSYLATE FOLLOWEDBYNUCLEOPHILIC œvÊÌ iÊÌ ÀiiʓiÌ œ`ÃÊV>˜ÊLiÊÕÃi`° attack.

HCl, ZnCl2 OH Cl OH OTs – X The reaction mechanism for PBr has similar characteristics, including conversion of the STEP 3 TsCl X HYDROXYLGROUPINTOABETTERLEAVINGGROUPFOLLOWEDBYNUCLEOPHILICATTACK-ECHANISM  `i˜ÌˆvÞÊÀi>}i˜ÌÃÊÌ >ÌÊ py SN2 >V ˆiÛiÊÌ iÊ«ÀœViÃÃÊ 1) TsCl, py `iÌiÀ“ˆ˜i`ʈ˜ÊÃÌi«ÊÓ° 2) NaCl Bad Good leaving group py= leaving group SOCl2 , py N pyridine PRACTICE the skill 13.19 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ Êi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>‡ ̈œ˜Ã° 5SINGTOSYLCHLORIDEANDPYRIDINE THEHYDROXYLGROUPISCONVERTEDINTOATOSYLATEGROUPAN MECHANISM 13.7 THE REACTION BETWEEN PBr3 AND AN ALCOHOL OH Br OH Br excellent leaving group), which is susceptible to an SNPROCESS.OTICETHESTEREOCHEMICAL OUTCOMEOFTHEPREVIOUSREACTION4HECONlGURATIONOFTHECHIRALITYCENTERISNOTINVERTED Br during formation of the tosylate, but it is inverted during the SNPROCESS4HENETRESULTIS P Br H + (a) (b) INVERSIONOFCONlGURATION Br – OH O Br SN2 Br P ± Br ± HOPBr2 OH Br 1) TsCl, py Bad Br 2) NaBr leaving group Good Cl Br R S OH OH leaving group (c) (d)

3. 0RIMARYANDSECONDARYALCOHOLSREACTWITH3/#L or PBr via an SNPROCESS

SOCl2 Cl py (e) OH Cl (f) OH Br Notice the similarity among all of the SNPROCESSESTHATWEHAVESEENINTHISSECTION!LLINVOLVE 13.20 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° OH the conversion of the hydroxyl group into a better leaving group followed by nucleophilic attack. APPLY the skill )FANYOFTHESEREACTIONSOCCURSATACHIRALITYCENTER INVERSIONOFCONlGURATIONISTOBEEXPECTED

PBr3 Br OH Cl

need more PRACTICE? Try Problems 13.35a–c, 13.44f, 13.52r

klein_c13_564-621hr.indd 592 11/8/10 2:11 PM klein_c13_564-621hr.indd 593 11/8/10 2:11 PM klein_c13_564-621hr.indd 594 11/8/10 2:11 PM

598 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 599 600 CHAPTER 13 Alcohols and Phenols

7HENAPRIMARYALCOHOLISOXIDIZEDWITHCHROMICACID ACARBOXYLICACIDISOBTAINED)TISGENERALLY MECHANISM 13.8 OXIDATION OF AN ALCOHOL WITH CHROMIC ACID DIFlCULTTOCONTROLTHEREACTIONTOPRODUCETHEALDEHYDE SKILLBUILDER STEP 1 13.7 PREDICTING THE PRODUCTS OF AN OXIDATION REACTION R O Fast and R O OH O O reversible Na Cr O OH ± HO Cr OH ± 2 2 7 H H O Cr OH H2O LEARN the skill *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜° R H2SO4 , H2O RH R OH R O R O Chromate ester Alcohol Aldehyde Carboxylic OH CrO3 ± Difficult to isolate acid H O , acetone STEP 2 3 ? O R O R )NORDERTOPRODUCETHEALDEHYDEASTHElNALPRODUCT ITISNECESSARYTOUSEAMORESELECTIVEOXIDIZ- SOLUTION HH – O Cr OH O ± H O± ± HCrO ing reagent, one that will react with the alcohol but will not react with the aldehyde. Many such H E2 3 3 ˜ÊœÀ`iÀÊ̜ʫÀi`ˆVÌÊÌ iÊ«Àœ`ÕVÌ]ʈ`i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊÃiVœ˜`>ÀްʘÊÌ ˆÃÊ REAGENTSAREAVAILABLE INCLUDINGPYRIDINIUMCHLOROCHROMATE0## 0##ISFORMEDFROMTHEREAC- R O R V>Ãi]ÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞ]Ê>˜`ÊÌ iÀivœÀi]ÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊÌ iÊ«ÀœViÃÃÊ܈Ê«Àœ`ÕViÊ tion between pyridine, chromium trioxide, and hydrochloric acid. STEP 1 >˜Ê>`i Þ`iʜÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`\Ê Chromate ester `i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ O O >Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊ + – ÃiVœ˜`>ÀÞ° OH [O] H [O] OH N ± CrO3 ± HCl NH CrO3Cl STEP 2 vÊÌ iÊ>Vœ œÊˆÃÊ Pyridinium Chlorochromate Pyridine «Àˆ“>ÀÞ]ÊVœ˜Ãˆ`iÀÊ Aldehyde Carboxylic acid Ü iÌ iÀÊ>˜Ê>`i Þ`iÊ PCC œÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`ʈÃÊ / iÊ«Àœ`ÕVÌʈÃÊ`iÌiÀ“ˆ˜i`ÊLÞÊÌ iÊV œˆViʜvÊÀi>}i˜Ì°Ê Àœ“ˆÕ“ÊÌÀˆœÝˆ`iʈ˜Ê>Vˆ`ˆVÊVœ˜`ˆÌˆœ˜ÃÊ PRACTICALLYSPEAKING œLÌ>ˆ˜i`° vœÀ“ÃÊV Àœ“ˆVÊ>Vˆ`]ÊÜ ˆV Ê܈ÊœÝˆ`ˆâiÊÌ iÊ>Vœ œÊÌ܈ViÊ̜Ê}ˆÛiÊÌ iÊV>ÀLœÝޏˆVÊ>Vˆ`°Ê˜ÊœÀ`iÀÊ Breath Tests to Measure Blood Alcohol Level 7HEN0##ISUSEDASTHEOXIDIZINGAGENT ANALDEHYDEISPRODUCEDASTHEMAJORPRODUCT5NDER these conditions, the aldehyde is not further oxidized to the carboxylic acid. ̜ÊÃ̜«Ê>ÌÊÌ iÊ>`i Þ`i]Ê* ÊܜՏ`ÊLiÊÕÃi`ʈ˜ÃÌi>`° O Ì >˜œÊˆÃÊ>Ê«Àˆ“>ÀÞÊ>Vœ œ°Ê/ iÀivœÀi]ÊiÌ >˜œÊ܈ÊÀi>VÌÊÜˆÌ Ê œÝˆ`ˆâˆ˜}Ê>}i˜Ìʈ˜ÊÌ iÊÌÕLi]Ê>˜`Ê>ÊVœœÀÊV >˜}iʜVVÕÀðÊ/ iÊ STEP 3 «œÌ>ÃÃˆÕ“Ê `ˆV Àœ“>ÌiÊ ˆ˜Ê >Vˆ`ˆVÊ Vœ˜`ˆÌˆœ˜ÃÊ ÌœÊ «Àœ`ÕViÊ >VïVÊ iÝÌi˜ÌÊ œvÊ Ì iÊ VœœÀÊ V >˜}iÊ }ˆÛiÃÊ >˜Ê ˆ˜`ˆV>̈œ˜Ê œvÊ Ì iÊ Lœœ`Ê OH O À>ÜÊÌ iÊ«Àœ`ÕVÌ° OH CrO3 OH >Vˆ`° >Vœ œÊVœ˜Ìi˜Ì°Ê PCC ± CH Cl H3O , acetone / iÊ Ài>Ì >ÞâiÀ/ ʈÃÊL>Ãi`ʜ˜ÊÌ iÊÃ>“iʈ`i>]ÊLÕÌʈÌʈÃʓœÀiÊ R 2 2 RH O >VVÕÀ>Ìi°Êʓi>ÃÕÀi`ÊۜÕ“iʜvÊLÀi>Ì ÊˆÃÊLÕLLi`ÊÌ ÀœÕ} Ê>˜Ê ± Primary Aldehyde PRACTICE the skill 13.22 *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜Ã° ± 2– H ± 3± >µÕiœÕÃÊ >Vˆ`ˆVÊ ÃœṎœ˜Ê œvÊ «œÌ>ÃÃˆÕ“Ê `ˆV Àœ‡ OH Cr2O7 Cr alcohol OH “>Ìi]Ê >˜`Ê Ì iÊ V >˜}iÊ ˆ˜Ê VœœÀÊ ˆÃÊ “i>ÃÕÀi`Ê OH ÜˆÌ Ê >˜Ê ՏÌÀ>ۈœi̇ۈÈLiÊ ­16‡6-®Ê ëiVÌÀœ‡ Ethanol Reddish orange Acetic acid Green -ETHYLENECHLORIDE#(#L ISTYPICALLYTHESOLVENTUSEDWHEN0##ISEMPLOYED HO O PCC « œÌœ“iÌiÀÊ ­-iV̈œ˜Ê £Ç°££®°Ê œ˜ÌÀ>ÀÞÊ ÌœÊ Secondary alcohols are oxidized only once to form a ketone, which is stable under oxidizing con- Na2Cr2O7 CH2Cl2 «œ«Õ>ÀÊLiˆiv]ʈÌʈÃʘœÌÊ«œÃÈLiÊ̜ÊLi>ÌÊÌ iÊ H2SO4 , H2O DITIONS4HEREFORE ASECONDARYALCOHOLCANBEOXIDIZEDEITHERWITHCHROMICACIDORWITH0## (a) H ? (b) ? ˜ÊÌ iÊ«ÀœViÃÃ]ÊiÌ >˜œÊˆÃʜ݈`ˆâi`]Ê>˜`ÊÌ iÊV Àœ“ˆÕ“ÊÀi>}i˜ÌÊ ÌiÃÌÊLÞÊÃÕVŽˆ˜}Ê>ÊLÀi>Ì Ê“ˆ˜ÌÊ ˆÃÊÀi`ÕVi`°Ê/ iʘiÜÊV Àœ“ˆÕ“ÊVœ“«œÕ˜`ʈÃÊ>Ê`ˆvviÀi˜ÌÊVœœÀ]Ê œÀÊ Àˆ˜Ãˆ˜}Ê ÜˆÌ Ê >Ê LÀi>Ì Ê OH Na2Cr2O7 >˜`ÊÌ iÀivœÀi]ÊÌ iÊ«Àœ}ÀiÃÃʜvÊÌ iÊÀi>V̈œ˜ÊV>˜ÊLiʓœ˜ˆÌœÀi`Ê vÀià i˜iÀ°Ê / iÃiÊ ÌiV ‡ H xs CrO3 H2SO4 , H2O OH ± PCC LÞÊÌ iÊVœœÀÊV >˜}iÊvÀœ“ÊÀi``ˆÃ ‡œÀ>˜}iÊ̜Ê}Àii˜°Ê/ ˆÃÊÀi>V‡ ˜ˆµÕiÃÊ “ˆ} ÌÊ vœœÊ >Ê H3O (d) CH2Cl2 ̈œ˜ÊvœÀ“i`ÊÌ iÊL>ÈÃÊvœÀʓ>˜ÞʜvÊÌ iÊi>ÀÞÊLÀi>Ì ÊÌiÃÌÃÊÌ >ÌÊ «iÀܘ]ÊLÕÌÊÌ iÞÊܜ˜½ÌÊ (c) O acetone ? OH O ? >ÃÃiÃÃi`ÊÌ iʏiÛiÊœvÊLœœ`Ê>Vœ œ°Ê Ài>Ì ÊÌiÃÌÃÊÌ >ÌÊṎˆâiÊ vœœÊ Ì iÊ «œÌ>ÃÃˆÕ“Ê Ì ˆÃÊÀi>V̈œ˜Ê>ÀiÊÃ̈ÊVœ““iÀVˆ>ÞÊ>Û>ˆ>Li°Ê/ iÊÌiÃÌÊVœ˜ÃˆÃÌÃÊ `ˆV Àœ“>Ìi° PCC Na2Cr2O7 R R RR OH OH CH2Cl2 H2SO4 , H2O œvÊ>ÊÌÕLi]ÊÜ iÀiʜ˜iÊi˜`ʈÃÊvˆÌÌi`ÊÜˆÌ Ê>ʓœÕÌ «ˆiViÊ>˜`ÊÌ iÊ (e) ? (f) ? Secondary Ketone œÌ iÀÊi˜`Ê >ÃÊ>ÊL>}°Ê/ iʈ˜Ãˆ`iʜvÊÌ iÊÌÕLiÊVœ˜Ì>ˆ˜ÃÊÜ`ˆÕ“Ê PCC alcohol `ˆV Àœ“>ÌiÊÌ >ÌʈÃÊ>`ÜÀLi`ʜ˜ÌœÊÌ iÊÃÕÀv>ViʜvÊ>˜Êˆ˜iÀÌÊ܏ˆ`]Ê CH2Cl2 APPLY the skill 13.23 *Àœ«œÃiÊ>ÊÃÞ˜Ì iÈÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° ÃÕV Ê>ÃÊȏˆV>Ê}i°ÊÃÊÌ iÊÕÃiÀÊLœÜÃÊ>ˆÀÊÌ ÀœÕ} ÊÌ iÊÌÕLiÊ>˜`Ê O vˆÃÊÕ«ÊÌ iÊL>}]ÊÌ iÊ>Vœ œÊˆ˜ÊÌ iÊÕÃiÀ½ÃÊLÀi>Ì ÊÀi>VÌÃÊÜˆÌ ÊÌ iÊ 3ODIUMDICHROMATEISLESSEXPENSIVE BUT0##ISMOREGENTLEANDOFTENPREFERREDIFOTHERSENSITIVE O functional groups are present in the compound. H (a) Br H (b) O O

(c) (d)

need more PRACTICE? Try Problems 13.35e–f, 13.37, 13.48

klein_c13_564-621hr.indd 598 11/8/10 2:11 PM klein_c13_564-621hr.indd 599 11/8/10 2:11 PM klein_c13_564-621hr.indd 600 11/8/10 2:11 PM 13.9 Reactions of Alcohols: Substitution and Elimination 593 594 CHAPTER 13 Alcohols and Phenols 13.9 Reactions of Alcohols: Substitution and Elimination 595

OH 4HEMECHANISMSFORTHESETWOPATHWAYSAREVERYSIMILAR4HElRSTFEWSTEPSCONVERTABADLEAVING PRACTICALLYSPEAKING O O group into a good leaving group, then the halide attacks in an SNPROCESS-ECHANISM  SKILLBUILDER HO HO 13.6 PROPOSING REAGENTS FOR THE CONVERSION OF AN ALCOHOL INTO AN ALKYL HALIDE OH ÀÕ}ʓiÌ>LœˆÃ“ÊÀiviÀÃÊ̜ÊÌ iÊÃiÌʜvÊÀi>V̈œ˜ÃÊLÞÊÜ ˆV Ê`ÀÕ}ÃÊ>ÀiÊ O UDP Vœ˜ÛiÀÌi`ʈ˜ÌœÊœÌ iÀÊVœ“«œÕ˜`ÃÊÌ >ÌÊ>ÀiÊiˆÌ iÀÊÕÃi`ÊLÞÊÌ iÊLœ`ÞÊ MECHANISM 13.6 THE REACTION BETWEEN SOCl2 AND AN ALCOHOL LEARN the skill `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° œÀÊiÝVÀiÌi`°Ê"ÕÀÊLœ`ˆiÃÊ`ˆÃ«œÃiʜvÊÌ iʓi`ˆV>̈œ˜ÃÊÜiʈ˜}iÃÌÊLÞÊ ROH Bad >ÊÛ>ÀˆiÌÞʜvʓiÌ>LœˆVÊ«>Ì Ü>ÞÃ°Ê UDP-glucuronyl-transferase leaving group OH Cl "˜iÊ Vœ““œ˜Ê “iÌ>LœˆVÊ «>Ì Ü>ÞÊ ˆÃÊ V>i`Ê }ÕVÕÀœ˜ˆVÊ >Vˆ`Ê Vœ˜Õ}>̈œ˜]Ê œÀÊ Ãˆ“«ÞÊ }ÕVÕÀœ˜ˆ`>̈œ˜°Ê / ˆÃÊ «ÀœViÃÃÊ ˆÃÊ ± – –H OH SOCl2 Cl ÛiÀÞÊȓˆ>ÀÊ̜Ê>ÊœvÊÌ iÊ-NÓÊ«ÀœViÃÃiÃÊÌ >ÌÊÜiʈ˜ÛiÃ̈}>Ìi`Ê ± SO ± Cl py 2 ˆ˜Ê Ì iÊ «ÀiۈœÕÃÊ ÃiV̈œ˜°Ê -«iVˆvˆV>Þ]Ê >Ê L>`Ê i>ۈ˜}Ê }ÀœÕ«Ê ­ Þ`ÀœÝޏ®Ê ˆÃÊ vˆÀÃÌÊ Vœ˜ÛiÀÌi`Ê ˆ˜ÌœÊ >Ê }œœ`Ê i>ۈ˜}Ê }ÀœÕ«]Ê vœ‡ Cl OH œÜi`Ê LÞÊ ˜ÕViœ« ˆˆVÊ >ÌÌ>VŽ°Ê ÕVÕÀœ˜ˆ`>̈œ˜Ê iÝ ˆLˆÌÃÊ Ì iÊ Cl S SOLUTION O Ã>“iÊÌܜʎiÞÊÃÌi«Ã°Ê O O – / ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜ÊˆÃÊ>ÊÃÕLÃ̈ÌṎœ˜Ê«ÀœViÃÃ]ÊÜÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊ̜ÊÕÃiÊ-N£ÊVœ˜`ˆ‡ HO HO O Cl STEP 1 ̈œ˜ÃʜÀÊ-NÓÊVœ˜`ˆÌˆœ˜Ã°Ê/ iʎiÞÊv>V̜ÀʈÃÊÌ iÊÃÕLÃÌÀ>Ìi°Ê/ iÊÃÕLÃÌÀ>ÌiÊ iÀiʈÃÊÃiVœ˜`>ÀÞ]ÊÃœÊ R 1. œÀ“>̈œ˜ÊœvÊ1 *Ê­ÕÀˆ`ˆ˜i‡x½‡`ˆ« œÃ« œ‡A‡D‡}ÕVÕÀœ˜ˆVÊ OH H H ˜>ÞâiÊÌ iÊÃÕLÃÌÀ>Ìi° iˆÌ iÀÊ-N£ÊœÀÊ-NÓÊVœÕ`ÊÌ iœÀïV>ÞÊܜÀŽ°ÊœÜiÛiÀ]ÊÜiÊ`œ˜½ÌÊ >ÛiÊ>ÊV œˆViʈ˜ÊÌ ˆÃÊV>Ãi°Ê/ iÊ N >Vˆ`®ÊvÀœ“Ê}ÕVœÃiʈ˜ÛœÛiÃÊVœ˜ÛiÀȜ˜ÊœvÊ>ÊL>`ʏi>ۈ˜}Ê b + Cl + ÌÀ>˜ÃvœÀ“>̈œ˜ÊÀiµÕˆÀiÃʈ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜]ÊÜ ˆV ÊV>˜Êœ˜ÞÊLiÊ>VVœ“«ˆÃ i`Êۈ>Ê-NÓÊ -Glucuronide O O Cl O Cl STEP 2 }ÀœÕ«Êˆ˜ÌœÊ>Ê}œœ`ʏi>ۈ˜}Ê}ÀœÕ«° S – S S ­>˜Ê-N£Ê«ÀœViÃÃÊܜՏ`Ê}ˆÛiÊÀ>Vi“ˆâ>̈œ˜]Ê>ÃÊÜiÊÃ>Üʈ˜Ê-iV̈œ˜ÊÇ°x®°Ê˜Ê>``ˆÌˆœ˜]ÊÌ iÊÃÕLÃÌÀ>ÌiÊ ˜>ÞâiÊÌ iÊ / ˆÃÊ-NÓÊ«ÀœViÃÃÊÀiµÕˆÀiÃÊ>˜Êi˜âޓiÊ­>ÊLˆœœ}ˆV>ÊV>Ì>ÞÃÌ®Ê O ܜՏ`ʏˆŽiÞÊ՘`iÀ}œÊ>ÊV>ÀLœV>̈œ˜ÊÀi>ÀÀ>˜}i“i˜ÌʈvÊÃÕLiVÌi`Ê̜Ê- £ÊVœ˜`ˆÌˆœ˜Ã°ÊœÀÊLœÌ Ê Cl O O ÃÌiÀiœV i“ˆV>Ê N V>i`Ê1 *‡}ÕVÕÀœ˜ÞÊÌÀ>˜ÃviÀ>Ãi°Ê/ iÊÀi>V̈œ˜Ê«ÀœVii`ÃÊۈ>Ê œÕÌVœ“iÊ>˜`Ê œvÊÌ iÃiÊÀi>ܘÃ]Ê>˜Ê-NÓÊ«ÀœViÃÃʈÃÊÀiµÕˆÀi`°Ê OH ˆ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜Ê­>ÃÊiÝ«iVÌi`ʜvÊ>˜Ê-NÓÊ«ÀœViÃîÊÌœÊ `iÌiÀ“ˆ˜iÊÜ iÌ iÀÊ- ÓÊ 7iÊ Ã>ÜÊ Ì ÀiiÊ `ˆvviÀi˜ÌÊ Ài>}i˜ÌÃÊ vœÀÊ «iÀvœÀ“ˆ˜}Ê >˜Ê - ÓÊ «ÀœViÃÃ°Ê 7ˆÌ Ê >Ê Ì Àii]Ê Ì iÊ Good N N «Àœ`ÕViÊ>ÊB‡}ÕVÕÀœ˜ˆ`i]ÊÜ ˆV ʈÃÊ ˆ} ÞÊÜ>ÌiÀÊ܏ÕLiÊ>˜`ʈÃÊ ˆÃÊÀiµÕˆÀi`° Þ`ÀœÝޏÊ}ÀœÕ«ÊˆÃÊVœ˜ÛiÀÌi`ʈ˜ÌœÊ>ÊLiÌÌiÀʏi>ۈ˜}Ê}ÀœÕ«]ÊvœœÜi`ÊLÞʘÕViœ« ˆˆVÊ>ÌÌ>VŽ°Ê˜ÞÊ leaving group O Ài>`ˆÞÊiÝVÀiÌi`ʈ˜ÊÌ iÊÕÀˆ˜i°Ê HO œvÊÌ iÊÌ ÀiiʓiÌ œ`ÃÊV>˜ÊLiÊÕÃi`° >˜ÞÊ v՘V̈œ˜>Ê }ÀœÕ«ÃÊ Õ˜`iÀ}œÊ }ÕVÕÀœ˜ˆ`>̈œ˜]Ê LÕÌÊ >Vœ‡ HO OH œÃÊ>˜`Ê« i˜œÃÊ>ÀiÊÌ iʓœÃÌÊVœ““œ˜ÊV>ÃÃiÃʜvÊVœ“«œÕ˜`ÃÊÌ >ÌÊ HCl, ZnCl2 D-Glucose OH ՘`iÀ}œÊÌ ˆÃʓiÌ>LœˆVÊ«>Ì Ü>Þ°ÊœÀÊiÝ>“«i]ʓœÀ« ˆ˜i]Ê>ViÌ>“ˆ˜‡ OH Cl The reaction mechanism for PBr has similar characteristics, including conversion of the STEP 3 Bad LG œ« i˜]Ê>˜`ÊV œÀ>“« i˜ˆVœÊ>ÀiÊ>Ê“iÌ>Lœˆâi`Êۈ>Ê}ÕVÕÀœ˜ˆ`>̈œ˜\ HYDROXYLGROUPINTOABETTERLEAVINGGROUPFOLLOWEDBYNUCLEOPHILICATTACK-ECHANISM  `i˜ÌˆvÞÊÀi>}i˜ÌÃÊÌ >ÌÊ >V ˆiÛiÊÌ iÊ«ÀœViÃÃÊ 1) TsCl, py N `iÌiÀ“ˆ˜i`ʈ˜ÊÃÌi«ÊÓ° 2) NaCl H OH OH H SOCl2 , py H NO Cl PRACTICE the skill 13.19 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ Êi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>‡ OH N O2N H Cl O O ̈œ˜Ã° HO OH HO O O MECHANISM 13.7 THE REACTION BETWEEN PBr3 AND AN ALCOHOL OH Br OH Br HO HO Morphine Acetaminophen Chloramphenicol Br OH An opiate analgesic An analgesic (pain-relieving) An antibiotic used in eye drops HO used to treat severe pain and antipyretic (fever-reducing) agent, to treat bacterial conjuctivitis P Br H O O UDPGA sold under the trade name TylenolTM + (a) (b) O N OH Br O Br – S 2 Br O P OPO ± N ± P Br HOPBr2 N N O -O -O H Bad Br HO OH OH H leaving group OH H Good OH Cl OH Br Cl leaving group (c) (d) Good LG (called UDP) NO N O N H Cl O 2 HO OH HO O 1 *ʈÃÊ>ÊVœ“«œÕ˜`ÊÜˆÌ Ê>ÊÛiÀÞÊ}œœ`ʏi>ۈ˜}Ê}ÀœÕ«°Ê/ ˆÃÊ (e) OH Cl (f) OH Br Morphine Acetaminophen Chloramphenicol Notice the similarity among all of the SNPROCESSESTHATWEHAVESEENINTHISSECTION!LLINVOLVE >À}iʏi>ۈ˜}Ê}ÀœÕ«Anʈà opiateÊV>i` analgesicÊ1 *°Ê˜ÊÌ ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜]An analgesicʜ˜i (pain-relieving)Ê An antibiotic used in eye drops the conversion of the hydroxyl group into a better leaving group followed by nucleophilic attack. APPLY the skill 13.20 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° œvÊÌ iÊ Þ`ÀœÝޏÊused}ÀœÕ«Ã to Êtreatˆ˜Ê}ÕVœÃi severeÊ >à painÊLii˜andÊVœ˜ÛiÀÌi` antipyreticʈ˜Ìœ (fever-reducing)Ê>Ê agent, to treat bacterial conjuctivitis TM )FANYOFTHESEREACTIONSOCCURSATACHIRALITYCENTER INVERSIONOFCONlGURATIONISTOBEEXPECTED }œœ`ʏi>ۈ˜}Ê}ÀœÕ«° sold under the trade name Tylenol ˜Ê i>V Ê œvÊ Ì iÃiÊ Ì ÀiiÊ Vœ“«œÕ˜`Ã]Ê Ì iÊ ˆ} ˆ} Ìi`Ê Þ`ÀœÝÞÊ 2. iÝÌ]Ê>˜Ê-NÓÊ«ÀœViÃÃʜVVÕÀÃʈ˜ÊÜ ˆV ÊÌ iÊ`ÀÕ}ÊLiˆ˜}ʓiÌ>Lœ‡ ˆâi`Ê­ÃÕV Ê>ÃÊ>˜Ê>Vœ œ®Ê>ÌÌ>VŽÃÊ1 *]ÊiÝ«iˆ˜}ÊÌ iÊ}œœ`Ê }ÀœÕ«Ê >ÌÌ>VŽÃÊ 1 *°Ê ÕVÕÀœ˜ˆ`>̈œ˜Ê ˆÃÊ Ì iÊ “>ˆ˜Ê “iÌ>LœˆVÊ OH Cl i>ۈ˜}Ê}ÀœÕ«° «>Ì Ü>ÞÊLÞÊÜ ˆV ÊÌ iÃiÊ`ÀÕ}ÃÊ>ÀiÊiˆ“ˆ˜>Ìi`ÊvÀœ“ÊÌ iÊLœ`Þ°

need more PRACTICE? Try Problems 13.35a–c, 13.44f, 13.52r

klein_c13_564-621hr.indd 593 11/8/10 2:11 PM klein_c13_564-621hr.indd 594 11/8/10 2:11 PM klein_c13_564-621hr.indd 595 11/8/10 2:11 PM

13.10 Reactions of Alcohols: Oxidation 599 600 CHAPTER 13 Alcohols and Phenols

7HENAPRIMARYALCOHOLISOXIDIZEDWITHCHROMICACID ACARBOXYLICACIDISOBTAINED)TISGENERALLY DIFlCULTTOCONTROLTHEREACTIONTOPRODUCETHEALDEHYDE SKILLBUILDER 13.7 PREDICTING THE PRODUCTS OF AN OXIDATION REACTION OH O O Na2Cr2O7 LEARN the skill *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜° R H2SO4 , H2O RH R OH

Alcohol Aldehyde Carboxylic OH CrO3 Difficult to isolate acid ± H3O , acetone ? )NORDERTOPRODUCETHEALDEHYDEASTHElNALPRODUCT ITISNECESSARYTOUSEAMORESELECTIVEOXIDIZ- SOLUTION ing reagent, one that will react with the alcohol but will not react with the aldehyde. Many such ˜ÊœÀ`iÀÊ̜ʫÀi`ˆVÌÊÌ iÊ«Àœ`ÕVÌ]ʈ`i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊÃiVœ˜`>ÀްʘÊÌ ˆÃÊ REAGENTSAREAVAILABLE INCLUDINGPYRIDINIUMCHLOROCHROMATE0## 0##ISFORMEDFROMTHEREAC- V>Ãi]ÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞ]Ê>˜`ÊÌ iÀivœÀi]ÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊÌ iÊ«ÀœViÃÃÊ܈Ê«Àœ`ÕViÊ tion between pyridine, chromium trioxide, and hydrochloric acid. STEP 1 >˜Ê>`i Þ`iʜÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`\Ê `i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ O O >Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊ + – ÃiVœ˜`>ÀÞ° OH [O] H [O] OH N ± CrO3 ± HCl NH CrO3Cl STEP 2 vÊÌ iÊ>Vœ œÊˆÃÊ Pyridinium Chlorochromate Pyridine «Àˆ“>ÀÞ]ÊVœ˜Ãˆ`iÀÊ Aldehyde Carboxylic acid Ü iÌ iÀÊ>˜Ê>`i Þ`iÊ PCC œÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`ʈÃÊ / iÊ«Àœ`ÕVÌʈÃÊ`iÌiÀ“ˆ˜i`ÊLÞÊÌ iÊV œˆViʜvÊÀi>}i˜Ì°Ê Àœ“ˆÕ“ÊÌÀˆœÝˆ`iʈ˜Ê>Vˆ`ˆVÊVœ˜`ˆÌˆœ˜ÃÊ œLÌ>ˆ˜i`° 7HEN0##ISUSEDASTHEOXIDIZINGAGENT ANALDEHYDEISPRODUCEDASTHEMAJORPRODUCT5NDER vœÀ“ÃÊV Àœ“ˆVÊ>Vˆ`]ÊÜ ˆV Ê܈ÊœÝˆ`ˆâiÊÌ iÊ>Vœ œÊÌ܈ViÊ̜Ê}ˆÛiÊÌ iÊV>ÀLœÝޏˆVÊ>Vˆ`°Ê˜ÊœÀ`iÀÊ these conditions, the aldehyde is not further oxidized to the carboxylic acid. ̜ÊÃ̜«Ê>ÌÊÌ iÊ>`i Þ`i]Ê* ÊܜՏ`ÊLiÊÕÃi`ʈ˜ÃÌi>`° O STEP 3 OH O À>ÜÊÌ iÊ«Àœ`ÕVÌ° OH CrO3 OH PCC ± H3O , acetone R CH2Cl2 RH

Primary Aldehyde PRACTICE the skill 13.22 *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜Ã° alcohol OH

-ETHYLENECHLORIDE#(#L ISTYPICALLYTHESOLVENTUSEDWHEN0##ISEMPLOYED HO O PCC Secondary alcohols are oxidized only once to form a ketone, which is stable under oxidizing con- Na2Cr2O7 CH2Cl2 H2SO4 , H2O DITIONS4HEREFORE ASECONDARYALCOHOLCANBEOXIDIZEDEITHERWITHCHROMICACIDORWITH0## (a) H ? (b) ? OH Na2Cr2O7 H xs CrO3 H2SO4 , H2O OH ± PCC H3O CH2Cl2 (c) O acetone ? (d) OH O ?

PCC Na2Cr2O7 R R RR OH OH CH2Cl2 H2SO4 , H2O (e) ? (f) ? Secondary Ketone PCC alcohol CH2Cl2 APPLY the skill 13.23 *Àœ«œÃiÊ>ÊÃÞ˜Ì iÈÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° O 3ODIUMDICHROMATEISLESSEXPENSIVE BUT0##ISMOREGENTLEANDOFTENPREFERREDIFOTHERSENSITIVE O functional groups are present in the compound. H (a) Br H (b) O O

(c) (d)

need more PRACTICE? Try Problems 13.35e–f, 13.37, 13.48

klein_c13_564-621hr.indd 599 11/8/10 2:11 PM klein_c13_564-621hr.indd 600 11/8/10 2:11 PM 594 CHAPTER 13 Alcohols and Phenols 13.9 Reactions of Alcohols: Substitution and Elimination 595

OH PRACTICALLYSPEAKING O O SKILLBUILDER HO Drug Metabolism HO 13.6 PROPOSING REAGENTS FOR THE CONVERSION OF AN ALCOHOL INTO AN ALKYL HALIDE OH ÀÕ}ʓiÌ>LœˆÃ“ÊÀiviÀÃÊ̜ÊÌ iÊÃiÌʜvÊÀi>V̈œ˜ÃÊLÞÊÜ ˆV Ê`ÀÕ}ÃÊ>ÀiÊ O UDP Vœ˜ÛiÀÌi`ʈ˜ÌœÊœÌ iÀÊVœ“«œÕ˜`ÃÊÌ >ÌÊ>ÀiÊiˆÌ iÀÊÕÃi`ÊLÞÊÌ iÊLœ`ÞÊ LEARN the skill `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° œÀÊiÝVÀiÌi`°Ê"ÕÀÊLœ`ˆiÃÊ`ˆÃ«œÃiʜvÊÌ iʓi`ˆV>̈œ˜ÃÊÜiʈ˜}iÃÌÊLÞÊ ROH >ÊÛ>ÀˆiÌÞʜvʓiÌ>LœˆVÊ«>Ì Ü>ÞÃ°Ê UDP-glucuronyl-transferase OH Cl "˜iÊ Vœ““œ˜Ê “iÌ>LœˆVÊ «>Ì Ü>ÞÊ ˆÃÊ V>i`Ê }ÕVÕÀœ˜ˆVÊ >Vˆ`Ê Vœ˜Õ}>̈œ˜]Ê œÀÊ Ãˆ“«ÞÊ }ÕVÕÀœ˜ˆ`>̈œ˜°Ê / ˆÃÊ «ÀœViÃÃÊ ˆÃÊ ± –H ÛiÀÞÊȓˆ>ÀÊ̜Ê>ÊœvÊÌ iÊ-NÓÊ«ÀœViÃÃiÃÊÌ >ÌÊÜiʈ˜ÛiÃ̈}>Ìi`Ê ˆ˜Ê Ì iÊ «ÀiۈœÕÃÊ ÃiV̈œ˜°Ê -«iVˆvˆV>Þ]Ê >Ê L>`Ê i>ۈ˜}Ê }ÀœÕ«Ê ­ Þ`ÀœÝޏ®Ê ˆÃÊ vˆÀÃÌÊ Vœ˜ÛiÀÌi`Ê ˆ˜ÌœÊ >Ê }œœ`Ê i>ۈ˜}Ê }ÀœÕ«]Ê vœ‡ OH SOLUTION œÜi`Ê LÞÊ ˜ÕViœ« ˆˆVÊ >ÌÌ>VŽ°Ê ÕVÕÀœ˜ˆ`>̈œ˜Ê iÝ ˆLˆÌÃÊ Ì iÊ O Ã>“iÊÌܜʎiÞÊÃÌi«Ã°Ê O / ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜ÊˆÃÊ>ÊÃÕLÃ̈ÌṎœ˜Ê«ÀœViÃÃ]ÊÜÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊ̜ÊÕÃiÊ-N£ÊVœ˜`ˆ‡ HO HO O STEP 1 ̈œ˜ÃʜÀÊ-NÓÊVœ˜`ˆÌˆœ˜Ã°Ê/ iʎiÞÊv>V̜ÀʈÃÊÌ iÊÃÕLÃÌÀ>Ìi°Ê/ iÊÃÕLÃÌÀ>ÌiÊ iÀiʈÃÊÃiVœ˜`>ÀÞ]ÊÃœÊ R 1. œÀ“>̈œ˜ÊœvÊ1 *Ê­ÕÀˆ`ˆ˜i‡x½‡`ˆ« œÃ« œ‡A‡D‡}ÕVÕÀœ˜ˆVÊ OH ˜>ÞâiÊÌ iÊÃÕLÃÌÀ>Ìi° iˆÌ iÀÊ-N£ÊœÀÊ-NÓÊVœÕ`ÊÌ iœÀïV>ÞÊܜÀŽ°ÊœÜiÛiÀ]ÊÜiÊ`œ˜½ÌÊ >ÛiÊ>ÊV œˆViʈ˜ÊÌ ˆÃÊV>Ãi°Ê/ iÊ >Vˆ`®ÊvÀœ“Ê}ÕVœÃiʈ˜ÛœÛiÃÊVœ˜ÛiÀȜ˜ÊœvÊ>ÊL>`ʏi>ۈ˜}Ê b ÌÀ>˜ÃvœÀ“>̈œ˜ÊÀiµÕˆÀiÃʈ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜]ÊÜ ˆV ÊV>˜Êœ˜ÞÊLiÊ>VVœ“«ˆÃ i`Êۈ>Ê-NÓÊ -Glucuronide STEP 2 }ÀœÕ«Êˆ˜ÌœÊ>Ê}œœ`ʏi>ۈ˜}Ê}ÀœÕ«° ­>˜Ê-N£Ê«ÀœViÃÃÊܜՏ`Ê}ˆÛiÊÀ>Vi“ˆâ>̈œ˜]Ê>ÃÊÜiÊÃ>Üʈ˜Ê-iV̈œ˜ÊÇ°x®°Ê˜Ê>``ˆÌˆœ˜]ÊÌ iÊÃÕLÃÌÀ>ÌiÊ ˜>ÞâiÊÌ iÊ / ˆÃÊ-NÓÊ«ÀœViÃÃÊÀiµÕˆÀiÃÊ>˜Êi˜âޓiÊ­>ÊLˆœœ}ˆV>ÊV>Ì>ÞÃÌ®Ê ÜœÕ`ʏˆŽiÞÊ՘`iÀ}œÊ>ÊV>ÀLœV>̈œ˜ÊÀi>ÀÀ>˜}i“i˜ÌʈvÊÃÕLiVÌi`Ê̜Ê- £ÊVœ˜`ˆÌˆœ˜Ã°ÊœÀÊLœÌ Ê ÃÌiÀiœV i“ˆV>Ê N V>i`Ê1 *‡}ÕVÕÀœ˜ÞÊÌÀ>˜ÃviÀ>Ãi°Ê/ iÊÀi>V̈œ˜Ê«ÀœVii`ÃÊۈ>Ê œÕÌVœ“iÊ>˜`Ê œvÊÌ iÃiÊÀi>ܘÃ]Ê>˜Ê-NÓÊ«ÀœViÃÃʈÃÊÀiµÕˆÀi`°Ê OH ˆ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜Ê­>ÃÊiÝ«iVÌi`ʜvÊ>˜Ê-NÓÊ«ÀœViÃîÊÌœÊ `iÌiÀ“ˆ˜iÊÜ iÌ iÀÊ-NÓÊ 7iÊ Ã>ÜÊ Ì ÀiiÊ `ˆvviÀi˜ÌÊ Ài>}i˜ÌÃÊ vœÀÊ «iÀvœÀ“ˆ˜}Ê >˜Ê -NÓÊ «ÀœViÃÃ°Ê 7ˆÌ Ê >Ê Ì Àii]Ê Ì iÊ «Àœ`ÕViÊ>ÊB‡}ÕVÕÀœ˜ˆ`i]ÊÜ ˆV ʈÃÊ ˆ} ÞÊÜ>ÌiÀÊ܏ÕLiÊ>˜`ʈÃÊ ˆÃÊÀiµÕˆÀi`° Þ`ÀœÝޏÊ}ÀœÕ«ÊˆÃÊVœ˜ÛiÀÌi`ʈ˜ÌœÊ>ÊLiÌÌiÀʏi>ۈ˜}Ê}ÀœÕ«]ÊvœœÜi`ÊLÞʘÕViœ« ˆˆVÊ>ÌÌ>VŽ°Ê˜ÞÊ O Ài>`ˆÞÊiÝVÀiÌi`ʈ˜ÊÌ iÊÕÀˆ˜i°Ê HO œvÊÌ iÊÌ ÀiiʓiÌ œ`ÃÊV>˜ÊLiÊÕÃi`° >˜ÞÊ v՘V̈œ˜>Ê }ÀœÕ«ÃÊ Õ˜`iÀ}œÊ }ÕVÕÀœ˜ˆ`>̈œ˜]Ê LÕÌÊ >Vœ‡ HO OH œÃÊ>˜`Ê« i˜œÃÊ>ÀiÊÌ iʓœÃÌÊVœ““œ˜ÊV>ÃÃiÃʜvÊVœ“«œÕ˜`ÃÊÌ >ÌÊ HCl, ZnCl2 D-Glucose OH ՘`iÀ}œÊÌ ˆÃʓiÌ>LœˆVÊ«>Ì Ü>Þ°ÊœÀÊiÝ>“«i]ʓœÀ« ˆ˜i]Ê>ViÌ>“ˆ˜‡ OH Cl STEP 3 Bad LG œ« i˜]Ê>˜`ÊV œÀ>“« i˜ˆVœÊ>ÀiÊ>Ê“iÌ>Lœˆâi`Êۈ>Ê}ÕVÕÀœ˜ˆ`>̈œ˜\ `i˜ÌˆvÞÊÀi>}i˜ÌÃÊÌ >ÌÊ >V ˆiÛiÊÌ iÊ«ÀœViÃÃÊ 1) TsCl, py N `iÌiÀ“ˆ˜i`ʈ˜ÊÃÌi«ÊÓ° 2) NaCl H OH OH H SOCl2 , py H NO Cl PRACTICE the skill 13.19 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ Êi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>‡ OH N O2N H Cl O O ̈œ˜Ã° HO OH HO O O OH Br OH Br HO HO Morphine Acetaminophen Chloramphenicol OH An opiate analgesic An analgesic (pain-relieving) An antibiotic used in eye drops O O HO used to treat severe pain and antipyretic (fever-reducing) agent, to treat bacterial conjuctivitis UDPGA sold under the trade name TylenolTM (a) (b) O P OPO O N N N O -O -O H HO OH OH H OH H OH Cl OH Br Cl (c) (d) Good LG (called UDP) NO N O N H Cl O 2 HO OH HO O 1 *ʈÃÊ>ÊVœ“«œÕ˜`ÊÜˆÌ Ê>ÊÛiÀÞÊ}œœ`ʏi>ۈ˜}Ê}ÀœÕ«°Ê/ ˆÃÊ (e) OH Cl (f) OH Br Morphine Acetaminophen Chloramphenicol >À}iʏi>ۈ˜}Ê}ÀœÕ«Anʈà opiateÊV>i` analgesicÊ1 *°Ê˜ÊÌ ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜]An analgesicʜ˜i (pain-relieving)Ê An antibiotic used in eye drops APPLY the skill 13.20 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° œvÊÌ iÊ Þ`ÀœÝޏÊused}ÀœÕ«Ã to Êtreatˆ˜Ê}ÕVœÃi severeÊ >à painÊLii˜andÊVœ˜ÛiÀÌi` antipyreticʈ˜Ìœ (fever-reducing)Ê>Ê agent, to treat bacterial conjuctivitis TM }œœ`ʏi>ۈ˜}Ê}ÀœÕ«° sold under the trade name Tylenol ˜Ê i>V Ê œvÊ Ì iÃiÊ Ì ÀiiÊ Vœ“«œÕ˜`Ã]Ê Ì iÊ ˆ} ˆ} Ìi`Ê Þ`ÀœÝÞÊ 2. iÝÌ]Ê>˜Ê-NÓÊ«ÀœViÃÃʜVVÕÀÃʈ˜ÊÜ ˆV ÊÌ iÊ`ÀÕ}ÊLiˆ˜}ʓiÌ>Lœ‡ ˆâi`Ê­ÃÕV Ê>ÃÊ>˜Ê>Vœ œ®Ê>ÌÌ>VŽÃÊ1 *]ÊiÝ«iˆ˜}ÊÌ iÊ}œœ`Ê }ÀœÕ«Ê >ÌÌ>VŽÃÊ 1 *°Ê ÕVÕÀœ˜ˆ`>̈œ˜Ê ˆÃÊ Ì iÊ “>ˆ˜Ê “iÌ>LœˆVÊ OH Cl i>ۈ˜}Ê}ÀœÕ«° «>Ì Ü>ÞÊLÞÊÜ ˆV ÊÌ iÃiÊ`ÀÕ}ÃÊ>ÀiÊiˆ“ˆ˜>Ìi`ÊvÀœ“ÊÌ iÊLœ`Þ° need more PRACTICE? Try Problems 13.35a–c, 13.44f, 13.52r

klein_c13_564-621hr.indd 594 11/8/10 2:11 PM klein_c13_564-621hr.indd 595 11/8/10 2:11 PM

600 CHAPTER 13 Alcohols and Phenols

SKILLBUILDER 13.7 PREDICTING THE PRODUCTS OF AN OXIDATION REACTION

LEARN the skill *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜°

OH CrO3 ± H3O , acetone ? SOLUTION ˜ÊœÀ`iÀÊ̜ʫÀi`ˆVÌÊÌ iÊ«Àœ`ÕVÌ]ʈ`i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊÃiVœ˜`>ÀްʘÊÌ ˆÃÊ V>Ãi]ÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞ]Ê>˜`ÊÌ iÀivœÀi]ÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊÌ iÊ«ÀœViÃÃÊ܈Ê«Àœ`ÕViÊ STEP 1 >˜Ê>`i Þ`iʜÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`\Ê `i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ O O >Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊ ÃiVœ˜`>ÀÞ° OH [O] H [O] OH STEP 2 vÊÌ iÊ>Vœ œÊˆÃÊ «Àˆ“>ÀÞ]ÊVœ˜Ãˆ`iÀÊ Aldehyde Carboxylic acid Ü iÌ iÀÊ>˜Ê>`i Þ`iÊ œÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`ʈÃÊ / iÊ«Àœ`ÕVÌʈÃÊ`iÌiÀ“ˆ˜i`ÊLÞÊÌ iÊV œˆViʜvÊÀi>}i˜Ì°Ê Àœ“ˆÕ“ÊÌÀˆœÝˆ`iʈ˜Ê>Vˆ`ˆVÊVœ˜`ˆÌˆœ˜ÃÊ œLÌ>ˆ˜i`° vœÀ“ÃÊV Àœ“ˆVÊ>Vˆ`]ÊÜ ˆV Ê܈ÊœÝˆ`ˆâiÊÌ iÊ>Vœ œÊÌ܈ViÊ̜Ê}ˆÛiÊÌ iÊV>ÀLœÝޏˆVÊ>Vˆ`°Ê˜ÊœÀ`iÀÊ ÌœÊÃ̜«Ê>ÌÊÌ iÊ>`i Þ`i]Ê* ÊܜՏ`ÊLiÊÕÃi`ʈ˜ÃÌi>`° O STEP 3 À>ÜÊÌ iÊ«Àœ`ÕVÌ° OH CrO3 OH ± H3O , acetone

PRACTICE the skill 13.22 *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜Ã°

OH HO O PCC Na2Cr2O7 CH2Cl2 H2SO4 , H2O (a) H ? (b) ? OH

H xs CrO3 OH ± PCC H3O CH2Cl2 (c) O acetone ? (d) ?

PCC Na2Cr2O7 OH OH CH2Cl2 H2SO4 , H2O (e) ? (f) ? APPLY the skill 13.23 *Àœ«œÃiÊ>ÊÃÞ˜Ì iÈÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° O

O H

(a) Br H (b) O O

(c) (d) need more PRACTICE? Try Problems 13.35e–f, 13.37, 13.48

klein_c13_564-621hr.indd 600 11/8/10 2:11 PM 13.9 Reactions of Alcohols: Substitution and Elimination 591

MEDICALLYSPEAKING Phenols as Antifungal Agents

>˜ÞÊ« i˜œÃÊ>˜`ÊÌ iˆÀÊ`iÀˆÛ>̈ÛiÃÊiÝ ˆLˆÌÊ̜«ˆV>Ê>˜Ìˆv՘}>Ê«Àœ«‡ / iÃiÊVœ“«œÕ˜`Ã]Ê>ÃÊÜiÊ>Ãʓ>˜ÞÊœÌ iÀÃ]Ê>ÀiÊÕÃi`ʈ˜Ê iÀ̈iðÊ/ iÃiÊ>}i˜ÌÃÊ>ÀiÊLiˆiÛi`Ê̜ʈ˜ÌiÀviÀiÊÜˆÌ ÊÌ iÊViÊ“i“‡ Ì iÊÌÀi>̓i˜ÌʜvÊ>Ì iÌi½ÃÊvœœÌ]ʍœVŽÊˆÌV ]Ê >˜`ÊÀˆ˜}ܜÀ“°Ê LÀ>˜iÊv՘V̈œ˜ÊœvÊv՘}ˆ°Ê/ iÊvœœÜˆ˜}Ê>ÀiʍÕÃÌÊ>ÊviÜÊiÝ>“«ið /œ˜>vÌ>ÌiÊ ˆÃÊ Ì iÊ >V̈ÛiÊ ˆ˜}Ài`ˆi˜ÌÊ ˆ˜Ê /ˆ˜>V̈˜/ ]Ê "`œÀÊ >ÌiÀÃ/ ]Ê>˜`Ê iÃi˜iÝ/ °

OH O Cl Cl I S N

O Cl I N Cl Cl OH para-Chloro- Haloprogin Clioquinol Tolnaftate meta-xylenol

13.9 Reactions of Alcohols: Substitution and Elimination

SN1 Reactions with Alcohols !SSEENIN3ECTION TERTIARYALCOHOLSWILLUNDERGOASUBSTITUTIONREACTIONWHENTREATEDWITH a hydrogen halide.

OH HX X ± H2O

7ESAWTHATTHISREACTIONPROCEEDSVIAAN3N1 mechanism.

Proton transfer Loss of a leaving group Nucleophilic attack H + – – + OH H Br O H2O Br Br H

Recall that an SN1 mechanism has two core steps (loss of leaving group and nucleophilic attack). 7HENTHESTARTINGMATERIALISANALCOHOL WESAWTHATANADDITIONALSTEPISREQUIREDINORDERTO PROTONATETHEHYDROXYLGROUPlRST4HISREACTIONPROCEEDSVIAACARBOCATIONINTERMEDIATEANDIS therefore most appropriate for tertiary alcohols. Secondary alcohols undergo SN1 more slowly, and primary alcohols will not undergo SNATANAPPRECIABLERATE7HENDEALINGWITHAPRIMARY alcohol, an SNPATHWAYISREQUIREDINORDERTOCONVERTANALCOHOLINTOANALKYLHALIDE

SN2 Reactions with Alcohols Primary and secondary alcohols will undergo substitution reactions with a variety of reagents, all of which proceed via an SNPROCESS)NTHISSECTION WEWILLEXPLORETHREESUCHREACTIONSTHAT all employ an SNPROCESS

klein_c13_564-621hr.indd 591 11/8/10 2:11 PM

596 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 597

E1 and E2 Reactions with Alcohols 13.10 Reactions of Alcohols: Oxidation 2ECALLFROM3ECTIONTHATALCOHOLSUNDERGOELIMINATIONREACTIONSINACIDICCONDITIONS )N3ECTION WESAWTHATALCOHOLSCANBEFORMEDVIAAREDUCTIONPROCESS)NTHISSECTION WE will explore the reverse process, called oxidation, which involves an increase in oxidation state. H2SO4 OH ± H O heat 2 Oxidation OH O

This transformation follows an E1 mechanism: H Reduction The outcome of an oxidation process depends on whether the starting alcohol is primary, Proton transfer Loss of LG Proton transfer SECONDARY ORTERTIARY,ETSlRSTCONSIDERTHEOXIDATIONOFAPRIMARYALCOHOL O OH O O HOS HO H O [O] [O] –H O O + 2 H H H OH O + H R R H R OH H H Primary alcohol Aldehyde Carboxylic acid Recall that the two core steps of an E1 mechanism are loss of a leaving group followed by a Notice that a primary alcohol has two protons at the A position (the carbon atom bearing the PROTONTRANSFER(OWEVER WHENTHESTARTINGMATERIALISANALCOHOL ANADDITIONALSTEPISlRST HYDROXYLGROUP !SARESULT PRIMARYALCOHOLSCANBEOXIDIZEDTWICE4HElRSTOXIDATIONPRO- required in order to protonate the hydroxyl group. This reaction proceeds via a carbocation duces an aldehyde, and then oxidation of the aldehyde produces a carboxylic acid. intermediate and is therefore best for tertiary alcohols. Also recall that elimination generally Secondary alcohols only have one proton at the A position so they can only be oxidized favors the more substituted alkene. once, forming a ketone.

OH O OH [O] H SO 2 4 ± ¡ heat R R R R H

Major Minor Secondary alcohol Ketone LOOKING AHEAD Generally speaking, the ketone is not further oxidized. Tertiary alcohols do not have any pro- 4HISTRANSFORMATIONCANALSOBEACCOMPLISHEDVIAAN%PATHWAYIFTHEHYDROXYLGROUPISlRST œÀÊ>˜ÊiÝVi«Ìˆœ˜Ê̜ÊÌ ˆÃÊ tons at the A position, and as a result, they generally do not undergo oxidation: converted into a better leaving group, such as a tosylate. A strong base can then be employed to }i˜iÀ>ÊÀՏi]ÊÃiiÊ-iV̈œ˜Ê ACCOMPLISHAN%REACTION Óä°££]ÊÜ iÀiÊÜiÊ܈Êi>À˜Ê OH >LœÕÌÊ>ÊëiVˆ>ÊœÝˆ`ˆâˆ˜}Ê [O] no reaction Ài>}i˜ÌÊÌ >ÌÊV>˜ÊœÝˆ`ˆâiÊ>Ê R R Ži̜˜iÊ̜ÊvœÀ“Ê>˜ÊiÃÌiÀ° R TsCl NaOEt OH py OTs E2 A large number of reagents are available for oxidizing primary and secondary alcohols. The most common oxidizing reagent is chromic acid (H#R/), which can be formed either from CHROMIUMTRIOXIDE#R/) or from sodium dichromate (Na#RO7) in aqueous acidic solution.

O 4HE % PROCESS ALSO GENERALLY PRODUCES THE MORE SUBSTITUTED ALKENE AND NO CARBOCATION ± H3O REARRANGEMENTSAREOBSERVEDIN%PROCESSES Cr O O Acetone Chromium trioxide O HO Cr OH CONCEPTUAL CHECKPOINT O O O + – – + 13.21 *Ài`ˆVÌÊÌ iÊ«Àœ`ÕVÌÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° H2SO4 Na O Cr O Cr O Na Chromic acid H2O OH O O H SO 2 4 1) TsCl, py heat OH Sodium dichromate ­>®Ê Ê ­L®Ê 2) NaOEt ? ? 4HEMECHANISMOFOXIDATIONWITHCHROMICACIDHASTWOMAINSTEPS-ECHANISM 4HE lRSTSTEPINVOLVESFORMATIONOFACHROMATEESTER ANDTHESECONDSTEPISAN%PROCESSTOFORMA carbon-oxygen P bond (rather than a carbon-carbon P bond).

klein_c13_564-621hr.indd 596 11/8/10 2:11 PM klein_c13_564-621hr.indd 597 11/8/10 2:11 PM 13.9 Reactions of Alcohols: Substitution and Elimination 591 592 CHAPTER 13 Alcohols and Phenols

MEDICALLYSPEAKING 1. Primary alcohols will react with HBr via an SNPROCESS

Phenols as Antifungal Agents Nucleophilic attack ± Proton transfer loss of a leaving group >˜ÞÊ« i˜œÃÊ>˜`ÊÌ iˆÀÊ`iÀˆÛ>̈ÛiÃÊiÝ ˆLˆÌÊ̜«ˆV>Ê>˜Ìˆv՘}>Ê«Àœ«‡ / iÃiÊVœ“«œÕ˜`Ã]Ê>ÃÊÜiÊ>Ãʓ>˜ÞÊœÌ iÀÃ]Ê>ÀiÊÕÃi`ʈ˜Ê H iÀ̈iðÊ/ iÃiÊ>}i˜ÌÃÊ>ÀiÊLiˆiÛi`Ê̜ʈ˜ÌiÀviÀiÊÜˆÌ ÊÌ iÊViÊ“i“‡ Ì iÊÌÀi>̓i˜ÌʜvÊ>Ì iÌi½ÃÊvœœÌ]ʍœVŽÊˆÌV ]Ê >˜`ÊÀˆ˜}ܜÀ“°Ê + – / OH H Br O Br Br LÀ>˜iÊv՘V̈œ˜ÊœvÊv՘}ˆ°Ê/ iÊvœœÜˆ˜}Ê>ÀiʍÕÃÌÊ>ÊviÜÊiÝ>“«ið /œ˜>vÌ>ÌiÊ ˆÃÊ Ì iÊ >V̈ÛiÊ ˆ˜}Ài`ˆi˜ÌÊ ˆ˜Ê /ˆ˜>V̈˜ ]Ê H ± H O S 2 2 "`œÀÊ >ÌiÀÃ/ ]Ê>˜`Ê iÃi˜iÝ/ ° N

OH O Cl 4HEHYDROXYLGROUPISlRSTPROTONATED CONVERTINGITINTOANEXCELLENTLEAVINGGROUP FOLLOWED by an S PROCESS4HISREACTIONWORKSWELLFOR("RBUTDOESNOTWORKWELLFOR(#L4O Cl I S N N REPLACETHEHYDROXYLGROUPWITHCHLORIDE :N#L is used as a catalyst. O Cl I N OH HCl Cl ZnCl Cl Cl OH 2 para-Chloro- Haloprogin Clioquinol Tolnaftate The catalyst is a Lewis acid that converts the hydroxyl group into a better leaving group. meta-xylenol

Nuc attack Nuc attack ± on a Lewis acid – loss of LG ZnCl2 + – OH ZnCl2 O Cl Cl H SN2 2. !SSEENIN3ECTION ANALCOHOLCANBECONVERTEDINTOATOSYLATE FOLLOWEDBYNUCLEOPHILIC 13.9 Reactions of Alcohols: Substitution and Elimination attack.

SN1 Reactions with Alcohols OH OTs – X !SSEENIN3ECTION TERTIARYALCOHOLSWILLUNDERGOASUBSTITUTIONREACTIONWHENTREATEDWITH TsCl X py a hydrogen halide. SN2 Bad Good OH HX X leaving group py= leaving group ± H2O N

7ESAWTHATTHISREACTIONPROCEEDSVIAAN3N1 mechanism. pyridine

5SINGTOSYLCHLORIDEANDPYRIDINE THEHYDROXYLGROUPISCONVERTEDINTOATOSYLATEGROUPAN Proton transfer Loss of a leaving group Nucleophilic attack excellent leaving group), which is susceptible to an SNPROCESS.OTICETHESTEREOCHEMICAL H OUTCOMEOFTHEPREVIOUSREACTION4HECONlGURATIONOFTHECHIRALITYCENTERISNOTINVERTED + – – + OH H Br O H2O Br Br during formation of the tosylate, but it is inverted during the SNPROCESS4HENETRESULTIS H INVERSIONOFCONlGURATION

Recall that an S 1 mechanism has two core steps (loss of leaving group and nucleophilic attack). OH Br N 1) TsCl, py 7HENTHESTARTINGMATERIALISANALCOHOL WESAWTHATANADDITIONALSTEPISREQUIREDINORDERTO 2) NaBr PROTONATETHEHYDROXYLGROUPlRST4HISREACTIONPROCEEDSVIAACARBOCATIONINTERMEDIATEANDIS R S therefore most appropriate for tertiary alcohols. Secondary alcohols undergo SN1 more slowly, and primary alcohols will not undergo SNATANAPPRECIABLERATE7HENDEALINGWITHAPRIMARY 3. 0RIMARYANDSECONDARYALCOHOLSREACTWITH3/#L or PBr via an SNPROCESS alcohol, an SNPATHWAYISREQUIREDINORDERTOCONVERTANALCOHOLINTOANALKYLHALIDE

SOCl2 Cl py SN2 Reactions with Alcohols Primary and secondary alcohols will undergo substitution reactions with a variety of reagents, OH all of which proceed via an SNPROCESS)NTHISSECTION WEWILLEXPLORETHREESUCHREACTIONSTHAT all employ an SNPROCESS PBr3 Br

klein_c13_564-621hr.indd 591 11/8/10 2:11 PM klein_c13_564-621hr.indd 592 11/8/10 2:11 PM

596 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 597 598 CHAPTER 13 Alcohols and Phenols

E1 and E2 Reactions with Alcohols 13.10 Reactions of Alcohols: Oxidation MECHANISM 13.8 OXIDATION OF AN ALCOHOL WITH CHROMIC ACID 2ECALLFROM3ECTIONTHATALCOHOLSUNDERGOELIMINATIONREACTIONSINACIDICCONDITIONS )N3ECTION WESAWTHATALCOHOLSCANBEFORMEDVIAAREDUCTIONPROCESS)NTHISSECTION WE STEP 1 will explore the reverse process, called oxidation, which involves an increase in oxidation state. O Fast and O H2SO4 R R OH ± H O reversible heat 2 Oxidation OH ± HO Cr OH O Cr OH ± H O OH O H H 2 R O R O This transformation follows an E1 mechanism: Chromate ester H Reduction STEP 2 The outcome of an oxidation process depends on whether the starting alcohol is primary, R O O R Proton transfer Loss of LG Proton transfer – SECONDARY ORTERTIARY,ETSlRSTCONSIDERTHEOXIDATIONOFAPRIMARYALCOHOL HH ± ± ± O Cr OH O H3O HCrO3 O H E2 OH O O R O R HOS HO H O [O] [O] –H O O + 2 H H H Chromate ester OH O + H R R H R OH H H Primary alcohol Aldehyde Carboxylic acid Recall that the two core steps of an E1 mechanism are loss of a leaving group followed by a Notice that a primary alcohol has two protons at the A position (the carbon atom bearing the PROTONTRANSFER(OWEVER WHENTHESTARTINGMATERIALISANALCOHOL ANADDITIONALSTEPISlRST HYDROXYLGROUP !SARESULT PRIMARYALCOHOLSCANBEOXIDIZEDTWICE4HElRSTOXIDATIONPRO- required in order to protonate the hydroxyl group. This reaction proceeds via a carbocation duces an aldehyde, and then oxidation of the aldehyde produces a carboxylic acid. intermediate and is therefore best for tertiary alcohols. Also recall that elimination generally Secondary alcohols only have one proton at the A position so they can only be oxidized favors the more substituted alkene. PRACTICALLYSPEAKING once, forming a ketone. Breath Tests to Measure Blood Alcohol Level OH O OH [O] H SO Ì >˜œÊˆÃÊ>Ê«Àˆ“>ÀÞÊ>Vœ œ°Ê/ iÀivœÀi]ÊiÌ >˜œÊ܈ÊÀi>VÌÊÜˆÌ Ê œÝˆ`ˆâˆ˜}Ê>}i˜Ìʈ˜ÊÌ iÊÌÕLi]Ê>˜`Ê>ÊVœœÀÊV >˜}iʜVVÕÀðÊ/ iÊ 2 4 ± ¡ heat R R R R «œÌ>ÃÃˆÕ“Ê `ˆV Àœ“>ÌiÊ ˆ˜Ê >Vˆ`ˆVÊ Vœ˜`ˆÌˆœ˜ÃÊ ÌœÊ «Àœ`ÕViÊ >VïVÊ iÝÌi˜ÌÊ œvÊ Ì iÊ VœœÀÊ V >˜}iÊ }ˆÛiÃÊ >˜Ê ˆ˜`ˆV>̈œ˜Ê œvÊ Ì iÊ Lœœ`Ê H >Vˆ`° >Vœ œÊVœ˜Ìi˜Ì°Ê Major Minor Secondary alcohol Ketone / iÊ Ài>Ì >ÞâiÀ/ ʈÃÊL>Ãi`ʜ˜ÊÌ iÊÃ>“iʈ`i>]ÊLÕÌʈÌʈÃʓœÀiÊ O >VVÕÀ>Ìi°Êʓi>ÃÕÀi`ÊۜÕ“iʜvÊLÀi>Ì ÊˆÃÊLÕLLi`ÊÌ ÀœÕ} Ê>˜Ê LOOKING AHEAD Generally speaking, the ketone is not further oxidized. Tertiary alcohols do not have any pro- ± ± 2– H ± 3± >µÕiœÕÃÊ >Vˆ`ˆVÊ ÃœṎœ˜Ê œvÊ «œÌ>ÃÃˆÕ“Ê `ˆV Àœ‡ 4HISTRANSFORMATIONCANALSOBEACCOMPLISHEDVIAAN%PATHWAYIFTHEHYDROXYLGROUPISlRST œÀÊ>˜ÊiÝVi«Ìˆœ˜Ê̜ÊÌ ˆÃÊ tons at the A position, and as a result, they generally do not undergo oxidation: OH Cr2O7 Cr converted into a better leaving group, such as a tosylate. A strong base can then be employed to }i˜iÀ>ÊÀՏi]ÊÃiiÊ-iV̈œ˜Ê OH “>Ìi]Ê >˜`Ê Ì iÊ V >˜}iÊ ˆ˜Ê VœœÀÊ ˆÃÊ “i>ÃÕÀi`Ê ÜˆÌ Ê >˜Ê ՏÌÀ>ۈœi̇ۈÈLiÊ ­16‡6-®Ê ëiVÌÀœ‡ ACCOMPLISHAN%REACTION Óä°££]ÊÜ iÀiÊÜiÊ܈Êi>À˜Ê OH Ethanol Reddish orange Acetic acid Green >LœÕÌÊ>ÊëiVˆ>ÊœÝˆ`ˆâˆ˜}Ê [O] « œÌœ“iÌiÀÊ ­-iV̈œ˜Ê £Ç°££®°Ê œ˜ÌÀ>ÀÞÊ ÌœÊ no reaction Ài>}i˜ÌÊÌ >ÌÊV>˜ÊœÝˆ`ˆâiÊ>Ê R R «œ«Õ>ÀÊLiˆiv]ʈÌʈÃʘœÌÊ«œÃÈLiÊ̜ÊLi>ÌÊÌ iÊ Ži̜˜iÊ̜ÊvœÀ“Ê>˜ÊiÃÌiÀ° R ˜ÊÌ iÊ«ÀœViÃÃ]ÊiÌ >˜œÊˆÃʜ݈`ˆâi`]Ê>˜`ÊÌ iÊV Àœ“ˆÕ“ÊÀi>}i˜ÌÊ ÌiÃÌÊLÞÊÃÕVŽˆ˜}Ê>ÊLÀi>Ì Ê“ˆ˜ÌÊ TsCl NaOEt ˆÃÊÀi`ÕVi`°Ê/ iʘiÜÊV Àœ“ˆÕ“ÊVœ“«œÕ˜`ʈÃÊ>Ê`ˆvviÀi˜ÌÊVœœÀ]Ê œÀÊ Àˆ˜Ãˆ˜}Ê ÜˆÌ Ê >Ê LÀi>Ì Ê OH py OTs A large number of reagents are available for oxidizing primary and secondary alcohols. The E2 >˜`ÊÌ iÀivœÀi]ÊÌ iÊ«Àœ}ÀiÃÃʜvÊÌ iÊÀi>V̈œ˜ÊV>˜ÊLiʓœ˜ˆÌœÀi`Ê vÀià i˜iÀ°Ê / iÃiÊ ÌiV ‡ most common oxidizing reagent is chromic acid (H#R/), which can be formed either from LÞÊÌ iÊVœœÀÊV >˜}iÊvÀœ“ÊÀi``ˆÃ ‡œÀ>˜}iÊ̜Ê}Àii˜°Ê/ ˆÃÊÀi>V‡ ˜ˆµÕiÃÊ “ˆ} ÌÊ vœœÊ >Ê CHROMIUMTRIOXIDE#R/) or from sodium dichromate (Na#RO7) in aqueous acidic solution. ̈œ˜ÊvœÀ“i`ÊÌ iÊL>ÈÃÊvœÀʓ>˜ÞʜvÊÌ iÊi>ÀÞÊLÀi>Ì ÊÌiÃÌÃÊÌ >ÌÊ «iÀܘ]ÊLÕÌÊÌ iÞÊܜ˜½ÌÊ O >ÃÃiÃÃi`ÊÌ iʏiÛiÊœvÊLœœ`Ê>Vœ œ°Ê Ài>Ì ÊÌiÃÌÃÊÌ >ÌÊṎˆâiÊ vœœÊ Ì iÊ «œÌ>ÃÃˆÕ“Ê 4HE % PROCESS ALSO GENERALLY PRODUCES THE MORE SUBSTITUTED ALKENE AND NO CARBOCATION ± H3O Ì ˆÃÊÀi>V̈œ˜Ê>ÀiÊÃ̈ÊVœ““iÀVˆ>ÞÊ>Û>ˆ>Li°Ê/ iÊÌiÃÌÊVœ˜ÃˆÃÌÃÊ `ˆV Àœ“>Ìi° REARRANGEMENTSAREOBSERVEDIN%PROCESSES Cr O O Acetone œvÊ>ÊÌÕLi]ÊÜ iÀiʜ˜iÊi˜`ʈÃÊvˆÌÌi`ÊÜˆÌ Ê>ʓœÕÌ «ˆiViÊ>˜`ÊÌ iÊ Chromium trioxide O œÌ iÀÊi˜`Ê >ÃÊ>ÊL>}°Ê/ iʈ˜Ãˆ`iʜvÊÌ iÊÌÕLiÊVœ˜Ì>ˆ˜ÃÊÜ`ˆÕ“Ê `ˆV Àœ“>ÌiÊÌ >ÌʈÃÊ>`ÜÀLi`ʜ˜ÌœÊÌ iÊÃÕÀv>ViʜvÊ>˜Êˆ˜iÀÌÊ܏ˆ`]Ê HO Cr OH ÃÕV Ê>ÃÊȏˆV>Ê}i°ÊÃÊÌ iÊÕÃiÀÊLœÜÃÊ>ˆÀÊÌ ÀœÕ} ÊÌ iÊÌÕLiÊ>˜`Ê CONCEPTUAL CHECKPOINT O vˆÃÊÕ«ÊÌ iÊL>}]ÊÌ iÊ>Vœ œÊˆ˜ÊÌ iÊÕÃiÀ½ÃÊLÀi>Ì ÊÀi>VÌÃÊÜˆÌ ÊÌ iÊ O O + – – + 13.21 *Ài`ˆVÌÊÌ iÊ«Àœ`ÕVÌÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° H2SO4 Na O Cr O Cr O Na Chromic acid H2O OH O O H SO 2 4 1) TsCl, py heat OH Sodium dichromate ­>®Ê Ê ­L®Ê 2) NaOEt ? ? 4HEMECHANISMOFOXIDATIONWITHCHROMICACIDHASTWOMAINSTEPS-ECHANISM 4HE lRSTSTEPINVOLVESFORMATIONOFACHROMATEESTER ANDTHESECONDSTEPISAN%PROCESSTOFORMA carbon-oxygen P bond (rather than a carbon-carbon P bond).

klein_c13_564-621hr.indd 596 11/8/10 2:11 PM klein_c13_564-621hr.indd 597 11/8/10 2:11 PM klein_c13_564-621hr.indd 598 11/8/10 2:11 PM 13.9 Reactions of Alcohols: Substitution and Elimination 591 592 CHAPTER 13 Alcohols and Phenols 13.9 Reactions of Alcohols: Substitution and Elimination 593

MEDICALLYSPEAKING 1. Primary alcohols will react with HBr via an SNPROCESS 4HEMECHANISMSFORTHESETWOPATHWAYSAREVERYSIMILAR4HElRSTFEWSTEPSCONVERTABADLEAVING group into a good leaving group, then the halide attacks in an SNPROCESS-ECHANISM  Phenols as Antifungal Agents Nucleophilic attack ± Proton transfer loss of a leaving group >˜ÞÊ« i˜œÃÊ>˜`ÊÌ iˆÀÊ`iÀˆÛ>̈ÛiÃÊiÝ ˆLˆÌÊ̜«ˆV>Ê>˜Ìˆv՘}>Ê«Àœ«‡ / iÃiÊVœ“«œÕ˜`Ã]Ê>ÃÊÜiÊ>Ãʓ>˜ÞÊœÌ iÀÃ]Ê>ÀiÊÕÃi`ʈ˜Ê H MECHANISM 13.6 THE REACTION BETWEEN SOCl AND AN ALCOHOL iÀ̈iðÊ/ iÃiÊ>}i˜ÌÃÊ>ÀiÊLiˆiÛi`Ê̜ʈ˜ÌiÀviÀiÊÜˆÌ ÊÌ iÊViÊ“i“‡ Ì iÊÌÀi>̓i˜ÌʜvÊ>Ì iÌi½ÃÊvœœÌ]ʍœVŽÊˆÌV ]Ê >˜`ÊÀˆ˜}ܜÀ“°Ê + – 2 OH H Br O Br Br / ± LÀ>˜iÊv՘V̈œ˜ÊœvÊv՘}ˆ°Ê/ iÊvœœÜˆ˜}Ê>ÀiʍÕÃÌÊ>ÊviÜÊiÝ>“«ið /œ˜>vÌ>ÌiÊ ˆÃÊ Ì iÊ >V̈ÛiÊ ˆ˜}Ài`ˆi˜ÌÊ ˆ˜Ê /ˆ˜>V̈˜ ]Ê H H2O Bad / / SN2 "`œÀÊ >ÌiÀà ]Ê>˜`Ê iÃi˜iÝ ° leaving group

OH O Cl 4HEHYDROXYLGROUPISlRSTPROTONATED CONVERTINGITINTOANEXCELLENTLEAVINGGROUP FOLLOWED – OH SOCl Cl S N by an SNPROCESS4HISREACTIONWORKSWELLFOR("RBUTDOESNOTWORKWELLFOR(#L4O 2 ± ± Cl I py SO2 Cl REPLACETHEHYDROXYLGROUPWITHCHLORIDE :N#L is used as a catalyst. O Cl I Cl N OH HCl Cl Cl S ZnCl Cl Cl OH 2 O – Cl para-Chloro- Haloprogin Clioquinol Tolnaftate The catalyst is a Lewis acid that converts the hydroxyl group into a better leaving group. meta-xylenol H H N + Cl + Nuc attack Nuc attack ± O O Cl O Cl on a Lewis acid – loss of LG S – S S ZnCl2 O + – Cl O O OH ZnCl2 O Cl Cl H SN2 Good leaving group 2. !SSEENIN3ECTION ANALCOHOLCANBECONVERTEDINTOATOSYLATE FOLLOWEDBYNUCLEOPHILIC 13.9 Reactions of Alcohols: Substitution and Elimination attack.

SN1 Reactions with Alcohols OH OTs – X The reaction mechanism for PBr has similar characteristics, including conversion of the !SSEENIN3ECTION TERTIARYALCOHOLSWILLUNDERGOASUBSTITUTIONREACTIONWHENTREATEDWITH TsCl X HYDROXYLGROUPINTOABETTERLEAVINGGROUPFOLLOWEDBYNUCLEOPHILICATTACK-ECHANISM  py a hydrogen halide. SN2 Bad Good OH HX X leaving group py= leaving group ± H2O N

7ESAWTHATTHISREACTIONPROCEEDSVIAAN3N1 mechanism. pyridine

5SINGTOSYLCHLORIDEANDPYRIDINE THEHYDROXYLGROUPISCONVERTEDINTOATOSYLATEGROUPAN Proton transfer Loss of a leaving group Nucleophilic attack MECHANISM 13.7 THE REACTION BETWEEN PBr3 AND AN ALCOHOL excellent leaving group), which is susceptible to an SNPROCESS.OTICETHESTEREOCHEMICAL H OUTCOMEOFTHEPREVIOUSREACTION4HECONlGURATIONOFTHECHIRALITYCENTERISNOTINVERTED Br + – – + OH H Br O H2O Br Br during formation of the tosylate, but it is inverted during the SNPROCESS4HENETRESULTIS P Br H H + INVERSIONOFCONlGURATION Br – OH O Br SN2 Br P ± Br ± HOPBr2 Recall that an S 1 mechanism has two core steps (loss of leaving group and nucleophilic attack). OH Br N 1) TsCl, py Bad Br 7HENTHESTARTINGMATERIALISANALCOHOL WESAWTHATANADDITIONALSTEPISREQUIREDINORDERTO 2) NaBr leaving group PROTONATETHEHYDROXYLGROUPlRST4HISREACTIONPROCEEDSVIAACARBOCATIONINTERMEDIATEANDIS Good R S leaving group therefore most appropriate for tertiary alcohols. Secondary alcohols undergo SN1 more slowly, and primary alcohols will not undergo SNATANAPPRECIABLERATE7HENDEALINGWITHAPRIMARY 3. 0RIMARYANDSECONDARYALCOHOLSREACTWITH3/#L or PBr via an SNPROCESS alcohol, an SNPATHWAYISREQUIREDINORDERTOCONVERTANALCOHOLINTOANALKYLHALIDE

SOCl2 Cl py SN2 Reactions with Alcohols Notice the similarity among all of the SNPROCESSESTHATWEHAVESEENINTHISSECTION!LLINVOLVE Primary and secondary alcohols will undergo substitution reactions with a variety of reagents, OH the conversion of the hydroxyl group into a better leaving group followed by nucleophilic attack. all of which proceed via an SNPROCESS)NTHISSECTION WEWILLEXPLORETHREESUCHREACTIONSTHAT )FANYOFTHESEREACTIONSOCCURSATACHIRALITYCENTER INVERSIONOFCONlGURATIONISTOBEEXPECTED all employ an SNPROCESS PBr3 Br

klein_c13_564-621hr.indd 591 11/8/10 2:11 PM klein_c13_564-621hr.indd 592 11/8/10 2:11 PM klein_c13_564-621hr.indd 593 11/8/10 2:11 PM

13.10 Reactions of Alcohols: Oxidation 597 598 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 599

13.10 Reactions of Alcohols: Oxidation 7HENAPRIMARYALCOHOLISOXIDIZEDWITHCHROMICACID ACARBOXYLICACIDISOBTAINED)TISGENERALLY MECHANISM 13.8 OXIDATION OF AN ALCOHOL WITH CHROMIC ACID DIFlCULTTOCONTROLTHEREACTIONTOPRODUCETHEALDEHYDE )N3ECTION WESAWTHATALCOHOLSCANBEFORMEDVIAAREDUCTIONPROCESS)NTHISSECTION WE STEP 1 will explore the reverse process, called oxidation, which involves an increase in oxidation state. R O Fast and R O OH O O reversible Na Cr O Oxidation OH ± HO Cr OH O Cr OH ± H O 2 2 7 OH O H H 2 R H2SO4 , H2O RH R OH R O R O

Chromate ester Alcohol Aldehyde Carboxylic H Reduction Difficult to isolate acid STEP 2 The outcome of an oxidation process depends on whether the starting alcohol is primary, R O O R )NORDERTOPRODUCETHEALDEHYDEASTHElNALPRODUCT ITISNECESSARYTOUSEAMORESELECTIVEOXIDIZ- SECONDARY ORTERTIARY,ETSlRSTCONSIDERTHEOXIDATIONOFAPRIMARYALCOHOL HH ± – O Cr OH O ± H O ± HCrO ing reagent, one that will react with the alcohol but will not react with the aldehyde. Many such H E2 3 3 REAGENTSAREAVAILABLE INCLUDINGPYRIDINIUMCHLOROCHROMATE0## 0##ISFORMEDFROMTHEREAC- OH O O R O R [O] [O] tion between pyridine, chromium trioxide, and hydrochloric acid. Chromate ester R H R H R OH H + – Primary alcohol Aldehyde Carboxylic acid N ± CrO3 ± HCl NH CrO3Cl Notice that a primary alcohol has two protons at the A position (the carbon atom bearing the HYDROXYLGROUP !SARESULT PRIMARYALCOHOLSCANBEOXIDIZEDTWICE4HElRSTOXIDATIONPRO- Pyridine Pyridinium Chlorochromate duces an aldehyde, and then oxidation of the aldehyde produces a carboxylic acid. Secondary alcohols only have one proton at the A position so they can only be oxidized PRACTICALLYSPEAKING PCC once, forming a ketone. Breath Tests to Measure Blood Alcohol Level 7HEN0##ISUSEDASTHEOXIDIZINGAGENT ANALDEHYDEISPRODUCEDASTHEMAJORPRODUCT5NDER these conditions, the aldehyde is not further oxidized to the carboxylic acid. OH O [O] ¡ Ì >˜œÊˆÃÊ>Ê«Àˆ“>ÀÞÊ>Vœ œ°Ê/ iÀivœÀi]ÊiÌ >˜œÊ܈ÊÀi>VÌÊÜˆÌ Ê œÝˆ`ˆâˆ˜}Ê>}i˜Ìʈ˜ÊÌ iÊÌÕLi]Ê>˜`Ê>ÊVœœÀÊV >˜}iʜVVÕÀðÊ/ iÊ R R R R «œÌ>ÃÃˆÕ“Ê `ˆV Àœ“>ÌiÊ ˆ˜Ê >Vˆ`ˆVÊ Vœ˜`ˆÌˆœ˜ÃÊ ÌœÊ «Àœ`ÕViÊ >VïVÊ iÝÌi˜ÌÊ œvÊ Ì iÊ VœœÀÊ V >˜}iÊ }ˆÛiÃÊ >˜Ê ˆ˜`ˆV>̈œ˜Ê œvÊ Ì iÊ Lœœ`Ê OH O H >Vˆ`° >Vœ œÊVœ˜Ìi˜Ì°Ê PCC CH Cl Secondary alcohol Ketone / iÊ Ài>Ì >ÞâiÀ/ ʈÃÊL>Ãi`ʜ˜ÊÌ iÊÃ>“iʈ`i>]ÊLÕÌʈÌʈÃʓœÀiÊ R 2 2 RH O >VVÕÀ>Ìi°Êʓi>ÃÕÀi`ÊۜÕ“iʜvÊLÀi>Ì ÊˆÃÊLÕLLi`ÊÌ ÀœÕ} Ê>˜Ê LOOKING AHEAD Generally speaking, the ketone is not further oxidized. Tertiary alcohols do not have any pro- ± Primary Aldehyde ± 2– H ± 3± >µÕiœÕÃÊ >Vˆ`ˆVÊ ÃœṎœ˜Ê œvÊ «œÌ>ÃÃˆÕ“Ê `ˆV Àœ‡ œÀÊ>˜ÊiÝVi«Ìˆœ˜Ê̜ÊÌ ˆÃÊ tons at the A position, and as a result, they generally do not undergo oxidation: OH Cr2O7 Cr alcohol }i˜iÀ>ÊÀՏi]ÊÃiiÊ-iV̈œ˜Ê OH “>Ìi]Ê >˜`Ê Ì iÊ V >˜}iÊ ˆ˜Ê VœœÀÊ ˆÃÊ “i>ÃÕÀi`Ê ÜˆÌ Ê >˜Ê ՏÌÀ>ۈœi̇ۈÈLiÊ ­16‡6-®Ê ëiVÌÀœ‡ Óä°££]ÊÜ iÀiÊÜiÊ܈Êi>À˜Ê OH Ethanol Reddish orange Acetic acid Green -ETHYLENECHLORIDE#(#L ISTYPICALLYTHESOLVENTUSEDWHEN0##ISEMPLOYED >LœÕÌÊ>ÊëiVˆ>ÊœÝˆ`ˆâˆ˜}Ê [O] « œÌœ“iÌiÀÊ ­-iV̈œ˜Ê £Ç°££®°Ê œ˜ÌÀ>ÀÞÊ ÌœÊ no reaction Secondary alcohols are oxidized only once to form a ketone, which is stable under oxidizing con- Ài>}i˜ÌÊÌ >ÌÊV>˜ÊœÝˆ`ˆâiÊ>Ê R R «œ«Õ>ÀÊLiˆiv]ʈÌʈÃʘœÌÊ«œÃÈLiÊ̜ÊLi>ÌÊÌ iÊ DITIONS4HEREFORE ASECONDARYALCOHOLCANBEOXIDIZEDEITHERWITHCHROMICACIDORWITH0## Ži̜˜iÊ̜ÊvœÀ“Ê>˜ÊiÃÌiÀ° R ˜ÊÌ iÊ«ÀœViÃÃ]ÊiÌ >˜œÊˆÃʜ݈`ˆâi`]Ê>˜`ÊÌ iÊV Àœ“ˆÕ“ÊÀi>}i˜ÌÊ ÌiÃÌÊLÞÊÃÕVŽˆ˜}Ê>ÊLÀi>Ì Ê“ˆ˜ÌÊ ˆÃÊÀi`ÕVi`°Ê/ iʘiÜÊV Àœ“ˆÕ“ÊVœ“«œÕ˜`ʈÃÊ>Ê`ˆvviÀi˜ÌÊVœœÀ]Ê œÀÊ Àˆ˜Ãˆ˜}Ê ÜˆÌ Ê >Ê LÀi>Ì Ê A large number of reagents are available for oxidizing primary and secondary alcohols. The Na Cr O >˜`ÊÌ iÀivœÀi]ÊÌ iÊ«Àœ}ÀiÃÃʜvÊÌ iÊÀi>V̈œ˜ÊV>˜ÊLiʓœ˜ˆÌœÀi`Ê vÀià i˜iÀ°Ê / iÃiÊ ÌiV ‡ 2 2 7 most common oxidizing reagent is chromic acid (H#R/), which can be formed either from H2SO4 , H2O LÞÊÌ iÊVœœÀÊV >˜}iÊvÀœ“ÊÀi``ˆÃ ‡œÀ>˜}iÊ̜Ê}Àii˜°Ê/ ˆÃÊÀi>V‡ ˜ˆµÕiÃÊ “ˆ} ÌÊ vœœÊ >Ê CHROMIUMTRIOXIDE#R/) or from sodium dichromate (Na#RO7) in aqueous acidic solution. ̈œ˜ÊvœÀ“i`ÊÌ iÊL>ÈÃÊvœÀʓ>˜ÞʜvÊÌ iÊi>ÀÞÊLÀi>Ì ÊÌiÃÌÃÊÌ >ÌÊ «iÀܘ]ÊLÕÌÊÌ iÞÊܜ˜½ÌÊ OH O O >ÃÃiÃÃi`ÊÌ iʏiÛiÊœvÊLœœ`Ê>Vœ œ°Ê Ài>Ì ÊÌiÃÌÃÊÌ >ÌÊṎˆâiÊ vœœÊ Ì iÊ «œÌ>ÃÃˆÕ“Ê ± H3O Ì ˆÃÊÀi>V̈œ˜Ê>ÀiÊÃ̈ÊVœ““iÀVˆ>ÞÊ>Û>ˆ>Li°Ê/ iÊÌiÃÌÊVœ˜ÃˆÃÌÃÊ `ˆV Àœ“>Ìi° Cr R R RR O O Acetone œvÊ>ÊÌÕLi]ÊÜ iÀiʜ˜iÊi˜`ʈÃÊvˆÌÌi`ÊÜˆÌ Ê>ʓœÕÌ «ˆiViÊ>˜`ÊÌ iÊ Secondary Ketone Chromium trioxide O œÌ iÀÊi˜`Ê >ÃÊ>ÊL>}°Ê/ iʈ˜Ãˆ`iʜvÊÌ iÊÌÕLiÊVœ˜Ì>ˆ˜ÃÊÜ`ˆÕ“Ê PCC `ˆV Àœ“>ÌiÊÌ >ÌʈÃÊ>`ÜÀLi`ʜ˜ÌœÊÌ iÊÃÕÀv>ViʜvÊ>˜Êˆ˜iÀÌÊ܏ˆ`]Ê alcohol HO Cr OH CH2Cl2 ÃÕV Ê>ÃÊȏˆV>Ê}i°ÊÃÊÌ iÊÕÃiÀÊLœÜÃÊ>ˆÀÊÌ ÀœÕ} ÊÌ iÊÌÕLiÊ>˜`Ê O vˆÃÊÕ«ÊÌ iÊL>}]ÊÌ iÊ>Vœ œÊˆ˜ÊÌ iÊÕÃiÀ½ÃÊLÀi>Ì ÊÀi>VÌÃÊÜˆÌ ÊÌ iÊ O O 3ODIUMDICHROMATEISLESSEXPENSIVE BUT0##ISMOREGENTLEANDOFTENPREFERREDIFOTHERSENSITIVE + – – + H2SO4 Na O Cr O Cr O Na Chromic acid functional groups are present in the compound. H2O O O Sodium dichromate 4HEMECHANISMOFOXIDATIONWITHCHROMICACIDHASTWOMAINSTEPS-ECHANISM 4HE lRSTSTEPINVOLVESFORMATIONOFACHROMATEESTER ANDTHESECONDSTEPISAN%PROCESSTOFORMA carbon-oxygen P bond (rather than a carbon-carbon P bond).

klein_c13_564-621hr.indd 597 11/8/10 2:11 PM klein_c13_564-621hr.indd 598 11/8/10 2:11 PM klein_c13_564-621hr.indd 599 11/8/10 2:11 PM 592 CHAPTER 13 Alcohols and Phenols 13.9 Reactions of Alcohols: Substitution and Elimination 593 594 CHAPTER 13 Alcohols and Phenols

1. Primary alcohols will react with HBr via an SNPROCESS 4HEMECHANISMSFORTHESETWOPATHWAYSAREVERYSIMILAR4HElRSTFEWSTEPSCONVERTABADLEAVING group into a good leaving group, then the halide attacks in an SNPROCESS-ECHANISM  SKILLBUILDER Nucleophilic attack ± Proton transfer loss of a leaving group 13.6 PROPOSING REAGENTS FOR THE CONVERSION OF AN ALCOHOL INTO AN ALKYL HALIDE H + – MECHANISM 13.6 THE REACTION BETWEEN SOCl2 AND AN ALCOHOL OH H Br O Br Br LEARN the skill `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° ± H H2O Bad SN2 leaving group OH Cl

4HEHYDROXYLGROUPISlRSTPROTONATED CONVERTINGITINTOANEXCELLENTLEAVINGGROUP FOLLOWED – OH SOCl Cl by an SNPROCESS4HISREACTIONWORKSWELLFOR("RBUTDOESNOTWORKWELLFOR(#L4O 2 ± ± py SO2 Cl REPLACETHEHYDROXYLGROUPWITHCHLORIDE :N#L is used as a catalyst. Cl OH HCl Cl Cl S SOLUTION ZnCl2 O – / ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜ÊˆÃÊ>ÊÃÕLÃ̈ÌṎœ˜Ê«ÀœViÃÃ]ÊÜÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊ̜ÊÕÃiÊ-N£ÊVœ˜`ˆ‡ Cl ̈œ˜ÃʜÀÊ- ÓÊVœ˜`ˆÌˆœ˜Ã°Ê/ iʎiÞÊv>V̜ÀʈÃÊÌ iÊÃÕLÃÌÀ>Ìi°Ê/ iÊÃÕLÃÌÀ>ÌiÊ iÀiʈÃÊÃiVœ˜`>ÀÞ]ÊÃœÊ The catalyst is a Lewis acid that converts the hydroxyl group into a better leaving group. STEP 1 N H H ˜>ÞâiÊÌ iÊÃÕLÃÌÀ>Ìi° iˆÌ iÀÊ-N£ÊœÀÊ-NÓÊVœÕ`ÊÌ iœÀïV>ÞÊܜÀŽ°ÊœÜiÛiÀ]ÊÜiÊ`œ˜½ÌÊ >ÛiÊ>ÊV œˆViʈ˜ÊÌ ˆÃÊV>Ãi°Ê/ iÊ N + Cl + ÌÀ>˜ÃvœÀ“>̈œ˜ÊÀiµÕˆÀiÃʈ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜]ÊÜ ˆV ÊV>˜Êœ˜ÞÊLiÊ>VVœ“«ˆÃ i`Êۈ>Ê-NÓÊ Nuc attack Nuc attack ± O O Cl O Cl STEP 2 – S – S S ­>˜Ê-N£Ê«ÀœViÃÃÊܜՏ`Ê}ˆÛiÊÀ>Vi“ˆâ>̈œ˜]Ê>ÃÊÜiÊÃ>Üʈ˜Ê-iV̈œ˜ÊÇ°x®°Ê˜Ê>``ˆÌˆœ˜]ÊÌ iÊÃÕLÃÌÀ>ÌiÊ on a Lewis acid loss of LG ˜>ÞâiÊÌ iÊ ZnCl2 O ܜՏ`ʏˆŽiÞÊ՘`iÀ}œÊ>ÊV>ÀLœV>̈œ˜ÊÀi>ÀÀ>˜}i“i˜ÌʈvÊÃÕLiVÌi`Ê̜Ê-N£ÊVœ˜`ˆÌˆœ˜Ã°ÊœÀÊLœÌ Ê + – Cl O O ÃÌiÀiœV i“ˆV>Ê OH ZnCl2 O Cl Cl œÕÌVœ“iÊ>˜`Ê œvÊÌ iÃiÊÀi>ܘÃ]Ê>˜Ê-NÓÊ«ÀœViÃÃʈÃÊÀiµÕˆÀi`°Ê H `iÌiÀ“ˆ˜iÊÜ iÌ iÀÊ- ÓÊ 7iÊ Ã>ÜÊ Ì ÀiiÊ `ˆvviÀi˜ÌÊ Ài>}i˜ÌÃÊ vœÀÊ «iÀvœÀ“ˆ˜}Ê >˜Ê - ÓÊ «ÀœViÃÃ°Ê 7ˆÌ Ê >Ê Ì Àii]Ê Ì iÊ SN2 Good N N ˆÃÊÀiµÕˆÀi`° leaving group Þ`ÀœÝޏÊ}ÀœÕ«ÊˆÃÊVœ˜ÛiÀÌi`ʈ˜ÌœÊ>ÊLiÌÌiÀʏi>ۈ˜}Ê}ÀœÕ«]ÊvœœÜi`ÊLÞʘÕViœ« ˆˆVÊ>ÌÌ>VŽ°Ê˜ÞÊ 2. !SSEENIN3ECTION ANALCOHOLCANBECONVERTEDINTOATOSYLATE FOLLOWEDBYNUCLEOPHILIC œvÊÌ iÊÌ ÀiiʓiÌ œ`ÃÊV>˜ÊLiÊÕÃi`° attack.

HCl, ZnCl2 OH Cl OH OTs – X The reaction mechanism for PBr has similar characteristics, including conversion of the STEP 3 TsCl X HYDROXYLGROUPINTOABETTERLEAVINGGROUPFOLLOWEDBYNUCLEOPHILICATTACK-ECHANISM  `i˜ÌˆvÞÊÀi>}i˜ÌÃÊÌ >ÌÊ py SN2 >V ˆiÛiÊÌ iÊ«ÀœViÃÃÊ 1) TsCl, py `iÌiÀ“ˆ˜i`ʈ˜ÊÃÌi«ÊÓ° 2) NaCl Bad Good leaving group py= leaving group SOCl2 , py N pyridine PRACTICE the skill 13.19 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ Êi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>‡ ̈œ˜Ã° 5SINGTOSYLCHLORIDEANDPYRIDINE THEHYDROXYLGROUPISCONVERTEDINTOATOSYLATEGROUPAN MECHANISM 13.7 THE REACTION BETWEEN PBr3 AND AN ALCOHOL OH Br OH Br excellent leaving group), which is susceptible to an SNPROCESS.OTICETHESTEREOCHEMICAL OUTCOMEOFTHEPREVIOUSREACTION4HECONlGURATIONOFTHECHIRALITYCENTERISNOTINVERTED Br during formation of the tosylate, but it is inverted during the SNPROCESS4HENETRESULTIS P Br H + (a) (b) INVERSIONOFCONlGURATION Br – OH O Br SN2 Br P ± Br ± HOPBr2 OH Br 1) TsCl, py Bad Br 2) NaBr leaving group Good Cl Br R S OH OH leaving group (c) (d)

3. 0RIMARYANDSECONDARYALCOHOLSREACTWITH3/#L or PBr via an SNPROCESS

SOCl2 Cl py (e) OH Cl (f) OH Br Notice the similarity among all of the SNPROCESSESTHATWEHAVESEENINTHISSECTION!LLINVOLVE 13.20 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° OH the conversion of the hydroxyl group into a better leaving group followed by nucleophilic attack. APPLY the skill )FANYOFTHESEREACTIONSOCCURSATACHIRALITYCENTER INVERSIONOFCONlGURATIONISTOBEEXPECTED

PBr3 Br OH Cl

need more PRACTICE? Try Problems 13.35a–c, 13.44f, 13.52r

klein_c13_564-621hr.indd 592 11/8/10 2:11 PM klein_c13_564-621hr.indd 593 11/8/10 2:11 PM klein_c13_564-621hr.indd 594 11/8/10 2:11 PM

598 CHAPTER 13 Alcohols and Phenols 13.10 Reactions of Alcohols: Oxidation 599 600 CHAPTER 13 Alcohols and Phenols

7HENAPRIMARYALCOHOLISOXIDIZEDWITHCHROMICACID ACARBOXYLICACIDISOBTAINED)TISGENERALLY MECHANISM 13.8 OXIDATION OF AN ALCOHOL WITH CHROMIC ACID DIFlCULTTOCONTROLTHEREACTIONTOPRODUCETHEALDEHYDE SKILLBUILDER STEP 1 13.7 PREDICTING THE PRODUCTS OF AN OXIDATION REACTION R O Fast and R O OH O O reversible Na Cr O OH ± HO Cr OH ± 2 2 7 H H O Cr OH H2O LEARN the skill *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜° R H2SO4 , H2O RH R OH R O R O Chromate ester Alcohol Aldehyde Carboxylic OH CrO3 ± Difficult to isolate acid H O , acetone STEP 2 3 ? O R O R )NORDERTOPRODUCETHEALDEHYDEASTHElNALPRODUCT ITISNECESSARYTOUSEAMORESELECTIVEOXIDIZ- SOLUTION HH – O Cr OH O ± H O± ± HCrO ing reagent, one that will react with the alcohol but will not react with the aldehyde. Many such H E2 3 3 ˜ÊœÀ`iÀÊ̜ʫÀi`ˆVÌÊÌ iÊ«Àœ`ÕVÌ]ʈ`i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊÃiVœ˜`>ÀްʘÊÌ ˆÃÊ REAGENTSAREAVAILABLE INCLUDINGPYRIDINIUMCHLOROCHROMATE0## 0##ISFORMEDFROMTHEREAC- R O R V>Ãi]ÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞ]Ê>˜`ÊÌ iÀivœÀi]ÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊÌ iÊ«ÀœViÃÃÊ܈Ê«Àœ`ÕViÊ tion between pyridine, chromium trioxide, and hydrochloric acid. STEP 1 >˜Ê>`i Þ`iʜÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`\Ê Chromate ester `i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ O O >Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊ + – ÃiVœ˜`>ÀÞ° OH [O] H [O] OH N ± CrO3 ± HCl NH CrO3Cl STEP 2 vÊÌ iÊ>Vœ œÊˆÃÊ Pyridinium Chlorochromate Pyridine «Àˆ“>ÀÞ]ÊVœ˜Ãˆ`iÀÊ Aldehyde Carboxylic acid Ü iÌ iÀÊ>˜Ê>`i Þ`iÊ PCC œÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`ʈÃÊ / iÊ«Àœ`ÕVÌʈÃÊ`iÌiÀ“ˆ˜i`ÊLÞÊÌ iÊV œˆViʜvÊÀi>}i˜Ì°Ê Àœ“ˆÕ“ÊÌÀˆœÝˆ`iʈ˜Ê>Vˆ`ˆVÊVœ˜`ˆÌˆœ˜ÃÊ PRACTICALLYSPEAKING œLÌ>ˆ˜i`° vœÀ“ÃÊV Àœ“ˆVÊ>Vˆ`]ÊÜ ˆV Ê܈ÊœÝˆ`ˆâiÊÌ iÊ>Vœ œÊÌ܈ViÊ̜Ê}ˆÛiÊÌ iÊV>ÀLœÝޏˆVÊ>Vˆ`°Ê˜ÊœÀ`iÀÊ Breath Tests to Measure Blood Alcohol Level 7HEN0##ISUSEDASTHEOXIDIZINGAGENT ANALDEHYDEISPRODUCEDASTHEMAJORPRODUCT5NDER these conditions, the aldehyde is not further oxidized to the carboxylic acid. ̜ÊÃ̜«Ê>ÌÊÌ iÊ>`i Þ`i]Ê* ÊܜՏ`ÊLiÊÕÃi`ʈ˜ÃÌi>`° O Ì >˜œÊˆÃÊ>Ê«Àˆ“>ÀÞÊ>Vœ œ°Ê/ iÀivœÀi]ÊiÌ >˜œÊ܈ÊÀi>VÌÊÜˆÌ Ê œÝˆ`ˆâˆ˜}Ê>}i˜Ìʈ˜ÊÌ iÊÌÕLi]Ê>˜`Ê>ÊVœœÀÊV >˜}iʜVVÕÀðÊ/ iÊ STEP 3 «œÌ>ÃÃˆÕ“Ê `ˆV Àœ“>ÌiÊ ˆ˜Ê >Vˆ`ˆVÊ Vœ˜`ˆÌˆœ˜ÃÊ ÌœÊ «Àœ`ÕViÊ >VïVÊ iÝÌi˜ÌÊ œvÊ Ì iÊ VœœÀÊ V >˜}iÊ }ˆÛiÃÊ >˜Ê ˆ˜`ˆV>̈œ˜Ê œvÊ Ì iÊ Lœœ`Ê OH O À>ÜÊÌ iÊ«Àœ`ÕVÌ° OH CrO3 OH >Vˆ`° >Vœ œÊVœ˜Ìi˜Ì°Ê PCC ± CH Cl H3O , acetone / iÊ Ài>Ì >ÞâiÀ/ ʈÃÊL>Ãi`ʜ˜ÊÌ iÊÃ>“iʈ`i>]ÊLÕÌʈÌʈÃʓœÀiÊ R 2 2 RH O >VVÕÀ>Ìi°Êʓi>ÃÕÀi`ÊۜÕ“iʜvÊLÀi>Ì ÊˆÃÊLÕLLi`ÊÌ ÀœÕ} Ê>˜Ê ± Primary Aldehyde PRACTICE the skill 13.22 *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜Ã° ± 2– H ± 3± >µÕiœÕÃÊ >Vˆ`ˆVÊ ÃœṎœ˜Ê œvÊ «œÌ>ÃÃˆÕ“Ê `ˆV Àœ‡ OH Cr2O7 Cr alcohol OH “>Ìi]Ê >˜`Ê Ì iÊ V >˜}iÊ ˆ˜Ê VœœÀÊ ˆÃÊ “i>ÃÕÀi`Ê OH ÜˆÌ Ê >˜Ê ՏÌÀ>ۈœi̇ۈÈLiÊ ­16‡6-®Ê ëiVÌÀœ‡ Ethanol Reddish orange Acetic acid Green -ETHYLENECHLORIDE#(#L ISTYPICALLYTHESOLVENTUSEDWHEN0##ISEMPLOYED HO O PCC « œÌœ“iÌiÀÊ ­-iV̈œ˜Ê £Ç°££®°Ê œ˜ÌÀ>ÀÞÊ ÌœÊ Secondary alcohols are oxidized only once to form a ketone, which is stable under oxidizing con- Na2Cr2O7 CH2Cl2 «œ«Õ>ÀÊLiˆiv]ʈÌʈÃʘœÌÊ«œÃÈLiÊ̜ÊLi>ÌÊÌ iÊ H2SO4 , H2O DITIONS4HEREFORE ASECONDARYALCOHOLCANBEOXIDIZEDEITHERWITHCHROMICACIDORWITH0## (a) H ? (b) ? ˜ÊÌ iÊ«ÀœViÃÃ]ÊiÌ >˜œÊˆÃʜ݈`ˆâi`]Ê>˜`ÊÌ iÊV Àœ“ˆÕ“ÊÀi>}i˜ÌÊ ÌiÃÌÊLÞÊÃÕVŽˆ˜}Ê>ÊLÀi>Ì Ê“ˆ˜ÌÊ ˆÃÊÀi`ÕVi`°Ê/ iʘiÜÊV Àœ“ˆÕ“ÊVœ“«œÕ˜`ʈÃÊ>Ê`ˆvviÀi˜ÌÊVœœÀ]Ê œÀÊ Àˆ˜Ãˆ˜}Ê ÜˆÌ Ê >Ê LÀi>Ì Ê OH Na2Cr2O7 >˜`ÊÌ iÀivœÀi]ÊÌ iÊ«Àœ}ÀiÃÃʜvÊÌ iÊÀi>V̈œ˜ÊV>˜ÊLiʓœ˜ˆÌœÀi`Ê vÀià i˜iÀ°Ê / iÃiÊ ÌiV ‡ H xs CrO3 H2SO4 , H2O OH ± PCC LÞÊÌ iÊVœœÀÊV >˜}iÊvÀœ“ÊÀi``ˆÃ ‡œÀ>˜}iÊ̜Ê}Àii˜°Ê/ ˆÃÊÀi>V‡ ˜ˆµÕiÃÊ “ˆ} ÌÊ vœœÊ >Ê H3O (d) CH2Cl2 ̈œ˜ÊvœÀ“i`ÊÌ iÊL>ÈÃÊvœÀʓ>˜ÞʜvÊÌ iÊi>ÀÞÊLÀi>Ì ÊÌiÃÌÃÊÌ >ÌÊ «iÀܘ]ÊLÕÌÊÌ iÞÊܜ˜½ÌÊ (c) O acetone ? OH O ? >ÃÃiÃÃi`ÊÌ iʏiÛiÊœvÊLœœ`Ê>Vœ œ°Ê Ài>Ì ÊÌiÃÌÃÊÌ >ÌÊṎˆâiÊ vœœÊ Ì iÊ «œÌ>ÃÃˆÕ“Ê Ì ˆÃÊÀi>V̈œ˜Ê>ÀiÊÃ̈ÊVœ““iÀVˆ>ÞÊ>Û>ˆ>Li°Ê/ iÊÌiÃÌÊVœ˜ÃˆÃÌÃÊ `ˆV Àœ“>Ìi° PCC Na2Cr2O7 R R RR OH OH CH2Cl2 H2SO4 , H2O œvÊ>ÊÌÕLi]ÊÜ iÀiʜ˜iÊi˜`ʈÃÊvˆÌÌi`ÊÜˆÌ Ê>ʓœÕÌ «ˆiViÊ>˜`ÊÌ iÊ (e) ? (f) ? Secondary Ketone œÌ iÀÊi˜`Ê >ÃÊ>ÊL>}°Ê/ iʈ˜Ãˆ`iʜvÊÌ iÊÌÕLiÊVœ˜Ì>ˆ˜ÃÊÜ`ˆÕ“Ê PCC alcohol `ˆV Àœ“>ÌiÊÌ >ÌʈÃÊ>`ÜÀLi`ʜ˜ÌœÊÌ iÊÃÕÀv>ViʜvÊ>˜Êˆ˜iÀÌÊ܏ˆ`]Ê CH2Cl2 APPLY the skill 13.23 *Àœ«œÃiÊ>ÊÃÞ˜Ì iÈÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° ÃÕV Ê>ÃÊȏˆV>Ê}i°ÊÃÊÌ iÊÕÃiÀÊLœÜÃÊ>ˆÀÊÌ ÀœÕ} ÊÌ iÊÌÕLiÊ>˜`Ê O vˆÃÊÕ«ÊÌ iÊL>}]ÊÌ iÊ>Vœ œÊˆ˜ÊÌ iÊÕÃiÀ½ÃÊLÀi>Ì ÊÀi>VÌÃÊÜˆÌ ÊÌ iÊ 3ODIUMDICHROMATEISLESSEXPENSIVE BUT0##ISMOREGENTLEANDOFTENPREFERREDIFOTHERSENSITIVE O functional groups are present in the compound. H (a) Br H (b) O O

(c) (d)

need more PRACTICE? Try Problems 13.35e–f, 13.37, 13.48

klein_c13_564-621hr.indd 598 11/8/10 2:11 PM klein_c13_564-621hr.indd 599 11/8/10 2:11 PM klein_c13_564-621hr.indd 600 11/8/10 2:11 PM 13.9 Reactions of Alcohols: Substitution and Elimination 593 594 CHAPTER 13 Alcohols and Phenols 13.9 Reactions of Alcohols: Substitution and Elimination 595

OH 4HEMECHANISMSFORTHESETWOPATHWAYSAREVERYSIMILAR4HElRSTFEWSTEPSCONVERTABADLEAVING PRACTICALLYSPEAKING O O group into a good leaving group, then the halide attacks in an SNPROCESS-ECHANISM  SKILLBUILDER HO Drug Metabolism HO 13.6 PROPOSING REAGENTS FOR THE CONVERSION OF AN ALCOHOL INTO AN ALKYL HALIDE OH ÀÕ}ʓiÌ>LœˆÃ“ÊÀiviÀÃÊ̜ÊÌ iÊÃiÌʜvÊÀi>V̈œ˜ÃÊLÞÊÜ ˆV Ê`ÀÕ}ÃÊ>ÀiÊ O UDP Vœ˜ÛiÀÌi`ʈ˜ÌœÊœÌ iÀÊVœ“«œÕ˜`ÃÊÌ >ÌÊ>ÀiÊiˆÌ iÀÊÕÃi`ÊLÞÊÌ iÊLœ`ÞÊ MECHANISM 13.6 THE REACTION BETWEEN SOCl2 AND AN ALCOHOL LEARN the skill `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° œÀÊiÝVÀiÌi`°Ê"ÕÀÊLœ`ˆiÃÊ`ˆÃ«œÃiʜvÊÌ iʓi`ˆV>̈œ˜ÃÊÜiʈ˜}iÃÌÊLÞÊ ROH Bad >ÊÛ>ÀˆiÌÞʜvʓiÌ>LœˆVÊ«>Ì Ü>ÞÃ°Ê UDP-glucuronyl-transferase leaving group OH Cl "˜iÊ Vœ““œ˜Ê “iÌ>LœˆVÊ «>Ì Ü>ÞÊ ˆÃÊ V>i`Ê }ÕVÕÀœ˜ˆVÊ >Vˆ`Ê Vœ˜Õ}>̈œ˜]Ê œÀÊ Ãˆ“«ÞÊ }ÕVÕÀœ˜ˆ`>̈œ˜°Ê / ˆÃÊ «ÀœViÃÃÊ ˆÃÊ ± –H – OH SOCl2 Cl ÛiÀÞÊȓˆ>ÀÊ̜Ê>ÊœvÊÌ iÊ-NÓÊ«ÀœViÃÃiÃÊÌ >ÌÊÜiʈ˜ÛiÃ̈}>Ìi`Ê ± SO ± Cl py 2 ˆ˜Ê Ì iÊ «ÀiۈœÕÃÊ ÃiV̈œ˜°Ê -«iVˆvˆV>Þ]Ê >Ê L>`Ê i>ۈ˜}Ê }ÀœÕ«Ê ­ Þ`ÀœÝޏ®Ê ˆÃÊ vˆÀÃÌÊ Vœ˜ÛiÀÌi`Ê ˆ˜ÌœÊ >Ê }œœ`Ê i>ۈ˜}Ê }ÀœÕ«]Ê vœ‡ Cl OH œÜi`Ê LÞÊ ˜ÕViœ« ˆˆVÊ >ÌÌ>VŽ°Ê ÕVÕÀœ˜ˆ`>̈œ˜Ê iÝ ˆLˆÌÃÊ Ì iÊ Cl S SOLUTION O Ã>“iÊÌܜʎiÞÊÃÌi«Ã°Ê O O – / ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜ÊˆÃÊ>ÊÃÕLÃ̈ÌṎœ˜Ê«ÀœViÃÃ]ÊÜÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊ̜ÊÕÃiÊ-N£ÊVœ˜`ˆ‡ HO HO O Cl STEP 1 ̈œ˜ÃʜÀÊ-NÓÊVœ˜`ˆÌˆœ˜Ã°Ê/ iʎiÞÊv>V̜ÀʈÃÊÌ iÊÃÕLÃÌÀ>Ìi°Ê/ iÊÃÕLÃÌÀ>ÌiÊ iÀiʈÃÊÃiVœ˜`>ÀÞ]ÊÃœÊ R 1. œÀ“>̈œ˜ÊœvÊ1 *Ê­ÕÀˆ`ˆ˜i‡x½‡`ˆ« œÃ« œ‡A‡D‡}ÕVÕÀœ˜ˆVÊ OH H H ˜>ÞâiÊÌ iÊÃÕLÃÌÀ>Ìi° iˆÌ iÀÊ-N£ÊœÀÊ-NÓÊVœÕ`ÊÌ iœÀïV>ÞÊܜÀŽ°ÊœÜiÛiÀ]ÊÜiÊ`œ˜½ÌÊ >ÛiÊ>ÊV œˆViʈ˜ÊÌ ˆÃÊV>Ãi°Ê/ iÊ N >Vˆ`®ÊvÀœ“Ê}ÕVœÃiʈ˜ÛœÛiÃÊVœ˜ÛiÀȜ˜ÊœvÊ>ÊL>`ʏi>ۈ˜}Ê b + Cl + ÌÀ>˜ÃvœÀ“>̈œ˜ÊÀiµÕˆÀiÃʈ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜]ÊÜ ˆV ÊV>˜Êœ˜ÞÊLiÊ>VVœ“«ˆÃ i`Êۈ>Ê-NÓÊ -Glucuronide O O Cl O Cl STEP 2 }ÀœÕ«Êˆ˜ÌœÊ>Ê}œœ`ʏi>ۈ˜}Ê}ÀœÕ«° S – S S ­>˜Ê-N£Ê«ÀœViÃÃÊܜՏ`Ê}ˆÛiÊÀ>Vi“ˆâ>̈œ˜]Ê>ÃÊÜiÊÃ>Üʈ˜Ê-iV̈œ˜ÊÇ°x®°Ê˜Ê>``ˆÌˆœ˜]ÊÌ iÊÃÕLÃÌÀ>ÌiÊ ˜>ÞâiÊÌ iÊ / ˆÃÊ-NÓÊ«ÀœViÃÃÊÀiµÕˆÀiÃÊ>˜Êi˜âޓiÊ­>ÊLˆœœ}ˆV>ÊV>Ì>ÞÃÌ®Ê O ܜՏ`ʏˆŽiÞÊ՘`iÀ}œÊ>ÊV>ÀLœV>̈œ˜ÊÀi>ÀÀ>˜}i“i˜ÌʈvÊÃÕLiVÌi`Ê̜Ê- £ÊVœ˜`ˆÌˆœ˜Ã°ÊœÀÊLœÌ Ê Cl O O ÃÌiÀiœV i“ˆV>Ê N V>i`Ê1 *‡}ÕVÕÀœ˜ÞÊÌÀ>˜ÃviÀ>Ãi°Ê/ iÊÀi>V̈œ˜Ê«ÀœVii`ÃÊۈ>Ê œÕÌVœ“iÊ>˜`Ê œvÊÌ iÃiÊÀi>ܘÃ]Ê>˜Ê-NÓÊ«ÀœViÃÃʈÃÊÀiµÕˆÀi`°Ê OH ˆ˜ÛiÀȜ˜ÊœvÊVœ˜w}ÕÀ>̈œ˜Ê­>ÃÊiÝ«iVÌi`ʜvÊ>˜Ê-NÓÊ«ÀœViÃîÊÌœÊ `iÌiÀ“ˆ˜iÊÜ iÌ iÀÊ- ÓÊ 7iÊ Ã>ÜÊ Ì ÀiiÊ `ˆvviÀi˜ÌÊ Ài>}i˜ÌÃÊ vœÀÊ «iÀvœÀ“ˆ˜}Ê >˜Ê - ÓÊ «ÀœViÃÃ°Ê 7ˆÌ Ê >Ê Ì Àii]Ê Ì iÊ Good N N «Àœ`ÕViÊ>ÊB‡}ÕVÕÀœ˜ˆ`i]ÊÜ ˆV ʈÃÊ ˆ} ÞÊÜ>ÌiÀÊ܏ÕLiÊ>˜`ʈÃÊ ˆÃÊÀiµÕˆÀi`° Þ`ÀœÝޏÊ}ÀœÕ«ÊˆÃÊVœ˜ÛiÀÌi`ʈ˜ÌœÊ>ÊLiÌÌiÀʏi>ۈ˜}Ê}ÀœÕ«]ÊvœœÜi`ÊLÞʘÕViœ« ˆˆVÊ>ÌÌ>VŽ°Ê˜ÞÊ leaving group O Ài>`ˆÞÊiÝVÀiÌi`ʈ˜ÊÌ iÊÕÀˆ˜i°Ê HO œvÊÌ iÊÌ ÀiiʓiÌ œ`ÃÊV>˜ÊLiÊÕÃi`° >˜ÞÊ v՘V̈œ˜>Ê }ÀœÕ«ÃÊ Õ˜`iÀ}œÊ }ÕVÕÀœ˜ˆ`>̈œ˜]Ê LÕÌÊ >Vœ‡ HO OH œÃÊ>˜`Ê« i˜œÃÊ>ÀiÊÌ iʓœÃÌÊVœ““œ˜ÊV>ÃÃiÃʜvÊVœ“«œÕ˜`ÃÊÌ >ÌÊ HCl, ZnCl2 D-Glucose OH ՘`iÀ}œÊÌ ˆÃʓiÌ>LœˆVÊ«>Ì Ü>Þ°ÊœÀÊiÝ>“«i]ʓœÀ« ˆ˜i]Ê>ViÌ>“ˆ˜‡ OH Cl The reaction mechanism for PBr has similar characteristics, including conversion of the STEP 3 Bad LG œ« i˜]Ê>˜`ÊV œÀ>“« i˜ˆVœÊ>ÀiÊ>Ê“iÌ>Lœˆâi`Êۈ>Ê}ÕVÕÀœ˜ˆ`>̈œ˜\ HYDROXYLGROUPINTOABETTERLEAVINGGROUPFOLLOWEDBYNUCLEOPHILICATTACK-ECHANISM  `i˜ÌˆvÞÊÀi>}i˜ÌÃÊÌ >ÌÊ >V ˆiÛiÊÌ iÊ«ÀœViÃÃÊ 1) TsCl, py N `iÌiÀ“ˆ˜i`ʈ˜ÊÃÌi«ÊÓ° 2) NaCl H OH OH H SOCl2 , py H NO Cl PRACTICE the skill 13.19 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ Êi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>‡ OH N O2N H Cl O O ̈œ˜Ã° HO OH HO O O MECHANISM 13.7 THE REACTION BETWEEN PBr3 AND AN ALCOHOL OH Br OH Br HO HO Morphine Acetaminophen Chloramphenicol Br OH An opiate analgesic An analgesic (pain-relieving) An antibiotic used in eye drops HO used to treat severe pain and antipyretic (fever-reducing) agent, to treat bacterial conjuctivitis P Br H O O UDPGA sold under the trade name TylenolTM + (a) (b) O N OH Br O Br – S 2 Br O P OPO ± N ± P Br HOPBr2 N N O -O -O H Bad Br HO OH OH H leaving group OH H Good OH Cl OH Br Cl leaving group (c) (d) Good LG (called UDP) NO N O N H Cl O 2 HO OH HO O 1 *ʈÃÊ>ÊVœ“«œÕ˜`ÊÜˆÌ Ê>ÊÛiÀÞÊ}œœ`ʏi>ۈ˜}Ê}ÀœÕ«°Ê/ ˆÃÊ (e) OH Cl (f) OH Br Morphine Acetaminophen Chloramphenicol Notice the similarity among all of the SNPROCESSESTHATWEHAVESEENINTHISSECTION!LLINVOLVE >À}iʏi>ۈ˜}Ê}ÀœÕ«Anʈà opiateÊV>i` analgesicÊ1 *°Ê˜ÊÌ ˆÃÊÌÀ>˜ÃvœÀ“>̈œ˜]An analgesicʜ˜i (pain-relieving)Ê An antibiotic used in eye drops the conversion of the hydroxyl group into a better leaving group followed by nucleophilic attack. APPLY the skill 13.20 `i˜ÌˆvÞÊÌ iÊÀi>}i˜ÌÃÊޜÕÊܜՏ`ÊÕÃiÊ̜Ê>VVœ“«ˆÃ ÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜° œvÊÌ iÊ Þ`ÀœÝޏÊused}ÀœÕ«Ã to Êtreatˆ˜Ê}ÕVœÃi severeÊ >à painÊLii˜andÊVœ˜ÛiÀÌi` antipyreticʈ˜Ìœ (fever-reducing)Ê>Ê agent, to treat bacterial conjuctivitis TM )FANYOFTHESEREACTIONSOCCURSATACHIRALITYCENTER INVERSIONOFCONlGURATIONISTOBEEXPECTED }œœ`ʏi>ۈ˜}Ê}ÀœÕ«° sold under the trade name Tylenol ˜Ê i>V Ê œvÊ Ì iÃiÊ Ì ÀiiÊ Vœ“«œÕ˜`Ã]Ê Ì iÊ ˆ} ˆ} Ìi`Ê Þ`ÀœÝÞÊ 2. iÝÌ]Ê>˜Ê-NÓÊ«ÀœViÃÃʜVVÕÀÃʈ˜ÊÜ ˆV ÊÌ iÊ`ÀÕ}ÊLiˆ˜}ʓiÌ>Lœ‡ ˆâi`Ê­ÃÕV Ê>ÃÊ>˜Ê>Vœ œ®Ê>ÌÌ>VŽÃÊ1 *]ÊiÝ«iˆ˜}ÊÌ iÊ}œœ`Ê }ÀœÕ«Ê >ÌÌ>VŽÃÊ 1 *°Ê ÕVÕÀœ˜ˆ`>̈œ˜Ê ˆÃÊ Ì iÊ “>ˆ˜Ê “iÌ>LœˆVÊ OH Cl i>ۈ˜}Ê}ÀœÕ«° «>Ì Ü>ÞÊLÞÊÜ ˆV ÊÌ iÃiÊ`ÀÕ}ÃÊ>ÀiÊiˆ“ˆ˜>Ìi`ÊvÀœ“ÊÌ iÊLœ`Þ°

need more PRACTICE? Try Problems 13.35a–c, 13.44f, 13.52r

klein_c13_564-621hr.indd 593 11/8/10 2:11 PM klein_c13_564-621hr.indd 594 11/8/10 2:11 PM klein_c13_564-621hr.indd 595 11/8/10 2:11 PM

13.10 Reactions of Alcohols: Oxidation 599 600 CHAPTER 13 Alcohols and Phenols

7HENAPRIMARYALCOHOLISOXIDIZEDWITHCHROMICACID ACARBOXYLICACIDISOBTAINED)TISGENERALLY DIFlCULTTOCONTROLTHEREACTIONTOPRODUCETHEALDEHYDE SKILLBUILDER 13.7 PREDICTING THE PRODUCTS OF AN OXIDATION REACTION OH O O Na2Cr2O7 LEARN the skill *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜° R H2SO4 , H2O RH R OH

Alcohol Aldehyde Carboxylic OH CrO3 Difficult to isolate acid ± H3O , acetone ? )NORDERTOPRODUCETHEALDEHYDEASTHElNALPRODUCT ITISNECESSARYTOUSEAMORESELECTIVEOXIDIZ- SOLUTION ing reagent, one that will react with the alcohol but will not react with the aldehyde. Many such ˜ÊœÀ`iÀÊ̜ʫÀi`ˆVÌÊÌ iÊ«Àœ`ÕVÌ]ʈ`i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊÃiVœ˜`>ÀްʘÊÌ ˆÃÊ REAGENTSAREAVAILABLE INCLUDINGPYRIDINIUMCHLOROCHROMATE0## 0##ISFORMEDFROMTHEREAC- V>Ãi]ÊÌ iÊ>Vœ œÊˆÃÊ«Àˆ“>ÀÞ]Ê>˜`ÊÌ iÀivœÀi]ÊÜiʓÕÃÌÊ`iVˆ`iÊÜ iÌ iÀÊÌ iÊ«ÀœViÃÃÊ܈Ê«Àœ`ÕViÊ tion between pyridine, chromium trioxide, and hydrochloric acid. STEP 1 >˜Ê>`i Þ`iʜÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`\Ê `i˜ÌˆvÞÊÜ iÌ iÀÊÌ iÊ O O >Vœ œÊˆÃÊ«Àˆ“>ÀÞʜÀÊ + – ÃiVœ˜`>ÀÞ° OH [O] H [O] OH N ± CrO3 ± HCl NH CrO3Cl STEP 2 vÊÌ iÊ>Vœ œÊˆÃÊ Pyridinium Chlorochromate Pyridine «Àˆ“>ÀÞ]ÊVœ˜Ãˆ`iÀÊ Aldehyde Carboxylic acid Ü iÌ iÀÊ>˜Ê>`i Þ`iÊ PCC œÀÊ>ÊV>ÀLœÝޏˆVÊ>Vˆ`ʈÃÊ / iÊ«Àœ`ÕVÌʈÃÊ`iÌiÀ“ˆ˜i`ÊLÞÊÌ iÊV œˆViʜvÊÀi>}i˜Ì°Ê Àœ“ˆÕ“ÊÌÀˆœÝˆ`iʈ˜Ê>Vˆ`ˆVÊVœ˜`ˆÌˆœ˜ÃÊ œLÌ>ˆ˜i`° 7HEN0##ISUSEDASTHEOXIDIZINGAGENT ANALDEHYDEISPRODUCEDASTHEMAJORPRODUCT5NDER vœÀ“ÃÊV Àœ“ˆVÊ>Vˆ`]ÊÜ ˆV Ê܈ÊœÝˆ`ˆâiÊÌ iÊ>Vœ œÊÌ܈ViÊ̜Ê}ˆÛiÊÌ iÊV>ÀLœÝޏˆVÊ>Vˆ`°Ê˜ÊœÀ`iÀÊ these conditions, the aldehyde is not further oxidized to the carboxylic acid. ̜ÊÃ̜«Ê>ÌÊÌ iÊ>`i Þ`i]Ê* ÊܜՏ`ÊLiÊÕÃi`ʈ˜ÃÌi>`° O STEP 3 OH O À>ÜÊÌ iÊ«Àœ`ÕVÌ° OH CrO3 OH PCC ± H3O , acetone R CH2Cl2 RH

Primary Aldehyde PRACTICE the skill 13.22 *Ài`ˆVÌÊÌ iʓ>œÀʜÀ}>˜ˆVÊ«Àœ`ÕVÌÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÀi>V̈œ˜Ã° alcohol OH

-ETHYLENECHLORIDE#(#L ISTYPICALLYTHESOLVENTUSEDWHEN0##ISEMPLOYED HO O PCC Secondary alcohols are oxidized only once to form a ketone, which is stable under oxidizing con- Na2Cr2O7 CH2Cl2 H2SO4 , H2O DITIONS4HEREFORE ASECONDARYALCOHOLCANBEOXIDIZEDEITHERWITHCHROMICACIDORWITH0## (a) H ? (b) ? OH Na2Cr2O7 H xs CrO3 H2SO4 , H2O OH ± PCC H3O CH2Cl2 (c) O acetone ? (d) OH O ?

PCC Na2Cr2O7 R R RR OH OH CH2Cl2 H2SO4 , H2O (e) ? (f) ? Secondary Ketone PCC alcohol CH2Cl2 APPLY the skill 13.23 *Àœ«œÃiÊ>ÊÃÞ˜Ì iÈÃÊvœÀÊi>V ʜvÊÌ iÊvœœÜˆ˜}ÊÌÀ>˜ÃvœÀ“>̈œ˜Ã° O 3ODIUMDICHROMATEISLESSEXPENSIVE BUT0##ISMOREGENTLEANDOFTENPREFERREDIFOTHERSENSITIVE O functional groups are present in the compound. H (a) Br H (b) O O

(c) (d)

need more PRACTICE? Try Problems 13.35e–f, 13.37, 13.48

klein_c13_564-621hr.indd 599 11/8/10 2:11 PM klein_c13_564-621hr.indd 600 11/8/10 2:11 PM