<<

Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations

1978 Influence of electrostatic potentials on rotating discs for liquid spraying Adhemar Brandini Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons

Recommended Citation Brandini, Adhemar, "Influence of electrostatic potentials on rotating discs for liquid spraying " (1978). Retrospective Theses and Dissertations. 6373. https://lib.dr.iastate.edu/rtd/6373

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department,

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms international 300 N. ZEEB ROAD, ANN ARBOR, Ml 48106 18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND 790723b

BRANDINI, ADHEMAR INFLUENCE OF ELECTR3STATIC POTENTIALS 0% ROTATING DISCS F0< LIQUID SPRAYING.

IOWA STATE UNIVERSITY, PH.D., 1973

UniversiV Microfilms International 3oon. zeeb road, ann arbor, mmsiob Influence of electrostatic potentials on rotating

discs for liquid spraying

by

Adhemar Brandini

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Agricultural Engineering

Approved:

Signature was redacted for privacy. In Ch^ge of ijor Work

Signature was redacted for privacy. For the Major" Depai?^ent

Signature was redacted for privacy. For the Graduate College

Iowa State University Ames, Iowa

1978 1 i

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

A. Requirement for Spray Formulation 2

B. Biological Effectiveness 9

C. Recent Proposed Improvement 10

II. LITERATURE REVIEW 13

A. Rotating Disc Atomizers 13

B. ; Its Influence on Dispersion and Deposition of Particulates 30

III. OBJECTIVES 46

IV. DATA ACQUISITION 47

A. Equipment 47

B. Materials and Methods 59

C. Test Procedure 66

D. Experimental Design 69

V. RESULTS 72

A. Spray Charging Characteristics 72

B. Droplet Size Characteristics 72

VI. DISCUSSION 85

A. Spray Charging Process 85

B. Droplet Size Distribution 91

VII. SUMMARY 119

VIII. CONCLUSIONS 121 ii i

Page

IX. BIBLIOGRAPHY 12 4

X. ACKNOWLEDGEMENTS 133

XI. APPENDIX A. SPRAY CHARGING CHARACTERISTICS 135

XII. APPENDIX B. RAW DATA FROM PARTICLE SIZE ANALYZER 139

XIII. APPENDIX C. COMPUTER PROGRAM 185

XIV. APPENDIX D. DROPLET SIZE DISTRIBUTION BY STATION (EXAMPLES SELECTED AT RANDOM) 213

XV. APPENDIX E. SUM DISTRIBUTION BY RUN 219

XVI. APPENDIX F. RADIAL DISTRIBUTION BY RUN 265

XVII. APPENDIX G. SPRAY DISPERSION 311 1

I. INTRODUCTION

The increasing demand for food, fiber and fuel has

pushed most of the technically advanced societies toward

the improvement of agricultural production. Displacement

of mules and oxen by tractors and sickles by combines has

been continuous during the last four decades. Economics

has dictated heavy fertilization of soils accompanied by

application of large amounts of insecticides and other

pesticides for crop protection as well as herbicides for

weed control.

Although the use of pesticides in agriculture started

shortly after the discovery by Millardette in the 1880's

that Bordeaux Mixture was effective in the control of downy

mildew of grapes (Horsfall, 1956) , accelerated development started after World War II. The phenoxy-alliphatic herbi­ cides and the chlorinated hydrocarbon insecticides were introduced for general domestic and agricultural use. These chemicals were inexpensive, effective in very small doses, and had low mammalian toxicity. The success and wide­ spread adoption of these chemicals started an endless search for other chemicals to achieve specific objectives and to substitute for some former chemicals either banned or under "restrictions for specific purposes.

The development of the pesticide applicators has not 2

been as successful as the development of the chemicals.

In general, for liquid application using ground equipment

pressure nozzles are the only application device used, al­

though a large variation in their design and construction

exists. The low-volume and ultra-low-volume (ULV) nozzles

prevail for farm use, with a marked increase for the second

type in recent years. The amount of liquid to be applied

for insect control varies considerably but is generally

100 to 200 liters/ha (10 to 20 gallons/acre) for the low

volume applicators, compared with 2 to 3 liters/ha for the

ULV.

The older high-volume applicators, like the costal ones, would use up to 2,400 1/ha for a single application, de­ pending upon the crop and pest being treated.

A. Requirement for Spray Formulation

Many of the actual pesticide chemicals are liquids, or can be emulsified or put into solution with commercial solvents. Dust formulations have lost popularity due to high transport costs, large amounts of very fine particles which drift easily even at low speed winds, and poor weather resistance, i.e., they are easily removed by rain- washing (Green et al., 1977).

The liquid formulation has satisfactorily been applied 3

to plants, animals, and the soil as a spray, using ground

equipment with conventional pressure nozzles as well as by

aerial applicators. However, due to the increasing prices

of particular chemicals and restriction imposed by environ­

mental agencies on the use of most of the agricultural

pesticides and herbicides, a real challenge is presented

to farmers, engineers and scientists, concerned with pesti­

cide applicators. Although the spray produced by a con­

ventional pressure nozzle can be controlled reasonably well

the droplet size range is still very wide. This charac­

teristic, although not undesirable per se, has the dis­

advantage that only a portion of the sprayed material is

deposited upon the intended target, while the remainder is

deposited some place where it is wasted or its presence

is considered undesirable.

1. Drift

Drift is the process of transporting material away

from the intended target by aerodynamic forces applied on the spray droplets, causing the pesticide chemical to settle on sites distinct from where it was intended to be deposited.

Drift of a herbicide onto a crop which is sensitive to the chemical may kill the crop. Drift of other chemicals onto crops for which there exist no legal tolerances for resi­ dues may result in unmarketable crops. In either case. 4

drift may cause large economic losses and cause individuals

responsible for the drift to be sued for compensation for

the damage. Yates and Akesson (1973) showed that even

under good weather conditions, spraying upwind of a field

of alfalfa hay closer than 600 feet with 1.6 lb/A of DDT

would result in deposits of chemical on the hay which

exceeded legal limits for marketing. Skoog et al. (1976)

studying aircraft applications of pesticides at ULV reported

drift of particles as large as 100 microns above the height

of the aircraft and 110 meter distant.

Controlling spray drop size for precision spray appli­

cations appears to be the most logical approach for re­

ducing, if not eliminating, the aerial transport or drift

of small particles. Chemical loss can take place; (a)

by direct aerial loss at the time of application; (b)

by direct application losses to soil under sprayed crop;

(c) by transfer from crop plants to soil and thence to

ground water (not large with low water solubility); (d)

by losses to water run-off or to wind transport of plant materials and soil particles; and (e) by losses of pesti­ cides carried on raw produce processed in central canning, freezing, or fresh-food plants, in which case the pesti­ cide chemicals are peeled or removed with outer leaves or are washed off and become contaminants of sewage systems. 5

from which they flow into the waterways and finally into the

oceans (Akesson et al., 1970).

2. Deposition efficiency

Deposition efficiency is a measure of the amount of applied chemicals deposited on target plants. The smaller the value, the higher is the proportion of chemicals lost.

Bowen et al. (1952a) reported the amount of chemicals de­ posited on target plants by conventional spraying and dusting equipment. Although very large variation was found the average deposition was between 5 and 15 percent of the total amount used.

Reeves et al. (1967) reported that only 5.1 percent of the total liquid sprayed was deposited on simulated cotton plants.

Johnstone and Johnstone (1977) reported results of field trials carried out in Swaziland during the 1974-1975 cotton season for aerial applications using very low-volume and ultra-low volume sprays, at rates of 10-15 1/ha of water as carrier and spray droplet size of 120-150 y volume mean diameter (vmd), and at rates of 5 1/ha, waterless, using droplet size of 80-120 y vmd. For the very-low-volume formulation, application at 10:24 hours and 13.0 m height with slightly unfavorable meteorological conditions, the volume recovery was only 2.2 percent, but for application at 6

05:30 hours and 4.5 m height and with favorable conditions

the volume recovery was 10 percent.

Green et al. (1977) indicated the growth of the world

pesticide industry in the period 1945-1975 with the follow­

ing figures in thousands of tonnes: 1945 (100), 1955 (400),

1965 (1000), 1970 (1500), and 1975 (1800). In the United

States the total pesticide (herbicides, fungicides and in­

secticides) production was 643,000 tonnes during 1974,

which represented a wholesale value of $1,732 million.

The economics of herbicide usage are easier to observe

than those of insecticides or fungicides, since herbicides

are essentially used as a substitute for mechanical or

hand weeding and can be assessed on this basis. In 1975

only 50 man-hours were required to grow and harvest a

hectare of cotton using chemical weeding and defoliation and

mechanical picking, compared with 200 man-hours in 19 33 for

manual hoeing and picking. Similarly, according to Green

et al. (1977), in 1975 only 22 man-hours were necessary to

grow and harvest one hectare of corn producing 500 0 kg of

grain, against 135 man-hours in 1945.

From the cost-benefit view, Green et al. (1977) re­ ported that experiments with potatoes over a period of ten years indicated $6.71 average return for each $1.00 spent on pesticides, and a similar study on apples showed that $5.17 7

was returned for each $1.00 spent for pesticides.

3. Atmospheric pollution

One of the major criticisms made by environmentalists

concerned with pesticide uses is that they often affect

organisms other than those intended, due more to inadequate

methods of application than to the characteristics of the

chemicals. Generally, due to local atmospheric conditions

some of the spray becomes airborne for sufficient length

of time to cause an environmental hazard, in addition to the

loss of the chemical.

Yates and Akesson (1973) reported levels up to 2 yg/m

of air, for 2-hour averaged levels in the air during seasonal

application of 2,4-D herbicide. Pesticide chemicals be­

come hazardous contaminants based on their tendency to

vaporize, their degree of solubility in water or other

solvents, and their resistance to the normal degradation

process. The actual application equipment produces spray

with a widely variable droplet size distribution. These distributions generally fit a log-normal model and in some cases result in a droplet size spectrum showing more than a 20-fold range of droplet diameters from the same application equipment. Some of this equipment produces a large percent of very fine particles highly susceptible to drift and airborne transport under unfavorable meteorological 8

conditions. Design parameters and concepts of chemical

sprayers are important variables affecting atmospheric pol­

lution caused by agricultural chemicals, and these can be

controlled and modified, contrary to the weather parameters

which are outside of the control of the operator.

To improve control of deposition from spray application

equipment a large number of forces known to affect small

particles has been investigated by a number of researchers.

Aerodynamic forces, thermal gradient forces, and electro­

static forces have been applied to spray droplets to cause

changes in their trajectories. Menzies (1975) tested a

hydraulic fan nozzle showing drastic elimination of droplets

smaller than 100 y from the main spray. Brazee and Buchele

(1959) reported a summary of several investigations related

to electrostatic precipitation of dusts. Smith et al.

(1970) developed a narrow spectrum droplet generator by using a spinning disc. Tests showed that about 60-70 percent of the atomized liquid was recovered at the col­ lector. The large reduction in drift was due to the very homogeneous size of the droplets released. 9

B. Biological Effectiveness

A number of investigators have reported evidence that a

pesticide may change its biological effect as a function of

the droplet size produced. Investigations with modern in­

secticides conducted by Yeomans et al. (1949) showed that the

most effective diameter for DDT spray for control of

mosquitoes was approximately 12 microns.

Hedden (1961) tested the effectiveness of disease con­

trol by different chemicals on several vegetable crops

using sprays having mass median droplet sizes from 100

microns to 500 microns. Poor control of droplet size

probably explains the conclusion that little if any varia­

tion in disease control resulted from use of different drop­

let sizes. Ennis and Williamson (1963) concluded that the herbicidal activity of several chemicals increased as the droplet size decreased, when the volume of liquid used was low. Skoog et al. (1965) using ultra low volume spray methods for rangeland grasshopper control speculated that the reduction in droplet size might be responsible for in­ creased effectiveness. Prick (1970) investigating the opti­ mum droplet size for effective control of apple powdery mildew by Dinocap found that 175 micron droplet diameter produced the best disease control.

Wilson et al. (1963) conducted experimental work over 10

a 3-year period on spray droplet size as related to disease

and insect control on row crop. The results showed that

droplets within the range 50 to 100 microns in diameter are

the most effective in controlling small insects, while for

large insects (bugs) the optimum diameter size falls into

the range 150 to 200 microns.

Smith et al. (1975) recommended a droplet size of 100-

140 microns for bollweevil control but noted that this is

too small for drift control; as a compromise a droplet size

of 140-200 microns should be acceptable for both drift and

boll-weevil control using ground equipment.

C. Recent Proposed Improvement

The increasing interest in producing more uniform spray

droplets as an attempt to reduce chemical waste and environ­

mental pollution has brought several new concepts into

practice. Some of these although working in laboratory

under very specific conditions are impractical for field

utilization.

New pressure nozzles for drift reduction have resulted

in a significant reduction of the number of droplets smaller

than 100 micron diameter (Brandenburg, 1974; Tate, 1977.

Roth and Porterfield (1966) proposed the use of Rayleigh break-up from small jets of liquid produced by low pressure 11

discharge through hypodermic tubing to obtain homogeneous

droplets of about 580 microns, at a rate up to 3,000

droplets per second per tube. The natural satellites

formed averaged 180 microns in diameter and were removed

from the main stream during laboratory trials by an electro­

static potential. During field tests complete separation of

the satellites was not possible.

Roth and Porterfield (1970) controlled the atomization

of a jet stream of a nonconductive liquid discharging through an orifice in a thin piezoelectric crystal. An

A-C electric signal impressed across the crystal faces produced a cyclic dimensional change in the orifice, thus creating the jet stream disturbance.

Bouse et al. (1974) exploited the Rayleigh jet stream instability by introducing pressure pulses in a liquid- filled chamber which induced a cyclic disturbance on the jet stream. Frequencies up to 30 kHz were used and droplet size from 120 to 720 microns in diameter were produced de­ pending upon the orifice diameter of the capillary tube used.

Only occasional formation of satellites was reported, but these usually coalesced with the major drops a short distance from the orifices.

Law and Bowen (1966) proposed charging the liquid spray by electrostatic induction to reduce drift and to improve 12

chemical deposition on the plant targets. Field tests on

cotton showed significant increase in spray coverage of the

bottom side of the cotton leaves. An average increase of

3.8 times occurred in leaf bottom coverage due to charging

the spray.

Burt et al. (1966) applied the spinning disc atomizer

principle to agricultural work. They introduced an in­

wardly radial air flow over the periphery of the disc to

remove fine satelite drops prior to their having left the

disc. The diameter of the remaining droplets had a coeffi­

cient of variation of approximately 0.1, thus showing good

uniformity.

Mathews (1978) has proposed an improvement of spinning

discs or cups to produce droplets of almost uniform size, which is called "controlled droplet application" (CDA).

This is based on the capability of rotating discs to pro­

vide large variations of the mean diameter of the spray by varying the disc speed. It has been suggested that further improvement in the efficiency of spraying may be possible by electrostatically charging these more uniformly sized droplets. 13

II. LITERATURE REVIEW

The search for a liquid spray having the desirable

qualities of homogeneous size droplets small enqugh to in­

crease biological effectiveness and to reduce the amount of

solvent or liquid carrier, but large enough to avoid drift

and excessive evaporation during settling, and therefore

reducing if not eliminating the environmental pollution,

has been a challenge for researchers working on pesticide

application. It has been shown in the introduction that such an ideal pesticide application device is not yet com­ mercially available. However, a slow but constant progress has been made by researchers in this area, applying basic physical principles in their work.

Two fundamental aspects toward such improvement are dis­ cussed in the literature: the utilization and characteristics of rotating disc atomizers for liquid spraying and the use of electrostatic potentials as a mean to disperse liquids.

A. Rotating Disc Atomizers

Atomization results from an energy source acting on liquid bulk. The minimum energy for atomization is that required to create the new surface. The theoretical energy required to create a liquid droplet neglecting the energy of the liquid bulk can approximately be expressed as: 14

Eg = rtd^a (1)

where

d = diameter of the drop formed

a = surface tension

Eg= energy required to create a new surface

Rotating disc atomizers belong to the class of centri­

fugal energy atomizers. They can be subdivided into vaned

disc atomizers and smooth disc atomizers. The latter com­

prise the cup, bowl, and plate shaped discs.

In rotating disc atomizers, the liquid is fed onto

the disk surface, near the center, and then is centri-

fugally accelerated to high velocity before being discharged

into the surrounding atmosphere. The liquid extends over

the rotating surface as a thin film. The degree of atomiza-

tion depends upon peripheral speed, feed rate, liquid

properties and atomizer design. Maximum kinetic energy is

imparted to the liquid when the liquid acquires the disc

peripheral speed prior to discharge. If a flat smooth disc

is rotating at high speed and liquid is fed on its top

surface, severe slippage occurs between the liquid and

the disc surface. When slippage occurs the tangential

velocity of the liquid prior to discharge is smaller than that of the disc and atomization will be unsatisfactory.

To prevent slippage at moderate and high feed rates and/or 15

at high speed of the rotating disc, radial vanes are used.

The liquid is confined to the vane surface, and at the

external disc edge the maximum possible liquid release

velocity is attained. This maximum velocity is the vector

sum of the radial and tangential velocity of the liquid

at the external edge of the vanes.

1. Smooth flat rotating disc atomizers

The disintegration of liquid into droplets from a

rotating (flat) disc as presented by Masters (1972) is

governed by:

1. The viscosity and surface tension of the liquid;

2. Inertia of the liquid (density);

3. Friction effects between the liquid droplets and surrounding air at the point of release from the disc;

4. Readjustment of shear stresses within the liquid droplet once the droplet becomes airborne.

At low peripheral speeds, the liquid viscosity and surface tension are the predominant factors. When the liquid feed rate is also very low the mechanism of atomiza- tion predominates, i.e., droplets are formed and released from the disc edge. Generally two or three prominent drop­ lets are formed as the parent droplets, and then two satelites.

With increasing feed rates and disc speeds the direct 16

droplet formation mechanism changes to one of ligament break­

up. The points where the direct droplet formation would

start have more liquid, and ligaments begin to extend out

of the disc edge until a point where disintegration starts.

Parent droplets as well as satelite droplets are formed.

The higher the liquid viscosity and surface tension the

larger the parent droplets formed. Increase in liquid

viscosity also increases the proportion of satelite droplets

in the spray. Spherical droplets are formed regardless of

the value of the liquid surface tension. Viscosity and

surface tension are physical properties of the feed liquid.

The inertial forces start predominating over the liquid

properties when the ligaments join to form a liquid sheet

extending beyond the disc edge. This mechanism of atomiza-

tion is often referred to as the velocity spraying mechanism,

according to Adler and Marshall (1951a,b). Liquids exhibiting

high viscosity produces a more accentuated liquid sheet.

The sheet disintegrates giving a spray of broad droplet size

distribution. Increasing the disc speed while maintaining a

constant feed rate causes the liquid sheet to retract

towards the disc edge. If the feed rate is increased with

disc speed, the velocity spraying mechanism (sheet forma­ tion) continues. When slippage of the feed liquid over the disc is minimized or eliminated, the velocity of the liquid 17

at the disc edge can be high enough to enable air frictional

effects at the liquid-air interface to become the controlling

atomization mechanism. The mode of disintegration of the

retracting sheet causes great difficulty in the formation

of a homogeneous spray. Use of liquids of high viscosity

and surface tension reduces the broad size distribution, as

does an increase of disc tangential speed while keeping a constant feed rate. To produce a narrow size distribution, high speeds are required at low feed rates. In general most of the laboratory work on rotating discs as a generator of homogeneous droplet sprays were conducted at very low feed rates and at very high speeds.

Hinze and Milborn (1950) studied the atomization of liquids produced by rotating cups. Disc diameters of 1.0 cm, 2.5 cm, and 10.0 cm were used and the liquids tested were fuel oils with a wide range in viscosity. They pro­ posed two basic dimensionless groups and to charac­ terize the transition between the different atomization mechanisms as:

Sj = wD(pD/o)l/2 (2)

Fj = Q/D(p/GD)l/2(^/(opD)l/2)l/6 (3) where the symbols are as defined in Equation 4. The transition between ligament formation and sheet formation 18

is given experimentally by the following equation as shown

in Figure 1.

0.167 _ 122 (4) ° ^ /^ÔD where 3 -1 Q: liquid feed rate, L T

D: rotating cup diameter, L • 3 p; liquid density, ML

01 liquid surface tension, MT-2

y: liquid dynamic viscosity, ML-1 T -1 -1 (o: rotating atomizer angular velocity, T

EQUATION 4

10 FILM

0.1

3 10 LIGAMENT

Figure 1. Atomization mechanism for rotating cup: transition of atomization mechanisms (after Hinze and Milborn, 1950) 19

Frazer et al. (1957) verified severe slippage on

smooth flat discs as occurring whenever

M/ïïyd ^ 1440 (5)

where

M; mass feed rate, in Ib/hr;

y: liquid viscosity, in cp;

d; disc diameter, in ft.

The same authors derived, for an ideal disc without slippage,

equations to express flow conditions where liquid break-up

at the disc edge is due to ligament or sheet disintegration.

The two dimensionless parameters employed are similar to

those used by Hinze and Milborn (1950), as shown in

Equations 2 and 3, but were tested for different feed rates

and rotating discs.

Boize and Dombrowski (1976) investigated the atomiza- tion characteristics of a spinning disc as an ultra-low- volume applicator. The atomizer was a special design com­ bining feature of a rotating disc and cup and measured 88 millimeters in external diameter. It was tested with a number of oils ranging in viscosity from 0.0073 to

0.0603 kg/m.s. It was found that the mechanism of drop­ let formation depended upon the operating conditions. At lov; feed rates and low speeds, drops were produced directly 20

from the periphery of the disc and good monodisperse spray

was obtained. At high feed rates and high speeds wide drop­

let size spectra were produced. Comparison of the experi­

mental data showing the transition between the single drop

formation and the ligament formation with the theoretical

equation proposed by Hinze and Milborn (1950),

y ,0.167

-3 < 4.55 X 10 (6)

did not match due to the difference in atomizer designs.

The experimental values for feed rate were considerably

larger than the theoretical ones for the low speeds, up to

6000 rpm, used in the experiments.

Droplet sizes produced by smooth flat discs have been studied by Walton and Prewett (1949), Adler and Marshall

(1951), Friedman et al. (1952), Marshall (1954), Frazer et al. (1957) and Masters (1972). Masters (1972) summarized the findings as shown in Table 1. 21

Table 1. Droplet size prediction for smooth flat discs (after Masters, 1972)^

Atomization Equation Investigator mechanism

Direct drop ^ 64x10 ,0^0.5 Bar (1935) formation max N Mp'

Ligament _ _ 52.2x10 , a > 0.5 Walton and break-up max N dp Prewett (1949)

0.2 _ 2.67 Q (9) Oyama and sv 0.3 Endou (1953) Nd

Sheet disintegra- D (10) atsV tion

D^ve ~ average droplet diameter, in microns; ^max ~ Maximum droplet diameter, in microns; Dg^ - Sauter droplet diameter, in microns; N - rotating disc speed, in rpm; d - rotating disc diameter, in cm; a - liquid surface tension, in dynes/cm; p - liquid density, in g/cm ; 2 V - liquid kinematic viscosity, in cm /s; 3 Q - liquid feed rate, in cm /s.

As reported by Friedman et al. (1952) and Masters

(1972) these equations are of only limited interest for commercial spraying conditions. However, the equations indicate the relationships between droplet size operating variables, and physical properties. 22

2. Vaned rotating disc atomizers

The mechanisms of atomization applied to vaned rotating

discs are very similar to those related to smooth flat ro­

tating discs. The presence of vanes constrains the liquid

to acquire a velocity upon release from the vane edges

equal to or greater than the peripheral disc velocity.

Although this mechanism does not lend itself to the

formation of homogeneous spray, small droplet sizes can be

produced. In the commercial range of conditions (high feed

rates at high disc speeds) liquid disintegration starts

right at the external vane edges by frictional effects be­

tween air and the liquid surface as the liquid emerges as a

thin film from the vanes. According to photographic studies

by Marshall (1954), and Herring and Marshall (1955), the

extended distance from the external vane edges where the spray is formed depends upon the disc speed and the liquid

feed rate. For high discharges and low speed,

. . . the liquid discharged from each vane retained its streamshaped identity for some distance beyond the disc, where it then broke-up. The break-up occurred as the end of the stream spread out into a sheet which flapped like a flag. Heavy ligaments extended from this sheet and also trailed from the main stream between the sheeted end and the disc periphery. From the ligaments and from the sheet itself, irregular globs and drops of varied sizes were formed as shown in the high-speed movie frames (Herring and Marshall, 1955). 23

Masters (1972) observed that increasing the viscosity

and surface tension of the liquid act to improve spray

uniformity, but at the expense of smaller mean droplet size.

Dombrowski and Lloyd (1974) confirmed these findings in

using a rotary cup of 4.0-inch diameter rotating at 82 Hz and using water and three different oils more viscous than water, at feed rates from 20 to 100 ml/s.

Adler and Marshall (1951a,b), Friedman et al. (1952),

Marshall (1954), Herring and Marshall (1955), Frazer et al.

(1957), Masters and Mohtadi (1967), Masters (1972), and

Dombrowski and Lloyd (1974), have presented relationships between the spray droplet size produced by vaned rotating disc atomizers and the liquid properties and atomizer design parameters. Most of this work was related to spray drying and covered a wide range of parameters. Results ob­ tained by the different researchers are in close agreement.

A prediction equation in terms of dimensionless groups has been proposed by Friedman et al. (1952) as:

^ = 0.4(—^)°-^(^)°-^(-^i^) (11) ^ p^Nr^ Q

The range of variables on which Equation 11 was based were: liquid viscosity, p: 1 to 9,000 centipoises; liquid density, : 62.4 to 88 Ib/cu ft; surface tension, a: 74 to 100 dynes/cm; rotary atomizer radius, r: 1 to 4 inches; 24

wetted periphery, L; 0.36 to 19.2 inches; disc speed, N:

860 to 18,000 rpm; liquid feed rate, M; 0.55 to 67.5 Ib/min;

and mass flow rate, Q: 1.5 to 90 (Ib/min)/ft.

Frazer et al. (1957) proposed an alternate equation

to predict the mean spray size, in terms of the Sauter

diameter, produced by rotary atomizers (flat discs and

bowls as well as vaned discs) as:

dgy = 4.2xlo4(ljO'6(l_jO'5(gMj0.2(%j0.1 (12)

This equation was proposed as valid for the following

operating range; disc diameter, D^: 0.17-0.67 ft; disc

speed, N; 860-18,000 rpm; liquid feet rate, M: 33-4,050 lb/

hr; liquid surface tension, : 74-100 dynes/cm; liquid

density, p: 62.4-88 Ib/ft^; and liquid viscosity, n: 1-900 centipoise.

Rationalization of Equations 11 and 12 yields the same result within ten percent. For both equations the parameters used and respective units are;

dgy: droplet surface mean diameter, in microns;

Dgy: droplet surface mean diameter, in ft;

N: rotary atomizer speed, in rpm;

L: wetted perimeter, in ft

L = frD for flat discs and bowls; o L = nb for vaned discs;

D^; rotating atomizer diameter, in ft; 25

n: number of vanes;

b: height of a vane, in ft;

r: radius of the rotary atomizer, in ft;

M: liquid mass feed rate, in Ib/hr;

Q: liquid mass feed rate per unit length of wetted perimeter, in (lb/min)/ft;

y: liquid viscosity, in lb/ft.min;

p: liquid density, in Ib/ft^; 2 a: liquid surface tension, in Ib/min ;

n: liquid viscosity in centipoise;

y: liquid surface tension, in dynes/cm.

Although no confidence intervals were calculated

for the regression equations, Friedman et al. (1952) sug­

gested that Equation 11 within the range of variables

covered presents an accuracy that can be expected to be

+30 percent or better, which he believed to suffice for

almost all design purposes.

Friedman et al. (1952) compared data obtained by Adler

and Marshall (1951b) and Hinze and Milborn (1950) using

Equation 11. Although equal slopes can be assumed for them, Hinze and Milborne (1950) obtained poor agreement with

Equation 11. The disagreement has been attributed to a number of causes, as: differences in drop-sampling procedures, differences in total number of drops counted, etc. In fact. 26

Friedman et al. (1952) did their weight-distribution sampling

in a plane 10 inches below the atomizer while Herring and

Marshall used the distance of 36 inches. Evaporation of

droplets could be the major cause for the differences.

Herring and Marshall (1955) in analyzing the disc

atomizer parameters and liquid feed rate, presented a

generalized drop size distribution correlation, as given

by Equation 13,

y = x(NDQ)°"G3(nb)°'12/o0'24 (13)

where

y: median droplet diameter parameter

x; spray droplet size, in microns

N: disc speed, in rpm

: disc diameter, in inches

n: number of vanes

b: height of a vane, in inches

Q; liquid feed rate, in Ib/min

Plotting results from Equation 13 on square-root-normal

probability coordinates resulted in a straight line having

constants:

^median = '2.5 x 10^ = 49.0x10^

Extension of the correlation given by Equation 13 to higher disc speeds, lower feed rates and smaller discs was 27

indicated to be feasible by drop-size data from a 2-inch diameter disc rotating at speeds up to 32,500 rpm with feed rates of less than 1.0 Ib/min. Slightly different parameters were obtained from the plotted data, but for any practical purpose the given Equation 13 can be used to predict within

25 percent or better the drop size distribution of sprays produced by straight-vaned discs.

Herring and Marshall (1955) analyzing former data for comparison with the proposed generalized correlation given by Equation 13 found that data supplied by Adler and Marshall

(1951b) well-fitted the correlation; however droplet sizes from data by Friedman et al. (1952) were substantially smaller than predicted by Equation 13, while Adler and Marshall (1951b) obtained greater average drop size. These differences were reported as due to the different experimental techniques used.

It can be observed from the data collected by former workers on spray production that with flow rates comparable to those used in the drying industry, the spray formed can­ not be considered monodisperse. In fact, as noted by Yates and Akesson (1973), at flow rates comparable to those used in commercial agricultural applications, these sprays are very similar in drop size distribution to those from com­ mercial agricultural sprayers i.e., they are polydisperse.

Despite this fact the rotary sprayers offer some attractive 28

features for use in agriculture; the units are capable of

producing a very fine spray, in the range of 10 to 40 microns

for the volume mean diameter, and generally are almost free

of clogging problems.

Among the research carried out on rotary atomizers

for agricultural purposes are those of Roth and Reins (1957),

Burt et al. (1966), Smith et al. (1970), Bode et al. (1972),

Walker and Walton (1972), Goering et al. (1972), Sudit et al.

(1973) and Menzies and Fisher (1975).

Goering et al. (1972) developed a shielded spinning

disc atomizer in an attempt to obtain more homogeneous spray

droplets. Liquid was fed at the rate of 0.0042 gallon/min

(0.26 ml/s) on a 7-inch diameter disc rotating at 3600 rpm.

This device, produced spray with a mass median diameter of

234 microns and a coefficient of variation of 118 percent.

At a flow rate of 0.0224 gallon/min (1.41 ml/s), the figures were 359 microns and 118 percent for the mass median diameter and coefficient of variation respectively. The feed rates used were very low, much lower than are used in conventional pressure nozzles for pesticide applications. These low feed rates may be responsible for the good homogeneity of the spray produced.

Sudit et al. (1973) improved a rotating drum type atomizer, providing the cylindrical rim on its periphery 29

with a row of holes of 1.0 nun diameter drilled toward the

center of the disc and spaced at 3.14 mm intervals. Tests

of a rotating atomizer 70 mm in diameter, and rotating at

6000 rpm, using transformer oil as the liquid, showed

the three distinct atomization mechanisms for feed rates

of 0.049 ml/s, 1.0 ml/s, and 3.7 ml/s, respectively. For

the lowest feed rate, direct droplet formation occurred at

the external periphery of the holes. Seventy percent of the

volume consisted of nearly uniform sized droplets (150 u)r

about 20 percent of the volume was in 60 to 100 micron

droplets, and the remaining 10 percent was in larger drop­

lets (180 y).

The second mechanism of atomization was characterized

by the formation of continuous liquid streams leaving each

hole and breaking up into droplets of uniform size at a certain distance from the external rim. In this case 20

percent of the volume was represented by droplets from 20 to 60 micron diameter, 70 percent of the volume comprised droplets from 60 to 110 micron diameter and the remaining

10 percent represented droplets between 110 and 150 micron diameter.

When feed rate was increased to 3.7 ml/s the third atomization mechanism took place in which the drum dis­ charges a continuous film that breaks down from the effects of random disturbances into droplets of various 30

sizes, forming a polydisperse spray similar to those pro­

duced in conventional atomization, containing droplets from

20 to about 400 microns in diameter.

This sequence is very similar to the findings of

Dombrowski and Lloyd (1974) and Boize and Dombrowski (19 76)

in studying atomization of liquids by spinning cups.

B. Electrostatics: Its Influence on Dispersion and Deposition of Particulates

Brief historical reviews of electrostatics are given by

Moore (1973) and Green (1973). Until the late 18th century,

little was added to the scientific knowledge of electro­

statics since the remote era of about 500 B.C. when the

Greek philosopher Thaïes experimented with amber and observed

strange phenomena when rubbing it on silk or wool fabrics.

By 1600, William Gilbert published his famous "De Magnete"

based on many ingenious experiments he had conducted, in­ cluding experiments involving electrostatics. He called the observed attractions "electric" after the Greek word of amber. In the 1660's Otto von Guericke, of Magdeburg,

Germany, made the first known , using an amber ball on a shaft turned with a crank. The ball became electrically charged after being rubbed.

Francis Hauksbee, an Englishman, in 1709 improved the 31

von Guericke electrostatic generator by replacing the amber

with a glass ball. Later leather was used to substitute for

the hands for rubbing the rotating glass balls.

In 1733 the Frenchman Abbe Nollet and Charles Francis

de Cisternay Dufay discovered the polarity of electrical

charges, one exhibited by rubbed glass and the other type

exhibited by rubbed amber. Later in 1747, Benjamin Franklin

designated these electrical charges as positive {+) and

negative {-), respectively, when provided by rubbed glass or

amber. He was also the formulator of the basic theory of

capacitors, and he made some using Leyden jars.

Alessandro Volta introduced in 1775 the first induc­

tion type of electrostatic generator and in 1800 he intro­

duced the chemical . Charles A. Coulomb in

1785 formulated the basic equations related to electric forces

among electrically charged particles. In 1787 Abraham Bennet

invented the gold-leaf . After Oerstead, Ampere

and Ohm, Michael Faraday, in 1832, introduced the idea of

lines of force in the electric field around charged bodies.

The basic rotating inductive electrostatic generator

invented by C. F. Valey in 1860 was improved by James

Wimshurst, an English engineer, in 1868. Two or more glass

discs rotating in opposite directions were able to generate

higher voltage than the earlier models. The major use of the

Wimshurst generator was to operate the early x-ray tubes. 32

In 1929 R. J. Van de Graaff invented the belt-driven

electrostatic generator which supplanted the Wimshurst ones.

However, the limited output in terms of current (and power)

persisted. This continued until the transformer-

combination was introduced, overcoming these previous re­

straints to industrial application of electrostatic principles.

Among the numerous modern applications of electro­

statics, the electrostatic precipitators was the major

break coming around 1905, by F. G. Cottrell. Its first

application in the United States was to control pollution

originating from smelters and cement mills.

Other applications such as electrostatic separation of

minerals and other mixtures, and paint spraying came later.

Unfortunately, electrostatics has also been responsible

for new nuisances and hazards. Some of these are associated

with new technologies such as high speed printing machines

acquiring a build-up of electric charges at high levels.

More serious problems arise with a build-up of electric

charges creating electrostatic potentials and fields so

high that spark formation results in often disastrous

explosions, in grain elevators, supertanker ships, cotton-

fiber processing plants and the like.

Most of these nuisances and hazards involving liquids have been studied under the topic of static charging by 33

spray electrification. This subject has been studied since

1892 by a number of workers and reported in detail by Loeb

(1958). For small liquid discharge through a nozzle, a

very small current can be expected flowing from the liquid

to the reservoir walls. Moore (1973) showed that when

water is sprayed by means of an air blast, a total current

of about 10-6 A can be expected for a flow rate of 1 kilo­

gram per second, which would correspond to an average

specific charge of 10 -6 C/kg of sprayed water. In general this type of electrification is undesirable and must be eliminated or minimized.

A second phenomenon involving a liquid subjected to an electrostatic field is the electrostatic dispersion. An electric field normal to the surface of a conducting liquid induces surface charges, which set up electrostatic forces opposed to the binding surface-tension forces of the liquid.

A sufficiently high electric field can disrupt a liquid surface so that charged droplets can be produced.

Although the two phenomena, spray electrification and electrostatic spray generation, are related, they have fundamentally opposite effects; the spray electrification is generated by a mechanical disruption of the liquid, while in electrostatic spray generation the mechanical disruption of the liquid is caused by an accumulation of electric 34

charges on the liquid surface due to the presence of an

intense electrostatic field.

The first recorded investigations on electrostatic

dispersion according to Drozin (1955), and Bailey (1974),

were by George M. Bose in 1745. He found that high po­

tentials applied to certain liquids contained in a glass

tube ending in a fine capillary, changed from threads to a

highly dispersed aerosol consisting of droplets of relative­

ly uniform size. After Bose, Zeleny (1917) related the

required potentials to the forces required to overcome the

surface tension and rupture the liquid surface.

Vonnegut and Neubauer (1952), investigating the elec­

trical dispersion of liquids, found that under certain

conditions a very fine monodisperse aerosol was obtained.

The observed Higher Order Tyndall Spectra indicated the

high degree of monodispersity with a droplet size of about

1 micron diameter.

Based on his experiments, Drozin (1955) observed that the dielectric constant of a liquid is a good indicator of its dispersibility. Therefore, some liquids like xylol, toluene, benzene, and carbon tetrachloride did not disperse even at high potentials up to 30 kV, when using a capillary tube of about 60 micron diameter, set up at 100 millimeters from the ground potential. Chloroform and ether showed fine 35

threads of liquid after high potentials were applied, while

water, glycerin, methyl alcohol, acetone, ethyl nitrate, and

acetic acid showed fine dispersibility when high potentials

were used. Drozin further concluded that substances with

specific conductivity lower than 10-11 S.m -1 and higher than -3 -1 10 S.m cannot be dispersed. He also observed that fine

dispersion was possible only if positive potentials were

applied, as was reported by Vonnegut and Neubauer (1952),

although Pierce (19 59) reported the opposite situation, with

stable regimes only possible under negative potentials.

Taylor (1964) showed theoretically and experimentally that

liquid cones protruding from capillary tubes subjected to

high potentials were stable for apex angles from 180°

to 98.6°, when disintegration occurred.

Carson and Hendricks (1965) used a metal capillary tip

of 100 micron diameter set at 5 mm from the accelerating

electrode. Glycerin and octoil were used at flow rates -10 -9 between 10 kg/s and 10 kg/s. At potentials below the critical value of 3.5 kV the spray was observed to be along or near the axis of the capillary, and it originated from liquid adhering to the capillary. At voltages above the critical value spray occurred in one or more jets, which originated along the periphery of the capillary tube and no liquid adhered to the capillary. The authors observed a 36

large number of droplets emitted during each spraying pulse,

as Zeleny found previously, but contradicting the findings

of Pierce (1959).

Burayev and Vereshchagin (1972) derived two analytical

expressions to describe the electrostatic atomization of

liquids through a capillary tube subjected to high po­

tential. From the liquid characteristics and the geometry

of the capillary tube one predicts whether a fine spray will

occur, starting from the end of the droplet by local surface

instability caused by corona current, or, if the droplet

surface instability occurs close to the capillary, resulting

in separation of large droplets without noticeable corona

discharge. The experimental results agreed well with the predictions.

For the group with corona discharge occurring first, the authors listed water and ethylene glycol exhibiting corona-discharge field intensities of 7.75 kV/cm and 7.26 kV/cm, respectively. For the second group, presenting surface instability first, toluene and isopropyl alcohol were listed. The values of critical field intensity at the tip of droplets for these liquids were, respectively, 6.83 kV/cm and 5.56 kV/cm. They concluded that atomization of liquids having a high surface tension is presented by a corona discharge ensuing at the surface.

Bailey (1976) studied a twin blade, sharp-edged sprayer 37

— 6 unit under a vacuum of about 10 torr. Glycerol doped -9 with sodium iodide was fed at flow rates between 3x10 kg/s

and 6x10 ^ kg/s, and potentials up to 16 kV. Droplets in

the range of 9 to 25 microns were observed, and spray

currents were found from 12x10 ^ A/kV to 24x10 ® A/kV.

It can be observed from basic investigations on electro­

static dispersion of liquids that no homogeneous or normal­

ized treatment has been used by the various scientists.

This results in very meager and unreliable information for

testing the physical and mathematical models that have been

proposed. It can be observed that electrostatic dispersion

has been successfully accomplished at expenses of very high

potentials and extremely low flow rates. The spray droplet

size has also been very small: from 1 to 25 microns when

corona discharge prevails, for the reported experiments.

The liquid physical properties largely influnece its electro­

static dispersion. The geometry and arrangement of the electrostatic spray generator and the value of the applied potential are crucial parameters for a successful application.

This accounts in part for the absence of more precise infor­ mation on electrostatics for certain purposes.

Despite such difficulties some industrial application were developed and have improved very markedly since the pioneering days. 38

Allen (1963) conducted a comparative study for the

painting industry. He studied the Ransburg No. 2 electro­

static coating process using a disc rotating at 900 rpm,

with negative potentials on the disc up to 90,000 V. Paint

flow rates were fixed at 250 ml/min, and the disc was set up

at 30 inches from the panels. It was observed that in

general the Ransburg No. 2 method is quite comparable both

in particle size and particle size distribution, with the

hand spray. However, the hand spray produced smaller

particles. Also, increasing the applied potentials from

30 kV to 90 kV increased fineness of atomization. Viscosity

caused no significant effect on the sprayed panels for zero

potential applied, but with a 90 kV potential atomization

became more irregular with a decrease in paint viscosity.

Recommended paint resistivity is from 5x10^ fi.cm to

1.0x10^ fj.cm.

Jones and Thong (1971) used electrostatic potentials to disperse a kerosene jet into a spray of monodisperse droplets. They found that monodisperse spray can be achieved within a small range of applied potentials, within which droplet size is almost independent of potential and is a function of the liquid (kerosene) flow rate. A chemical additive was used to increase the electric conductivity of the pure kerosene from 3x10 -12 S/m to 1x10-6 S/m. Flow rates up to 0.4 ml/min were used and two different capillary 39

tubes were employed. The capillary tip was set up at

3.0 cm from a brass disc. Monodisperse sprays were formed

at 3.65 kV with the smaller capillary and at 4.15 kV with the

larger one. For the flow rate of 0.4 ml/min, a droplet size

of 110 microns was achieved. Derivation of a theoretical

equation for the potential applied to the capillary as a

function of the distance from the ground plate was es­

tablished as

E 4Z

where

E : electric field intensity at the capillary tip, ° V/m; (E^ = 4.17x10^ V/m, for r^ = 0.226 mm, = 3.0 cm, and (f)^ = 4.15 kV)

r^; external radius of the capillary, m

Z : distance from the tip of capillary to the ground, ° m

(j)^; applied potential to the capillary, V

Specific applications of electrostatics in agriculture have been reported mainly for dust charging and deposition and for spray charging; both involved with pesticide appli­ cations.

MacLeod and Smith (1943) were probably the first in­ vestigators in the United States to carry out investigations to determine the magnitudes and polarities of dust charges as affected by pesticide materials, and the deposition 40

efficiency on an electrically charged plate simulating a

plant leaf. Several other investigators followed, here and

abroad. Brazee and Buchele (1959) presented an outline of

research and literature on electrostatic precipitation of

pesticidal dusts.

Gallwitz (1960) conducted laboratory and field investi­

gations on the effects of electrostatic charging of sprays

for plant protection. Water and oil based liquids were tested. Particles negatively charged presented a higher degree of area covered compared to the positively charged particles. For negatively charged spray using diesel oil, the increases were 194 percent and 320 percent respectively, for the top and bottom of leaves, compared to coverage with the uncharged sprays. The figures for water were respective­ ly, 224 percent and 203 percent. Another field experiment was reported showing that potato plants treated with copper diluted in water showed higher copper deposits on their leaves for charged sprays and when subjected to rainfall the charged deposits lasted longer than those on the same doses of uncharged chemicals.

Bowen et al. (1964) presented some of the theoretical implications of electric fields on deposition of charged particles. An attempt was made to appraise the limita­ tions and the possible benefits of the process as interpreted 41

from a study of electric fields of uniform charge density.

Law and Bowen (1966) investigated the

imparted to spray droplets by electrostatic induction.

Two conventional pressure nozzles with a flow rate of 4.1

gph (4.31 ml/s) were used. A 1 inch diameter steel sphere

was fixed in front the nozzles at about 25/32 inch. This

sphere was maintained at potentials up to 16 kV while the

nozzles were grounded via the spray boom pipe. Although no

influences of the applied potentials on droplet sizes were

determined, a maximum average current for the spray discharge

was measured as -2.70x10 -6A at an applied potential of +7 kV

for a full metallic nozzle. For a nonconductive plastic

nozzle with very similar spray characteristics, the maximum

spray current of -3.6x10-6 A occurred at +4 kV. It was

speculated, based on the assumption that the spray had a

uniform distribution diameter of 51 microns, that the charge -14 5 carried per droplet was 5.8x10 C, or 3.61x10 ,

which corresponds to only 3 percent of the theoretical

maximum electric charge that a 51 micron diameter water

droplet can hold. The authors also concluded that in

order to increase the net charge induced on the droplets,

the problem of the opposing ionized field charging from liquid

on the induction electrodes would have to be overcome.

Splinter (1968) modified partially the geometry pre­ sented by Law and Bowen (1966) and tested the influences of 42

the electrostatic potentials on different liquids and at dif­

ferent flow rates. The charge to mass ratio was about — 4 -4 5.8x10 C/kg for water, about 2.4x10 C/kg for water with -4 2.6 g NaCl/liter of water, and 4.4x10 C/kg for DDT emulsion

in water, using the ionized field arrangement. For the in­

duction charging arrangement, tests with diesel oil gave no

detectable charging, since, theoretically the induction

charging requires that the spray be conductive. Also, no

apparent effect of surface charge on rates of droplet

evaporation were noted.

Law (1976) developed and experimentally analyzed a

miniature embedded-electrode charger incorporated into a

pneumatic-atomizing nozzle. Droplet charging was imparted

by electrostatic induction. Potentials used were within

the range of 0.5 to 4.0 kV. The droplet size distribution

was based on that from a penumatic-atomizing spray nozzle

manufactured by Spraying Systems Company type SV #22B. No

attempt was made to verify the influence of electrostatic

potentials on the droplet size distribution. For a liquid

flow rate of 73 ml/min the volume mean diameter was assumed

to be about 19-20 microns. Droplet charge attained was

about 3 percent of the theoretical Rayleigh charge limit, or -14 2.10 C/droplet, which was derived from the measured spray cloud current of 5.8x10-6 A when a potential of 2.5 kV was applied under a liquid flow rate of 73 ml/min, with a 43

liquid showing an electric resistivity of lo'^ ohm-cm. Re- "" 3 working these figures a charge to mass ratio of 4.77x10

C/kg is calculated. As concluded by Law (1976), this

represented approximately 2.4 times the charge on the

particles being charged by the ionized-field particle

charging method used by Law and Bowen (1966) and Splinter

(1968). Law and Bowen (1975) derived equations describing

the evaporation of charged droplets. The effects within a droplet of surface tension and surface charge upon the droplet vapor pressure have been described by the equation:

l"'p/po) = where

p; droplet vapor pressure

p : equilibrium vapor pressure of a flat surface of ° liquid at given temperature

M: molar weight of evaporating liquid

p^: liquid specific mass

R: universal gas constant

T: absolute temperature

a: liquid surface tension

r; droplet radius

Q; electric charge attained by droplet

e: electrical permittivity of the surrounding air-liquid vapor medium 44

A liquid droplet will become unstable and break up into

smaller droplets if an attempt is made to charge the droplet

beyond the amount where the outward stress due to the surface charge density just equals the inward stress of surface tension. This condition was first calculated by

Lord Rayleigh in 1896. Therefore, for the onset of hydrodynamic instability of a charged liquid droplet, the condition is given as

(16) Sirer or, explicitly, the maximum droplet charge that can be attained is

Q = 4(ïïea) 1/2^3/2 (17)

This same relation was derived by Vonnegut and Neubauer

(1952) using the total energy of the system and by Hendricks and Schneider (1963) using the Lagrange equations to describe small departures from spherical equilibrium configuration of a conducting liquid droplet, based on observations com­ municated by Lord Rayleigh in 1882. Both derivations are based on the assumptions that: a) the liquid is a con­ ductor, b) no external electric field is applied, and c) the electrical charge on the droplet (surface) remains constant.

Many experiments have shown electrostatic dispersion of 45

a liquid to be feasible in laboratory conditions with high

potentials producing very intense electrostatic fields

near or at the points of liquid disruption. Most of these

experiments were conducted with extremely low liquid flow

rates when compared with practical field requirements for

pesticide application.

The attempts made by several workers to electrostatically

charge a liquid spray for agricultural purposes have shown

some improvement on the degree of recovery of the pesticide

applied, although no studies have been carried out to

examine the influence on droplet size of an electrostatic

potential applied to conventional nozzles. Most of the

workers have reported their experimental findings in terms

of cloud current or in terms of the electric charge to mass

ratio, based on the mean droplet size produced by an equi­

valent commercial nozzle, or on the droplet size distribu­

tion furnished by the manufacturer.

The determination of a spray droplet size distribution can be accomplished in several ways, depending on the

availability of existing equipment. In general the special care and techniques required are restricted to laboratory tests; although some experimental work can be done in the field, but at much lower accuracy than can be achieved in laboratories. 46

III. OBJECTIVES

The overall objective of this study was to investigate the feasibility of applying an electrostatic potential on a rotating disc atomizer for liquid spraying. Specific objectives were as follows:

1. To investigate the influence of electrostatic potentials on droplet size distribution and spray homogeneity;

2. To investigate the influence of electrostatic potentials on the spray pattern;

3. To investigate the influence of electrostatic potentials on the electric charge imparted to the liquid sprayed. 47

IV. DATA ACQUISITION

To accomplish the objectives proposed, some equipment was designed, constructed, tested, and modified until repeatable and reliable results were achieved. After that the equipment was considered ready for use.

A. Equipment

Two basic pieces of equipment were designed and con­ structed for the laboratory tests; a rotating disc driver and a high voltage dc power supply.

1. Rotating disc driver

The rotating disc driver had to fulfill the following requirements:

1. have power enough to maintain preset constant

speed up to 12000 rpm;

2. have variable speed from 1000 to 12000 rpm, with

control within 3 percent;

3. have exchangeable discs;

4. have the shaft electrically insulated from the

main frame for potentials up to 60 kV;

5. be capable of operating for long periods of

time; 48

6. accept a brush contacting the rotating shaft at

high dc potentials;

7. be installed on a transportable metal frame.

A 1/3 HP 120 volt ac "Skill" router with speed up to

20/000 rpm was used as the prime mover. As sketched in

Figure 2 the router was fixed on a metal platform welded to a rectangular steel tube. Bolted to the rectangular tube were two blocks of Plexiglas, each supporting a ball bearing mounted in such a way as to keep the steel shaft electrically insulated from the frame and maintain axial alignment with the router shaft. An intermediate connection 150 milli­ meter long cut from a 1/4-inch diameter reinforced fiberglass rod was used as the upper part of the mechanicl shaft. The fiberglass shaft served as an electrical . A special collet clutch, similar to that used in the router to hold the bit, was used on the metal shaft to connect the fiberglass rod to it and transmit the torque to the rotating discs. Another Plexiglas plate was installed be­ tween the frame and the rotating disc to increase the electrical insulation against the influence of the very high electrostatic fields developed around the rotating discs.

The discs were fixed to the shaft by a 1/4-inch diameter bolt screwéd into the lower end of the rotating shaft.

For the potentials applied, the dimensions used were adequate. The only necessary care concerned keeping the 49

electric driver

A

reinforced fiberglass main frame shaft 1/4-in diameter ISOiran length

ball bearing,

1/4-in plexi­ glass plate

aluminum plate nylon bolts & nuts W

Figure 2. Details of the rotating disc shaft and drive 50

Plexiglas surfaces clean to avoid excessive current leakage.

The router speed was controlled by a solid-state

variable speed control using a triac based circuit, similar

to commercially available controllers.

A tachometer was installed to monitor the rotating

disc speed. À 12v dc light source was installed close to the

router collet clutch, illuminating the hexagonal nut which

had a chrome-plated surface measuring 5 mm x 10 mm cemented

to one of its faces. By adjusting distance and angle of

incidence, the reflected light was received by a photo-

transistor which activated a Schmitt trigger. The rectangular

pulses from the Schmitt-trigger were counted by a Hewlett-

Packard Model 5212-A frequency counter.

Figure 3 shows a diagram of the tachometer used. The

optical sensor was a phototransistor, FTP-100. A voltage

regulator LM-340-5 was used as the IC2 to maintain compati­

bility between the 12v dc source used and the recommended

input voltage for the TTL ICI, where half of a dual Schmitt

trigger 7413 was used. A 500 kfi potentiometer was used to

bias the phototransistor according to the light intensity, to provide a single count per revolution. Output from pin

8 of the IC2 was directed to the frequency counter. The gate time was set at approximately one second, and the frequency counter displayed the rotating disc speed in 51

Lamp

33000 ^_12v de

O.OluF

Frequency Counter

Q Phototransistor FTP-100 IC^: 1/2 TTL Dual Schraitt Trigger 7313 ICg: Voltage Regulator, LM-340-5

Figure 3. Diagram of the tachometer used to monitor the rotating disc speeds

Hertz. No feedback system was used for automatic speed

control. Speed was controlled by reading the frequency

counter display and adjusting the potentiometer controlling

the router speed.

2. High voltage power supply

The high voltage dc power supply shown in the block diagram of Figure 4 was assembled. Three basic blocks were constructed; a) a timer, or frequency generator, b) a high- 52

S0015 2N3054 1N4005 High Voltage High Rectifier Voltage and o Pulse o Storage Generator Device

m

LM555 o 12VDC 120V Power AC Supply

o.lyf^ O.lyF

Figure 4. Block diagram of the high voltage dc power supply and the timer circuit

voltage pulse generator, and c) a rectifying and dc storage device.

The timer was manufactured by National .

The basic device was an IC LM 555V, selected for its low cost and versatility. A two-stage amplifier, diagrammed in

Figure 4, was used in the output from the IC LM 555V since currents up to 0.7A were expected from the pulse generator.

The pulse generator constructed is shown in Graf and Whalen, 53

19 74. It was decided that a capacitive-dischafge ignition

system for automobiles with the necessary adaptations,

would make a satisfactory pulse generator when connected to

an ignition coil. Consequently, a commercial kit from

Delta, Model Mark Ten B was assembled. The input signal

from the conventional breaker points was replaced by the

timer, as shown in Figure 5. Measurements carried out in

the laboratory using a high voltage probe, ElCO HVP-2 with 9 1.09x10 ÎI resistance, showed peak-voltages up to 45 kV.

The ignition coil used was a commercial heavy duty one.

The high voltage pulses from the secondary winding of the ignition coil were driven into a rectifier using five 15 kV,

1 milliampere silicon rectifier connected in series. The rectified current was fed to a set of seven 6 kV, 0.1 pF capacitors connected in series to ground as shown in Figure

5. Each capacitor was connected in parallel to a 240 mfi 9 resistor. This presented a total resistive load of 1.68x10 to the rectified voltage. The value for the parallel re­ sistances was based on operator safety and the values of voltage and electric charge stored in the capacitors. The internal resistance of the capacitors used was very high.

This resistance was not measured but it was observed that the time constant of the system without any shunt resistance was over 24 hours, which represented a nuisance to the = O.lyF, 6000 V D^= 15 kV, 100 itiA = 240mo Dg= 1000 V, 1 A

TR = Ignition Coil °i ''i •'i ,22 kV TR D, R

R-, I 15 kV

Capacitive Discharge Electronic u1 4^ Ignition Switch R-. System -O 8 kV R,

12 V dc R-. Power Supply 120 V, 6OHz:0

R, M

Figure 5. Diagram of the circuit used for the high voltage power supply 53

operator. Small values for the parallel resistances were

tested but they were discarded because their high current

demands dropped the maximum output dc voltage to 18 kV, for

resistances of 22 Mfi. When the 240 resistors were used

the time constant for the capacitors was calculated to be

about 24 seconds, which seemed very reasonable. The intro­

duction of a complete rectifier bridge between the capaci-

tive-discharge ignition system and the ignition coil allowed the primary winding of the ignition coil to be insulated from ground. Therefore the switch SI could invert the polarity of the voltage pulse to the ignition coil. When changing the polarity of the rectifier, the stored electric charge on the capacitors was of the opposite polarity in relation to ground. This arrangement was adequate for the experimental work done. Connection of the seven capacitors in series was very useful as a voltage divider. Although seven different values of voltage could be obtained from the power supply described, only three of these were used.

Experiments were conducted using both negative and positive polarity.

3. Spray collector and spray sampler

Cloud current is directly related to the electric charge imparted to the spray droplets during the electrostatically assisted atomization. To obtain an accurate measurement of 56

this current, precise collection of the liquid spray was

required. Also, collection of a fraction of the spray

along a radial direction was required for the spray droplet

size measurement.

To accomplish the first task two metal cylindrically

curved surfaces were installed. These were made of aluminum

suspended from a fixed frame and were electrically insu­

lated, as shown in Figure 6. One sheet was connected to

ground through a picoammeter, RCA Model WV-84C. This sheet

was provided with vertical surfaces on both ends to collect

all the sprayed liquid produced in a half space around the

rotating disc atomizer. The other half surface was directly

grounded. The lower ends of these collectors were placed

at 200 mm (8 inches) below the rotating disc atomizer, while

the upper ends stood about 50 mm (2 inches) higher than the

horizontal plane containing the rotating disc. This con­

figuration permitted all tlie liquid sprayed into each half

space to be collected by the respective collecting surface.

The spray sampling for droplet size measurement and

droplet size distribution was accomplished by using a vari­

able width window cut along one radial direction in the

spray collector, starting from the point immediately below

the rotating disc center. A second metal surface curved with the same radius as the spray collector surface was 57

Figure 7. Schematics of the spray sampling system 58

installed on a metal support underneath the spray collector

surface, at a distance less or equal to 10 mm. This metal

support was fixed on a movable target frame, which was

assembled on a pair of fixed metal rails by means of four

small wheels. A sketch of the arrangement used is shown

in Figure 7. An electric motor coupled to a gear box reducer

was used to drive the target frame by means of two pairs of

pulleys and two flexible steel cables. The target frame course was limited by a pair of switches which turned off the electric motor and at the same time reset the system to be started again in the opposite direction. The total course of this target frame was about 350 mm. To assure a constant speed the useful part of the course for collecting droplets was approximately 100 mm about the mid-point. A switch was also provided to time the target frame speed for a preset fixed travelled distance of 163 millimeters. A frequency generator using an IC LM 555V and one buffer transistor was used to drive a calculator Texas Instru­ ments TI-1250, modified as a pulse counter. The frequency for the frequency generator was fixed at 20.0 Hz. Readings from the calculator were used to monitor the cover speed.

A place was provided on the metal target frame, as shown in Figure 7, to receive a removable tray, curved with the same shape as the spray collector. This tray was 80 mm 59

wide and had a sliding house along its 700 mm length to re­

ceive card strips 60 mm (2-1/4 inch) wide.

After several preliminary runs, the openings of the slit

window were fixed at 54 mm and 15 mm, respectively at the

end near the rotating disc center and at the outward one.

This was based on a fixed liquid flow of about 1.0 ml/s,

disc speeds up to 10,000 rpm, and the target frame speed of

about 0.10 m/s, when the selected target was used. The con­ centration of spots produced by the sprayed liquid droplets was considered adequate for further analysis.

An external polyethylene sheet was used to cover the rotating disc atomizer installation. Two goals were ac­ complished; to provide protection against fallout dust on the equipment, and to allow control of the relative humidity during spraying tests.

An overall view of the installation and the equipment used is shown in Figures 8a and 8b.

B. Materials and Methods

Distilled water was selected as the liquid to be used throughout these experiments. The reasons were based on the following: 1) it is easy to obtain; 2) its physical properties of interest in this experiment, such as density, viscosity, surface tension and electric conductivity, can be 60

Figure 8a. Close-up view of the spraying system.

Figure 8b. Overall view with cover installed. 61

kept within narrow ranges for ambient temperature varying

between 20°C to 30°C; 3) it does not present noxious resi­

dues or vapors for the operator or for the equipment used;

4) it presents an electric conductivity within the expected

optimum range, or about 1x10 ^ S/cm, according to the CRC

Handbook of and Physics, Weast (1974); 5) numerous commercial pesticides are water soluble; 6) water is the least expensive and most abundant and reliable of the liquids to be used as carrier for pesticide applications;

7) water, even undyed, is the liquid presenting the easiest way to be sampled for droplet size measurement, by using a water sensitive target.

After selecting the liquid to be used in the experi­ ments, the target for the spray droplets were chosen using the recommendations of Turner and Huntington (1970) and later used by Walker and Walton (1972). The collection procedure is fully explained by Turner and Huntington (1970). A minor variation was the photographic paper used. The method used for sampling the spray droplets consisted of treating a smooth and clear surface with a water sensitive dye. Koda- bromide SW-F2, a Kodak photographic paper, 8x11 inches, was fixed and glazed. A dye solution was prepared by dissolving

2g of Bromophenol Blue in 4 0 ml A.R. Acetone and diluting with 360 ml A.R. Toluene. Individual sheets of the fixed photographic paper, held by means of a pincers, were immersed 62

and slowly moved into the dye solution for 20 seconds. The

papers were removed with the pincers and were then sus­

pended by clothespins from a taut line until complete drying

was achieved. To prevent fingerprints, polyethylene gloves

were used. The treated sheets of paper were then cut in

strips 50 mm (2 inches) wide, and placed inside polyethy­

lene bags to avoid moisture contamination. Although these

could be stored for several days without problems, only the

number of strips that would be used in two to three days were

prepared at otie time. The treated strip papers were stuck

to heavy cardboard strips measuring 63 x 711 mm (2-1/2 x 28

inches), by means of a double-face tape. These constituted

the targets used during the experimental work in sampling

the sprayed liquid for droplet size. The blue stains pro­

duced when the water droplets contacted the dyed target were

measured, after first washing out the excess of Bromophenol

Blue with Ethyl Acetate.

A calibration conducted in the laboratory to correlate

the stain diameters produced by water droplets showed very close agreement with the experimental curve of Turner and

Huntington (1970) and shown in Figure 9. A regression equation, with a correlation coefficient r 2 = 0.995, was derived from the experimental points as 10^ 1 i 1 1 1 rn 1 1 1 1 1 111 1 IIIi-rrr 1 1 1 11 IL

y/ Y

i(P / e y

dJ - - -P (D a\ Ul 1 •H Q 4J (1)

rH M Legend I 1

1 Regressinn 1 i n<= fTiirne^T- & &M Q 1 Huntington, 1970).

1 d=l.0765sO.8675. (r%=0. 997) _ \ 1 O - Experimental data

1 . • Regression line from \

\ experimental data \ d=1.147sO'GG75 10 : - 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 100 10 00 lOOOO

Stain Diameter, s, (ym) Figure 9. Calibration curve of the water sensitive dyed target 64

.d = 1.145s°'GG75 (11)

where

d: diameter of the water droplet, in microns,

s: stain diameter produced on the target by a drop­ let of diameter d, in mircons.

Equation 11 was used to compute droplet sizes from the

measured stain diameters.

The total current drawn from the HV power supply was

read from a microammeter installed between ground and the

ground terminal of the storage capacitors.

The disc current was measured by a microammeter with a

field effect transistor in the input to allow measurement of

currents down to 1 microampere. The scales used were

1.0, 5.0, 10 and 50.0 microamperes. The drift was small

after a few seconds of instrument warming. It was possible

to adjust the zero of the scale at any time, even with a

high potential applied to the disc. The ammeter was

installed in a small aluminum box, which was screwed to a

narrow Plexiglas plate attached to the main frame holding

the rotating disc atomizer driver.

The cloud current was measured by a portable, battery operated picoammeter, RCA Model WV-84C, connected between half of the spray collector and the ground.

The applied voltage was measured by means of a high voltage probe, ElCO HVP-2 with 1090 Mfi resistance, connected

to a 50 microampere full scale ammeter.

All of these ammeters were provided with switches to

invert the readings for reversed input polarity.

The liquid flow was maintained at about 1.0 ml/s.

This value was selected as a practical rate for ULV appli­

cation. It represents the flow rate from a single atomizer

covering a span 1 m wide traveling at 2 m/s and would apply

20 liters per hectare of liquid spray. To control the flow rate a small container of 80 ml capacity was used, and the total liquid head from the discharge tube onto the rotating disc atomizer was set to the point where the measured flow rate was approximately 1.0 ml/s. Variations observed during the tests were probably caused by variations in temperature, which affected the liquid viscosity. The flow rate values were calculated from the time required to drain a fixed volume of liquid from the container, which had a volume scale on the transparent cylindrical walls.

The ambient conditions iqside the cover were determined by readings of dry bulb and wet bulb temperatures from two thermometers placed in front of a small electric fan. This provided limited air circulation around the thermometers with negligible effects on the spray deposition. 56

Three discs were used for tests. These are shown in

Figure 10.

o> L'

4^ He

—*— r«l 1 1 i i -i- 1 nu. J 4 uL jJ LI ^ I Disc 2 Disc 3 Disc 4 diameter 50.4mm diameter 67mm diameter 67mm 4 vanes Plat 8 vanes 2.9mm height 5mm height

Figure 10. Sketch of the discs used

C. Test Procedure

All of the design variables were under control except for the dry bulb temperature and the wet bulb temperature which varied from day to day. To minimize these variations tests were run only during favorable ambient conditions.

The covering of the rotating disc atomizer system with a plastic cover provided effective control of the relative 67

humidity, which was kept approximately between 75 to 80

percent, with dry bulb temperatures in the range of 26°C

to 31.7°C.

For every experimental run the liquid reservoir was

filled, the target tray was placed on the target frame

located at the same end of its course of travel. In that

position the targets were fully protected from the spray

droplets being produced by the atomizer. The ammeters were

turned on at the correct polarity and were set to the opti­

mum scale. If noticeable leakage currents that could affect

the results were detected, the system was turned off and

the affected surfaces were cleaned with isopropyl alcohol and

facial tissue until the system was considered ready for

the test run. In accordance with the experimental design,

the potential polarity, and speed were set. In general, the

polarity was fixed for all runs with the same disc, and was then switched to the opposite polarity. Also, all tests on one disc were run in sequence. This procedure was dictated in part by the difficulty of changing discs at random, and also because it was expected that the treatment

"discs" would constitute a block.

The timer (stop watch) was reset to zero before every timing event. With the solenoid valve closed the rotating disc was brought up to the operating speed. The high voltage 68

power supply was turned on, except for the zero applied

voltage tests. Also, a switch installed in the high voltage

line was closed after verification of the correct potential

and polarity selected for the run. The solenoid valve was

turned on and liquid was allowed to flow onto the rotating

disc, starting the spraying process. Liquid discharge flow was timed by the same stop watch used to time the target frame speed. When the liquid free surface in the small reservoir crossed the line corresponding to 80 ml volume the stop watch was turned on until the volume of the discharged liquid was 40 ml. This represented a variation of about 3 cm in the total liquid head, originally started from approximately 38 cm. The average flow rate for the 40 ml discharged was calculated. Values of total current, disc current, and cloud current were recorded, as well as the speed of the rotating disc, the applied potential, and the time required to discharge 40 ml of liquid. The stop watch was reset and the target frame was triggered to move under­ neath the spray collector through the window opening. The target frame stopped at the other extreme of its course beneath the spray cover. The system was turned off, and the target frame travel time between two fixed points placed 16.3 cm apart was recorded from the stopwatch. The target tray was removed and the target strip was replaced by a new unexposed one. The target frame was returned to its initial 69

extremity and the target tray was again reinstalled. Dry bulb and wet bulb temperatures were recorded. The process was repeated until both polarities were tested at the three voltage levels for all three discs. The applied potentials were OV, +8 kV, +22 kV, -8 kV, and -22 kV.

For spray charging purposes, cloud current, disc current and total current were measured also for the potentials of

+15 kV and -15 kV, but droplet size measurements were not made at these potentials.

D. Experimental Design

A factorial experiment was planned. This was justi­ fied because all factors were independent, and a complete analysis of the factor effects would be possible.

A 3 X 3 x 5 factorial was used in the experiment. The three discs used can be considered a three level treatment, called disc 2, disc 3, and disc 4. The factor speed was also applied at three levels: 50 Hz, 100 Hz, and 150 Hz. These were the angular velocities of the rotating disc atomizers.

The factor potential was applied at seven different levels, as: -22 kV, -15 kV, -8 kV, 0 kV, 8 kV, 15 kV, and 22 kV.

However, sampling for droplet size analysis was not done for

-15 kV and 15 kV. The two other factors, liquid and liquid flow rate were each fixed at a single level. Reasons for 70

this where explained previously. Water is one of the most

common pesticide carriers, and the fixed flow at the approxi­

mate rate of 1 ml/s represents a very acceptable rate for

ULV applications. These constituted the design variables

for the experiment. A single replication was used due to time

and resource limitations. According to Ostle and Mensing

(1975) this is valid for small experimental errors encoun­

tered in industrial experiments. In such cases, the experi­

mental error is estimated by pooling the mean squares

associated with the higher order interactions, which is

equivalent to assuming that the true higher order interaction

effects are zero.

Effects of spray charging are indicated by the electric

charge flow rates, or electric currents. Currents of interest

are the total current furnished by the high voltage power

supply, the disc current furnished by the HV power supply

and released by the rotating disc atomizer, and the cloud current, representing the flow of electric charger carried

by the spray droplets.

To study the influences of the experimental factors on the droplet size distribution and spray dispersion factor, only five levels of applied potential were used, -22 kV,

-15 kV, 0 kV, 8 kV, and 22 kV. Six stations representing randomized blocks were established in the sampling target. 71

and droplet counting and sizing was performed for these locations. These stations were assigned on each sampling target in a consistent way, such that station No. 1 was always set at the farthest end of the target, and generally collected the largest droplets. Station No. 6 was always placed 10 centimeters from the target end laying beneath the rotating disc atomizer. The other stations were approxi­ mately equally spaced between the first and the last stations.

Each treatment constituted a single experimental unit.

Treatment effects were determined by means of appropriate transformations on the raw data, corresponding to the spot size distributions and concentration on the sampled targets.

The environmental parameters affecting the experiment, dry bulb temperature, relative humidity and air velocity, were controlled within close limits to avoid having to cor­ rect for these factors. 72

V. RESULTS

The raw data was appropriately processed and two basic

groups of data were established. The first group is re­

lated to the electric charge imparted to the spray, while

the second group is related to the spray sampling for

posterior determination of droplet size distribution.

A. Spray Charging Characteristics

The liquid flow rate was expressed in milliliters per

second (ml/s) and the applied potentials were expressed in

kilovolts (kV). The complete table of data is shown in

Appendix A. The cloud current is plotted versus applied

potentials in Figures 11, 12 and 13, for disc 2, disc 3, and

disc 4 respectively. The discs are sketched in Figure 10.

B. Droplet Size Characteristics

After exposure to the liquid spray during the tests, the

target strips were treated with Ethyl Acetate to remove the

excess of Bromophenol Blue. That treatment was recommended

to protect against any further moisture effects on the water sensitive dye used, and also to improve the contrast between the light blue spots left on the dyed target and the washed background. Every target was marked at six points 7 i

Legend

V - 50 Hz

- 150 Hz 4.8 - O

• —150 Hz

negative 4.0 positive

3.2 - < 3. 4J c 2.4 (U M W 3 U "d P 1.6 - o rH u

0.8

Potential (kV)

Figure 11. Relationship between cloud current and applied potentials for disc 2 74

V -50 Hz

O -100 Hz

-150 Hz

positive

negative

8 15 Potential, kV

Figure 12. Relationship between cloud current and applied potential for disc 3 75

6.0 Legend

^- 50 Hz 5.6

O-lOO Hz

•-150 Hz 4.8

positive

negative 4.0

3.2 •< 3.

C 2.4 Q) M k 3 U

S 1-6 rH u

8 15 Potential (kV)

Figure 13. Relationship between cloud current and applied potentials for disc 4 76

(stations) along its length. No fixed distances where im­

posed on each target, since the maximum penetration of the

droplets was a function of the rotating disc size and

speed. However, the assigned station 1 was always very close

to the furthest droplet deposition on each target, and the

last one, station 6, was always about 10 cm from the lower

end of the target in the center of the spray pattern. In

general, the intermediate stations, stations 2, 3, 4, and 5,

were equally spaced between stations 1 and 6. The distances

from the center of the spray pattern were recorded for all

stations. A full scale photograph of each station was taken. This was accomplished by using a stand which held the camera at a fixed position. Illumination was provided by two 150 watt photoflood lamp. The camera used was a

Canon model FTb, with fixed extension tubes and the regular

Canon 50 mm focal length, f 1.8 lens. Although a black and white high contrast copy film, Kodak 5069, was tested, the best results were obtained from Kodalith Ortho Type 3, 35 mm film, using a polarizer filter with the polarizing axes crossed to reduce reflections and glare from the target surface. The Kodalith film sensitivity was 6 ASA. After some trials, the shutter speed was fixed at 1 second and the lens aperture was set at f 7. It was observed that variations of more than one-half an f-stop affected droplet 77

sizing results, confirming Liljedahl's (1971) findings.

The exposed and processed negatives where then enlarged up

to a maximum size of 8x11 inches.

Different enlargements where used as a function of

the spot sizes found in the negatives. These were 7.5X,

lOX, 15X, 20X, 22.5X, and 33X. The enlargement was based on the minimum and maximum size of the enlarged spots, fixed

at 0.3 mm and 9.2 mm, respectively, for use with a semi­ automatic particle size analyzer, Carl Zeiss, Model TGZ-3.

A second limitation was the enlarging equipment available.

The best results for the enlarged pictures were obtained when Kodabromide SW F5, and F6 photographic paper were used. The choice of a single weight paper was imposed by the semi-automatic particle size analyzer used, where the spot is sized by a spotlight of variable diameter, focused through the photographic paper. Detailed information is found in the apparatus manual and in the bulletin published by Carl Zeiss Inc. (1956). Every picture corresponding to a collection station was analyzed and the results were recorded from the particle size analyzer. The number of spots with a diameter within the limits of a certain class was added to that class counter. The total number of scanned classes from 0.2 mm diameter up to 9.2 mm diameter was 48, equally spaced according to an arithmetic progression. 78

In general, for a single picture, less than 20 classes con­

tained one or more particle counts. Preliminary tests showed

the adequacy of this method, based on the spot population

per enlarged picture and the natural dispersion of the

spot sizes. The criteria established by Montgomery (1964) were used, which stated that the required number of measure­ ments and their expected accuracy depend on the range of sizes. A graph, as shown in Figure 14, provided a guide to the number of spots that must be measured to achieve an accuracy for the count median diameter to within +10 percent at the 99 percent confidence level, after calculation of the parameter (d^go'^O^'^'^50 the lower curve. By the same token the upper curve shown in Figure 14 permitted estimation of the droplet sizes representing the 10th and 90th per­ centiles, respectively, to within +10 percent accuracy at the

99 confidence level, by using respectively the parameter,

(^^O'^O^/^IO' ^^100"^50^/^90* A few discrepancies occurred in droplet size distribu­ tion for single station estimations, mainly for disc 2 at stations 1 and 2, although overall estimation of the droplet size distribution per run was accomplished with good accuracy.

The concept of stratified sampling as explained in Silverman et al. (1971) and Stockham and Fochtman (1977) was used when establishing the droplet size distribution for an 79

(dp~ d^ /d 1000 .00 50

CO 300

Î3 100

0.50

• Figure 14. Measurements required for the count median diameter and the 10th and 90th percentiles to within 1 10% accuracy at 99% confidence level (after Montgomery, 1964)

In Figure 14, the parameters used correspond to the midpoint of the classes as;

dg: where the smallest particle is found;

*^10* the first 10 percent of the particles are found,

^50* where the first 50 percent of the particles are found,

dgo' where the first 90 percent of the particles are found,

: where the largest particle is found 80

individual run, since, in general there exists a relation­

ship between the particle size distribution and the distance

from the rotating disc atomizer. The outermost stations

collected the largest droplets, and the enlargements used were less than those used for inner stations which exhibited

larger numbers but smaller droplets. In general, different station areas were sampled to obtain the final spray drop­ let distribution per run. Appendix B shows the raw data obtained from each individual run. The enlargement used for the picture taken from each station is listed. Only the nonzero counting classes were considered, as they were furnished by the semi-automatic particle size analyzer. The tables show the corresponding data of the six stations for each run.

The raw data, as shown in Appendix B, was transformed by means of Equation 11, after considering the enlargement of the spots measured. A second transformation was intro­ duced in order to reduce the number of droplet size classes.

This transformation was used in the computer program shown in Appendix C as the subroutine XCLASS. It was based on the assumption that the spots counted within each class were uni­ formly distributed in the range of the class interval with respect to the spot diameters. The selection of 25 classes to cover the range from 10 microns up to 720 microns 81

according to a geometric scale was based on the dispersion

of the droplet spectra for the experimental units and

the number of droplets counted in each of the new trans­

formed classes. Comparisons of the means and standard

deviations obtained directly from the data after the first

transformation with those from the 25-class transformation

showed negligible differences. Calculations of the moments,

the skewness, and the kurtosis for both distribution arrange­

ments also showed very small differences. Therefore, the

droplet size distributions for all the treatments were based

on the data after transformation into the 25 classes. A

total of 270 stations were sampled. One table for each

station was prepared, showing the basic frequency distribu­

tion and the cumulative distribution of droplets by number

and by volume. In addition, other parameters were calculated

for further statistical analyzer. Some of this information

is presented in Appendix D to illustrate the procedures.

Two transformations were made on the droplet size

distributions by station, and these were made by the computer

program shown in Appendix C. Both transformations are related

to the overall droplet size distribution per run. The first

transformation yielded a new distribution called sum

distribution. The same 25 class intervals was used, and the corresponding classes were summed through the six sampled 82

stations. This new distribution represents the droplet

distribution that would be expected if a sampling device were

allowed to move along a radial direction during the spraying

process. The travel speed would be such as to produce on

the water sensitive target the same concentration of drop­

lets as in the sum distribution. These sum distributions are

presented in Appendix E, together with their corresponding

means, standard deviations, and other statistical parameters.

The second transformation, called radial distribution, added the frequencies of the corresponding classes through the six sampled stations according to the radial distance of each class relative to the radial distance of station

1. Mathematically it represented the transformation of a distribution on the xy-plane to a new radial distribution on the r0-plane, with r the Jacobian of such a transforma­ tion. Physically it represented the expected droplet size distribution for the rotating disc atomizer, as tested.

This transformation was an alternative to the first one, and was calculated by the computer program of Appendix C.

Appendix F shows the radial distribution for individual runs.

Several characteristic diameters were calculated by means of the computer program shown in Appendix C, to repre­ sent the droplet size means for the spray distributions. 83

These diameters, and others not treated, are discussed in

Mugele and Evans (1951), Marshall (1954), Liljedahl (1971),

Silverman et al. (1971), Dennis (1976), Goering and Smith

(1976), and Stockham and Fochtman (1977).

The calculated mean diameters and corresponding

standard deviation were calculated from the following equa­

tions:

°N " (2n^D^)/En. (19)

s^ = (ZnuD^Z -(En^D^)^/En^)/(Zn^-l) (20)

where D„ is the number mean diameter and s„ is the N N corresponding number standard deviation.

"VME = ((!:n.D.3)/z„.)V3 (21)

where d^jyjg is the Mugele-Evans volume mean diameter.

"VHE = (£n.D.^)/Sn.D.3 (22) where is the Herdan volume distribution mean diameter.

This characteristic diameter is useful in studies involving liquid evaporation and molecular diffusion.

The Sauter mean diameter, . , or D„„, as calcu- Sauu SV lated by Equation 23, is employed in studies related to heat and mass transfer through the droplet surface, as repre­ sented by evaporation and drying, combustion, and other chemical reactions. 84

"saut = "sv = (ïn.D.3)/ï„.D.2 (23)

The surface mean diameters, given by Equation 24,

is useful for absorption studies.

°sur = (24)

where D is the surface mean diameter. sur Because many drop size distributions are approximately

normal with respect to the logarithm of the size, the

logarithmic-normal distribution is frequently assumed in

their analysis. The mean computed from the logarithmic

transformed data is known as the geometric mean. It can

also be computed from the number distribution as well or

from the volume distribution, as shown by Equations 25 and

26.

= exp[{Zn^(ln D^))/En^] (25)

= exp[(Znj.D^^(ln D^))/Sn^D^^] (26) where is the geometric number mean diameter, and is the geometric volume mean diameter. The corresponding standard deviation for Equations 21 through 26 were included in the computer program shown in Appendix C. 85

VI. DISCUSSION

A. Spray Charging Process

Data from the spray charging experiments was analyzed

in accordance with standard procedures. The corresponding

analysis of variance was conducted according to the pro­

cedures of Barr et al. (1976), using the Statistical Analysis

System. The treatment potential was highly correlated with

the disc current and the cloud current, as would be ex­

pected. No regression analysis was made, since the graphs

shown in Figures 11 through 13 are based on only three points.

Any attempt to extend the results beyond the range of vari­

ables studied is not recommended, since as the applied

potential increases so does the current through the rotating

disc. The reason for this is that the corona discharge

exhibits a nonlinear relationship with the electric (electro­

static) field generated close to the rotating disc sharp

edges. This electric field is directly related to the

applied potential.

The values shown for the cloud current should be smaller than or equal to the disc current. Some of them are slight­ ly greater than the disc current. This resulted from experi­ mental error or localized variations, since the cloud current values were obtained by collecting theoretically half of the liquid sprayed. During short time intervals the liquid 86

discharge was not always perfectly distributed around the

circular area.

The cloud currents observed for the negative polarity

were generally higher than the cloud currents for the posi­

tive polarity. The same was found for the disc currents.

This suggests that negative polarity would be recommended

rather than the positive one.

The ratio, cloud current to disc current, was very

high, which indicates a high efficiency in the electric

charging transfer mechanism, especially at lower potentials,

although only a small fraction of the theoretical maximum

electric charge per droplet as given by Equation 17, was

achieved. The ratio q/m, the amount of electric charge

imparted to the mass of liquid sprayed per unit time, for the

experiment is shown in Figures 15, 16 and 17, respectively

for disc 2, disc 3, and disc 4.

Using Equation 17 the maximum electric charge that a

spray could achieve was calculated as

!:n.(r.)3/2 (27)

For disc 2 at 6000 rpm and with a potential of -22 kV

applied the efficiency found for the electric charging

process was 3.22%. This value is of the same order, but slightly higher than the 3% value presented by Law (1976) 87

5000 Legend ;

V - 50 Hz 4000 O - 100 Hz

• - 150 Hz positive 3000 ^ negative

2000

1000 ,900 D- 800 a 700

8 15 Applied Potential, kv

Figure 15. Relationship between electric charge per unit mass and applied potential for disc 2 88

5000 Legend: V - 50 Hz

O - 100 Hz 4000

3000

2000

1000 900 800 700

600

500

400

300

200 15 22

Applied Potential, kV

Figure 16. Relationship between electric charge per unit mass and applied potential for disc 3 89

7000

6000

5000

4000

3000

2000

1000 pî 800 y

Applied Potential, kV

Figure 17, Relationship between electric charge per unit mass and applied potential for disc 4 90

when using an electrostatic induction spray-charging nozzle

system.

For ease of comparisons between theoretical and experi­

mental values, the calculation of an equivalent geometric

mean diameter is suggested, as

d^ 5 = (En^d^^-^)Zn^ (28)

This d^ ^ value would be between the number mean diameter as given by Equation 19 and the surface mean diameter as given by Equation 24. The use of the number mean diameter results in smaller values for the maximum electric charge of a single droplet, although the ratio between experimental and theoretical values also would be smaller than the correct one. Calculations performed for disc 4, at 9000 rpm and with a potential of -22 kV, showed charging efficiencies of 9.35% and 7.86%, when the theoretical value of the maximum electric charge was based on d^ ^ and d^, respectively. These values are higher than those shown by

Law and Bowen (1966), Splinter (1968), and Law (1976).

The difference is probably due to the charging mechanisms used. The induction system used by those investigators are not as efficient as the contact and corona charging mechanism.

While potential was the most significant parameter. 91

the other two, speed and disc, had significant influence

on the cloud current and the ratio q/m. Increasing speed

consistently increased the cloud and disc currents for

potentials up to 15 kV for both negative and positive

polarities. For the highest potential, 22 kV, some erratic

results occurred. Corona discharge provides the most

likely explanation. Its effect overcame the droplet forma­

tion mechanisms. The differences among discs were expected,

since the three discs used had different design characteris­

tics.

B. Droplet Size Distribution

The three different discs used produced droplets with different size distributions, as expected. The three discs could be considered as three distinct blocks and could be analyzed independently from each other. Not doing this is probably primarily responsible for the high values of the higher-order interactions recorded. Therefore, the reliability of the analysis of variances of the droplet size distributions is questionable, since it was assumed that the sum of squares of the higher order interactions would be small and that a single replication would be satisfactory.

Tables 2 and 3 show respectively the results of the ANOVA for the variable number mean diameter, calculated according Table 2. ANOVA for the variable DMN, number mean diameter for sum distribution

Source DF Sum of Squares Mean Squares

Model 44 4512.6 102.56

Error 0 0.0 0.0

Corrected Total 44 4512.6

Tests of hypotheses using the ANOVA SS for DISC*POT*SPEED as an error term

Source DF ANOVA SS F-Value PR > F

DISC 2 2165.6 31.71 .0001

PDI 4 448.6 3.28 .0381

DISC*POT 8 245.6 1.88 .1852

SPEED 2 128.2 0.90 .5399

DISC*SPEED 4 432.3 3.16 .0428

POT*SPEED 8 546.0 2.00 .1135

DISC*POT*SPEED 16 546.4 Table 3. ANOVA for the variable Dg^ut' Sauter mean diameter for sum distribution

Source DF Sum of Squares Mean Squares

Model 44 3943.7 29.6

Error 0 0.0 0.0

Corrected Total 44 3943.7

Tests of hypotheses using the ANOVA SS for DISC*POT*SPEED as an error term

Source DF ANOVA SS F-Value PR > F

DISC 2 1651.7 27.07 .0001

POT 4 330.1 2.70 .0678

DISC*POT 8 250.8 4.79 .0234

SPEED 2 292.5 1.03 .4553

DISC*SPEED 4 483.2 3.96 .0203

POT*SPEED 8 447.3 1.83 .1439

DISC*POT*SPEED 16 488.1 — 94

to Equation 19, and the ANOVA for the variable Sauter mean

diameter calculated according to Equation 23 for the sum

distribution. In both cases the contribution of the higher

order interaction (disc*potential*speed) to the sum of

squares is about 12.1 percent, which is not negligible.

Therefore,the influences of the treatment potential, al­

though present, cannot be assumed to be responsible for the

mean diameter variations which occurred in the spray drop­

let distributions.

Analyses from separate discs showed a less marked influence of the potential treatment, since the second order interaction, speed potential was in general highly signifi­ cant for the variables of interest. Its contribution to the sum of squares was about the same order of magnitude, and often, even larger than the contributions from the main factors, as potential and speed.

For the radial distributions similar responses were obtained for the mean values of the different droplet sizes analyzed. The factors disc and speed were the two most significant parameters. Also, separate disc analyses showed the interactions speed*potential for the variables studied was in general very high, with the sum of squares contribu­ tion about the same order or even larger than the contribu­ tion from the factor potential, excpet for disc 2. For disc 95

2 the variables number mean diameter and the logarithmic

number mean diameter as calculated by Equations 19 and 25,

respectively, showed the factor potential significant

at the 6 percent level.

A further analysis of variance was conducted to analyze

the influence of the factor potentials on the spray distri­

bution. A cut-off in the lower tail of the droplet size

distribution for the radial distribution at class 15 was

provided. A new distribution with droplet diameters smaller

than 115 microns was obtained and analyzed. The ANOVA for

the complete experiment is shown in Table 4, for the vari­

able Mugele-Evans volume mean diameter calculated by

Equation 21. Disc 2 under this new cut-off distribution

showed a larger influence from the factor potential than the

influence excerted by the factor speed, for the variables

number mean diameter, logarithmic number mean diameter,

Mugele-Evans volume mean diameter, and the Sauter mean

diameter, although the levels of significance were

respectively 5.7, 4.0, 10.0, and 17.0 percent.

Aanlyses of variance of the lower tail of the droplet size distributions, including station as a factor were con­ ducted. The three discs were considered individually. The cut-off was made at class 15, which produced new droplet distributions for droplet diameters smaller than 119 microns. Table 4. ANOVA for the variable D , Mugele-Evans volume mean diameter, for the radial distribution

Source DF Sum of Squares Mean Squares

Model 44 7265.0 165.1 o o

Error 0 o o

Corrected Total 44 7265.0

Tests of hypotheses using the ANOVA SS for DISC*POT*SPEED as an error term

Source DF ANOVA SS F-Value PR > F

Disc 2 3366.4 31.35 .0001

Pot 4 655.8 3.05 .0477

DISC*POT 8 640.4 1.49 .2359

SPEED 2 751.3 7.00 .0066

DISC*SPEED 4 556.0 2.59 .0764

POT*SPEED 8 436.1 1.02 .4628

DISC*POT*SPEED 16 97

The ANOVA for disc 2 is shown in Table 5. In this case,

for the Sauter diameter, potential is a nonsignificant

main factor. However, the interactions POT*SPEED and

POT*STATION are significant. This means that potential

has influenced in some way the droplet distribution through

the stations, or, in other words, through the radial direc­

tion. The interaction POT*SPEED is significant based on

the fact that the droplet size is highly affected by the

rotating disc speed. The previous analysis of disc 3 data

showed that the Migele-Evans volume mean diameter was af­

fected by the factor potential and its interactions. The

corresponding linear model was tested through the third-

order interaction, and the ANOVA is shown in Table 6.

Disc 4 was analyzed by the same method, and showed

significant differences for the variables Mugele-Evans

volume mean diameter. Sauter diameter, logarithmic number

mean diameter, and number mean diameter for the main factor

potential and speed, as well as for the second order inter­

action potential*speed for the lower tail of the droplet

size distributions up to 119 micron droplet diameter.

In spite of the statistically significant differences

found for the lower tail of the droplet distributions for some of the variables, the plots of the mean values show an erratic behavior with the potential levels, and a regression Table 5. ANOVA for the variable the Sauter diameter, using a linear model on droplet diameters smaller than 119 microns for disc 2

Source DF Sum of Squares Mean Squares F-Value PR > F

Model 49 33542.9 684.5 4.33 .0001 .88

Error 29 4587.1 158.2

Corrected Total 78 38130.0

Tests of hypotheses using the ANOVA MS for SPEED*STATION*POT as an error term

Source DF ANOVA SS F-Value PR > F

Pot 4 170 .1 .27 .8956

Speed 2 282.0 .89 .4210

POT*SPEED 8 2411.0 1.91 .0946

STATION 5 16382.0 20.71 .0001

POT*STATION 20 7482.1 2.37 .0017

SPEED*STATION 10 6814.6 4.31 .0010 Table 6- ANOVA for the variable the Mugele-Evans volume mean diameter for disc 3, using a linear model, and droplet diameter smaller than 119 microns

Source DF Sum of Squares Mean Squares F-Value PR F R2

Model 49 36725.0 749.5 16.17 .0001 .965

Error 29 1344.0 46.3

Corrected Total 78

Tests of hypotheses using the ANOVA MS for SPEED*STATION*POT as an error term

Source DF ANOVA SS F-Value PR > F

POT 4 1749.1 9.44 .0001

SPEED 2 897.0 9.68 .0006

POT*SPEED 8 5373.8 15.30 .0001

STATION 5 11709.3 50.53 .0001

POT*STATION 20 8124.0 8.77 .0001

SPEED*STATION 10 8571.8 18.50 .0001 1 00

T V /

80

70

K.

60

/

Legend 40 V - 50 Hz

O - 100 Hz / • - 150 Hz \ / — Disc 2 Disc 3 Disc 4

I 0 +8 +22

Applied Voltage, kV

Figure 18. Influence of the applied potential on the volume mean diameter for droplets smaller than 119 microns 101

analysis would be meaningless. One example is shown in

Figure 18, where the variable , Mugele-Evans volume mean

diameter, represents the mean values of the lower tail of

the droplets smaller than 119 microns in diameter.

1. Degree of dispersion

Masters and Mohtadi (1967) defined a dispersion factor,

6, as

« . (28) SV

where

dfl g5 is the droplet diameter representing the first 95 percent of the cumulative distribution volume;

d_ is the droplet diameter representing the first 5 percent of the cumulative distribution volume;

d is the Sauter diameter. sv To avoid calculations associated with the Sauter

diameter, a new dispersion coefficient, a, was defined as

a = (29) °0.50 where d^ and d^ are defined as in Equation 28, and the dg 20 is the volume median diameter for the distribu­ tion, which can be estimated by the geometric volume mean diameter, according to Stockham and Fochtman (1977) if the particle distribution follows a log-normal distribution. 102

The most practical method is to use log-probability paper,

and after plotting the cumulative volume distribution the

three parameters d^ d^ and 95 can be graphically

determined. Otherwise a computer program can be used to

obtain the necessary interpolation in estimating these

parameters from numerical data. In this case Equation 29

would present the same degree of difficulty as Equation

28, and both would result in similar values for the dis­ persion coefficient. The use of such a dispersion coeffi­ cient is justified for droplet size distributions that are not log-normally distributed. Furthermore, it can be applied to any distribution. If the particle size distribution follows a log-normal distribution, then the geometric standard deviation is the best estimator for the dispersion coefficient.

It was assumed that the droplet size distributions would follow a log-normal distribution, based on previous information from Marshall (1954), Liljedahl (1971) and

Goering and Smith (1976). The dispersion coefficients were calculated using Equation 29 for the experimental distribu­ tions, and are presented in Appendix G, for both, sum and radial distributions. Figures 19 to 21 present plots of diameters d^ and 95 for the radial distribution versus applied potentials for disc 2, disc 3, and disc 4, 103

Legend 50 Hz 100 Hz 150 Hz

600 D.05

500 -V~ -V

400

300 -o_ •cr o-

•H -Ck 200

100 90 80 70 -

-22 -8 0 8 22

Potential applied on rotating discs, (kV)

Figure 19. Droplet sizes for 5% and 95% cumulative volume of radial distribution for disc 2 as function of applied potential 104

Legend 50 Hz 100 Hz

150 Hz 700 D.05

600 D.95 500

400

e 300

100 90 80

70

22 8 0 8 22

Potential applied on rotating discs, (kV)

Figure 20. Droplet sizes for 5% and 95% cumulative volume of radial distribution for disc 3 as function of applied potential 105

Legend ; 50 Hz

100 Hz 150 Hz

700 D 5% -- D 95% 600 •V 500

-O- 400 -O -

D-

300

•H 200

100 30

80

70

60

Potential Applied on rotating discs, (kV)

Figure 21. Droplet sizes for 5% and 95% cumulative volume of radial distribution for disc 4 as function of applied potential 106

respectively. Figures 22 to 24 do the same, but for the

sum distributions.

It can be observed that the factors potential and

speed influence the diameters for the first 5 percent

volume and the first 95 percent volume in a more consistent

way than was found when studying their influence on the

distribution formed by cutting off tails of the distribu­

tions. Figure 25 shows the dispersion coefficient a,

calculated by Equation 29, plotted against the applied

potentials on the rotating discs for the radial distribu­

tions. No strong conclusions can be drawn from these

data, although some influence of the factors disc, speed,

and potential can be noted. Except for disc 4 rotating at

150 Hz, all the point estimates for the dispersion coeffi­

cient lie between the values of 0.5 to 1.15, which means

that the rotating disc atomizers and the treatments applied

produced a spray of fairly homogeneous droplet size within

the range from 5 percent to 95 percent volume of the

liquid sprayed.

The values of the dispersion coefficient a were plotted

versus the calculated values of the geometric standard deviation, as shown in Figures 26 and 27, for the radial and sum distributions. Linear regression analyses were carried out for the data and the region lines and regression equations 107

Legend: V - 50 Hz O - 100 Hz • - 150 Hz D.05

600 — D.95

500 -V- -V 400

300 .^-0~ -

100 90 80 70

60

50

-22 -8 0 8 22 Potential applied on rotating discs, (kV)

Figure 22. Droplet sizes for 5% and 95% cumulative volume of sum distribution for disc 2 as function of applied potential 108

Legend:

V - 50 Hz O - 100 Hz 600 • - 150 Hz -D.05 500 D.95

400

s 300 V"' N •V-

or' xy' •o

e 3. ,-D-

w 200

+) (U r—Ia o Q 100 90 80 70 I -22 -8 0 8 22 Potential Applied on rotating discs, (kV)

Figure 23. Droplet sizes for 5% and 95% cumulative volume of sum distribution for disc 3 as function of applied potential 109

Legend: V - 50 HZ O - 100 Hz • - 150 Hz 700 D.05

600 — — — — — D.95

500

400 o-

300

e — 200 u -p

•P 0) H 100 u 90 Q 80

70

60

-22 -8 0 8 22

Potential Applied on rotating disc, (kV)

Figure 24, Droplet sizes for 5% and 95% cumulative volume of sum distribution for disc 4 as function of applied potential 110

Disc 4

Q) 0.9

-22 -8 0 8 22

Applied Potential on rotating disc, kV

Figure 25. Dispersion coefficient « for the radial distribution, calculated by equation 29 Ill

are also shown in Figures 26 and 27. The coefficients

of determination, r2 , were between 0.67 and 0.85 for the

sum distribution and between 0.76 and 0.94 for the radial

distribution. Therefore, it can be expected that a log-

normal distribution would reasonably well fit the data

for droplet size in the interval between 5 and 95 percent of

the volume sprayed. For these experiments, the log-normal

equation was a better fit for the 10 to 90 percent volume

range than for the 5 to 95 percent range.

An attempt was made to find a distribution that would

better fit the droplet size distributions produced by the

rotating disc atomizers under the test conditions. The

candidate distribution was the one proposed by Rosin-

Rammler in 1933 as quoted from Mugele and Evans (1951)

and from Marshall (1954). Later, Weibull (1951) proposed a

new function which was a different representation of the

Rosin-Rammler distribution. Weibull's equation is best

known for its application to reliability predictions. The

cumulative volume distributions were plotted using Weibull

probability paper and the corresponding parameters were determined from the graphs after adjusting the abscissa axis to account for the value of x» The Xq values were associated with the minimum size of the droplets produced. Determina­ tion of additional parameters was accomplished by using Legend Linear regression equations

1.5- Disc 2, œ = -2,909 + 2.807a^ (r =0.76) gv' Disc 3, * = -2.022 + 2.1410 (r^=0.94) 1.4 —— — — ^gv' •— Disc 4, œ = -2.552 + 2.483a (r =0.93) 1.3

1.2 >4 o -p 1.1 o nJ u, 1.0 G G •HM k .9 0) a U] 'H .8 Û .7

.6

.5 • X 1.2 1.3 1.4 1.5 1.6

Geometric Standard Deviation,

Figure 26 Correlation between dispersion factor « and the geometric standard deviation, 0^^, for the radial distribution .16 T r T r T r 1 r T r

.15 ^ Disc 2,« =-1.939 + 2.0940^^; (r =0.75)

Disc 3,« =-1.464 + 1.7180^^; (r =0.87) .14

Disc 4,°: =-2.300 + 2.290a ; (r =0.67) 13 Q —

.12

.11

.10 CO

u o 4J u (d k C O •H M k (U tn • •H D _L_ 1.2 1.3 1.4 1.5

Geometric Standard Deviation, a gv Figure 27. Correlation between dispersion factor « and the geometric standard deviation o for the sum distribution gv 114

the tables prepared by Mischke (1971).

The Weibull cumulative distribution function is given

as

X-Xn) h R(X) = exp[-{-^)^] (30) where

R(X) is the reliability function

X is the variate

X is the guaranteed variate of the Weibull distribu- ° tion (the minimum value of x)

0 is a Weibull characteristic variate value

b is a Weibull shape factor, dimensionless

For particle size distribution the parameters would be renamed as

R(X) = V(d) = cumulative volume value for droplets smaller or equal to d;

X = d = droplet diameter

X = d = minimum guaranteed droplet diameter such ° ° that d >0 o— 6 and b are two characteristic values associated with the droplet size distribution

These droplet size distributions were selected at random and the data were plotted using Weibull paper as shown in Figures 28 and 29. The cumulative distribution functions obtained from the data are presented in Table 6, as are the calculated mean, median, mode, standard deviations and 115

0

1 95 90 80 2 60

3 40

4 20

5 10

6 05

•H 7

8 01

005 9

001

0003

10 100 1000 Droplet size, micron

Figure 28. Weibullian distribution for droplet pro­ duction by disc 4 at 150 Hz and 22 kv. Minimum droplet size, dQ=15.0 microns 116

" 1 1 1 1 1 M 1 1 1 1 1 1 1 1 i - 1 t 1 . 1 1 1 1 1

n f ! J

// il_ // // U ' ni! T ' —0— Disc 3, at 100 Hz, u OkV straightened for If 1 dQ=18ym I ! Disc 3 at 50 Hz fikV • / À iL straightened for / r if an=- 1 Rum 11 — "rTru IÀ '9 / 7 1 il k 1 j t / /p 7///• . 1 If // • i / 1 -, / / // / nJ1 // /; 1 1. // / . 1 f ; // / . /' / If ]• - //r I //' • ih / /17 //

L 1 1 1 1 1 1 1 1 1 1 1 1111 1 1 1 1 ] 1 10 100 1000 Droplet diameter, micron

Figure 29. Weibullian distribution for droplets produced by disc 3 117

Table 6. Comparisons between data obtained from a Weibull distribution function and the conventional ^ determination, for three droplet size distributions

Disc 4 at 150 Hz and +22 kV,

d^ = 15; 0 = 135; b = 2.80; V = exp[-(^^)^*

Volume mean, y = 135.2 ym (150.0 ym)

Standard deviation, a = 46.5 ym (52.6 ym)

Volume median, x = 133.4 ym (138.6 ym)

Pearson's skewness coefficient, s = 0.106

Disc 3 at 50 Hz and OV

d^ = 18; 6 = 350; b = 3.85; V(d) = exp[-(^^) ^*

Volume mean, y = 329.9 ym (357 ym)

Standard deviation, a = 92.1 ym (94 ym)

Volume median, x = 336.3 ym (343.7 ym)

Pearson's skewness coefficient, s = -0.077

Disc 3 at 100 Hz and +22 kV

d^ = 18; 0 = 230; b = 2.98; V(d) = exp[-(^^)^ *

Volume mean, y = 223.4 ym (229.4 ym)

Standard deviation, a = 75.1 ym (62.8 ym)

Volume median,X = 221.4 ym (218.2 ym)

Pearson's skewness coefficient, s = 0.064

^Note: values between parentheses were computed by the computer program. 118

Pearson's first coefficient of skewness. In the same table are listed the corresponding values computed through the program shown in Appendix C.

It can be observed in Figures 28 and 29 that data points well-fitted the respective Weibull distribution functions. 119

VII. SUMMARY

The objectives of this study were to determine the in­

fluences of electrostatic potentials applied to rotating

disc atomizers for liquid spraying. Two aspects were con­

sidered: the electric charging of the spray droplets by

contact charging and corona discharge, and the droplet

size analysis for the liquid sprayed. A complete factorial

experiment with a single replication was used. The tests

were run with some fixed variables simulating normal field

operations for the laboratory studies.

The contact electrification and corona discharge mech­

anisms produced appreciable electric charges on the spray

droplets of about the same order of magnitude, or even

higher, than reported in the literature for charges produced

by the induction mechanism. The ratio q/m calculated from

the experimental data was up to 11 percent of the maximum

theoretical charge established by the electro-hydrodynamic

instability theory. This value is about three times

the maximum reported for the inductive charging mechanism.

The effects of potential levels applied to the rotating disc on the mean droplet diameters were not significant for the conditions tested. However, some influence was noticed for the droplets in the lower tail of the drop distribu­ tion, although this effect was not consistent. The higher 120

order interactions were not negligible and a more reliable analysis was not possible. The degree of dispersion of the sprays produced by the rotating discs were in general better than any commercial pressure nozzle. The range in size variation of the droplets produced was a function of the speed and the rotating disc characteristics. The results obtained in this study were comparable with the results from previous authors, even for work done with different discs, feed rates, and liquids. 121

VIII. CONCLUSIONS

The following conclusions were drawn from this study;

1. Spray droplets can be charged by contact and

corona discharge by applying an

to a rotating disc atomizer.

2. Within the potential levels applied, 0 to 22 kV,

with both positive and negative polarities, cloud

current and therefore the ratio of charge to mass

increased exponentially with the potential.

3. The negative polarity at the higher potentials

produced larger disc and cloud currents, and

therefore produced greater electric charges on the

spray droplets.

4. No influence of electric potential on the rotating

disc atomizer on the droplet diameter parameters,

such as the volume mean diameter. Sauter diameter

and surface mean diameter was detectable.

5. Some effects of potential level and its inter­

actions with other factors, speed and disc charac­

teristics, were evident for droplets smaller than

119 microns for some of the statistics, but this

was not consistently true. 122

The dispersion coefficient was kept within the

range 0.52 to 1.1 for all but one experimental run,

had the value 1.56. Potentials applied in the

rotating disc atomizer had no effect on dispersion

coefficients.

A log-normal distribution function provides a

reasonably good fit of the droplet size distribu­

tion produced by rotating disc atomizers for the

range of 10 to 90 percent of the volume cumulative distribution, with and without applied potentials.

A Weibull distribution function was a better fit than a log-normal distribution for some of the droplet size distributions obtained experimentally.

The water sensitive targets used were satisfactory, but they showed large variations in the spread factor for relative humidities above 80 percent.

Care was taken in calibrating the paper, but ef­ fects of humidity may not have been completely eliminated.

The system used for collecting samples for particle size analysis is accurate, but is not practical for experiments where a large number of droplets are to be counted. 123

11. Electrostatic disruption of the liquid was not

detectable at the flow rates and potentials

used, confirming the predominance of the liquid

surface tension during the corona charging of

water droplets.

12. Charged droplets settled faster than the un­

charged ones as indicated by radial pattern

distributions. This should improve pesticide

deposition on plants.

13. Levels of electric charge imparted per unit

mass of the spray encourages future work with

higher negative potentials applied on rotating

disc atomizers. 124

IX. BIBLIOGRAPHY

Abbas, M. A., A. K. Azad, and J. Latham. 1967. The dis­ integration and electrification of liquid drops sub­ jected to electrical forces. Pp. 69-77 ^ 1967 Static Electrification. Institute of Physics and the Physical Society Static Electrification Group, London.

Adler, C. R. and W. R. Marshall. 1951a. Performance of spinning disk atomizers. Part I. Chem. Eng. Prog. 47(10): 515-522.

Adler, C. R. and W. R. Marshall. 1951b. Performance of spinning disk atomizers. Part II. Chem. Eng. Prog. 47(12):601-608.

Agui, T. and M. Nakajima. 1977. Influences of liquid properties on electrostatic drop formation using electric conductive liquid. The Transactions of the lECE of Japan E60(2):106.

Akesson, N. B., S. E. Wilce, and W. E. Yates. 1970. Pesti­ cide chemicals as environmental contaminants. Papers of the ASAE No. 70-101.

Allen, G. L. 1963. A study of the Ransburg No. 2 electro­ static coating process. J. Oil and Colour Chemists' Assoc. 46:301-317.

American Society for Testing and Materials. 1973. Recommended Practice for the Analyses by Microscopical Methods. Part 23 and 30. ASTM, Philadelphia, Pa.

Anestos, T. C., J. E. Sickles, and R. M. Tepper. 1977. Charge to mass distributions in electrostatic sprays. IEEE Transactions on Industry Application IA-13(2); 168-177.

Bailey, A. G. 1974. Review: the generation and measurement of aerosols. Journal of Materials Science 9:1344-1362.

Bailey, A. G. 1976. The importance of capillarity in an electrostatic liquid sprayer. Journal of Electro­ statics 2:79-83. 125

Barr, A. J., J. H. Goodnight, J. P. Sail, and J. T. Helwig. 1976. A user's guide to SAS 76. SAS Institute Inc., Raleigh, N.C.

Bevington, P. R. 1969. Data reduction and error analysis for the physical sciences. McGraw-Hill Book Co., New York.

Bode, L. E., T. L. Zimmerman, C. E. Goering, and M. R. Gebhardt. 1972. The effect of flow rate on the distribution pattern and drop-size spectrum of a spinning atomizer. Transactions of the ASAE 15{l):86-89.

Boize, L. M. and N. Dombrowksi. 1976. The atomization characteristics of a spinning disc ultra-low volume applicator. J. Agric. Engng. Res. 21:87-99.

Bouse, L. F., D. G. Haile, and D. R. Kunze. 1974. Cyclic disturbance of jets to control spray drop size. Trans­ actions of the ASAE 17(1):183-187.

Bowen, H. D. and W. E. Splinter. 1968. Field testing of improved electrostatic spraying and dusting equipment under varying conditions. Paper of the ASAE No. 68- 150.

Bowen, H. D. and B. K. Webb. 1968. Electrostatic field breakdown phenomena in the application of charged dust. Paper of the ASAE No. 68-151.

Bowen, H. D., P. Hebblethwaite, and W. M. Carleton. 1952a. Application of electrostatic charging to the deposi­ tion of insecticides and fungicides on plant surfaces. Agricultural Engineering 33(6): 347-350.

Bowen, H. D., W. E. Splinter and W. M. Carleton. 1952b. Theoretical implications of electrical fields on deposition of insecticides and fungicides on plant surfaces. J. Am. Soc. Agricultural Engineers 33:347- 350.

Bowen, H. D., W. E. Splinter, and W. M. Carleton. 1964. Theoretical implication of electrical fields on the deposition of charged particles. Transactions of the ASAE 7(1) : 75-82. TM Brandenburg, B. C. 1974. Raindrop drift reduction spray nozzle. Paper of the ASAE No. 74-1595. 126

Brazee, R. D. 1957. Some basic measurements for analysis of electrostatic dust precipitation. Unpublished Ph.D. thesis. Library, Michigan State University.

Brazee, R. D. and W. F. Buchele. 1959. Electrostatic precipitation of pesticidal dusts, an outline of re­ search and literature. USDA, ARS 42-29, 10 pp.

Burayev, T. K. and I. P. Vereschagin. 1972. Physical process during electrostatic atomization of liquids. Fluid Mechanics Sov. Res. 1(2):56-66.

Burt, E. C., D. B. Smith, and E. P. Lloyd. 1966. A rotary disc device for applying ultra-low-volume (undiluted) pesticides with ground equipment. J. Econ. Entomol. 59(6):1486-1489.

Carl Zeiss Inc. 19 56. Particle Size Analyzer after Endter. Carl Zeiss Bulletin. West Germany.

Carroll, J. S. 1976. Photographic lab handbook. American Photographic Book Publishing Co., Garden City, N.Y.

Carroz, J. W. and P. N. Keller. 1978. Electrostatic in­ duction parameters to attain maximum spray charge. Transactions of the ASAE 21(1):63-69.

Carson, R. S. and C. D. Hendricks. 1965. Natural pulsa­ tions in electric spraying of liquids. AIAA Journal 3(6):1072-1075.

Coffee, R. A. 1971. Electrostatic crop spraying and experi­ ments with a triboelectro-gasdynamic generator system. Pages 200-211 1971 Static Electrification. Institute of Physics and the Physical Society Static Electrifi­ cation Group, London.

Dennis, R. (ed.). 1976. Handbook on aerosols. Technical Information Center, Energy Research and Development Administration. NTIS, U.S. Department of Commerce, Springfield, Va.

Dombrowski, N. and T. L. Lloyd. 1974. Atomization of liquids by spinning cups. Chem. Engng. Journal 8: 63-81.

Douglas, G. 1968. The influence of size of spray droplets on the herbicidal activity of Diquat and Paraquat. Weed Res. 8(3): 205-212. 127

Doyle, A., D. R. Moffett, and B. Vonnegut. 1964. Behavior of evaporating electrically charged droplets. J. Colloid Sci. 19:136-143.

Drozin, V. G. 1955. The electrical dispersion of liquids as aerosols. J. Coll. Sci. 10(2):158-164.

Ennis, W. B., Jr. and R. E. Williamson. 196 3. Influence of droplet size on effectiveness of low-volume herbicidal sprays. Weeds ll(l):67-72.

Frazer, R. P. and P. Eisenklam. 1956. Liquid atomization and the drop size of sprays. Transactions of the Inst. Chem. Engrs. 34(4): 294-319.

Frazer, R. P., P. Eisenklan, and N. Dombrowksi. 1957. Liquid atomization in chemical engineering. Part 2. Rotary atomizers. Brit. Chem. Eng. 2(9):496-501.

Frick. E. L. 1970. The effect of volume, drop size and concentration, and their interaction, on the control of apple powdery mildew by Dinocap. British Crop Protection Council Monograph No. 2.;23-33.

Friedman, S. J., F. A. Gluckert, and W. R. Marshall, Jr. 1952. Centrifugal disk atomization. Chem. Engng. Progress 48(4):181-191.

Gallo, C. F. 1977. Corona - a brief status report. IEEE Transactions on Industry Applications IA-13(6): 550-557.

Gallwitz, K. 1960. The electrostatic charging of plant protection materials. Pp. 339-349 ^ La Physique des Forces Electrostatiques et leurs Applications. Centre National de la Recherche Scientifique, Grenoble, France.

Goering, C. E. and D. B. Smith. 1976. Equations for drop­ let size distributions in sprays. Paper of the ASAE No. 76-1501.

Goering, C. E., R. A. Foster, L. E. Bode, and M. R. Febhardt. 1972. Development of a shielded, spinning disk atomizer. Transactions of the ASAE 15(6);814-817.

Graf, R. F., and G. J. Whalen. 1974. Solid state ignition systems. Howard W. Sams & Co., Indianapolis, Indiana. 128

Green, C. 1973. Electrostatics handbook. Indianapolis, Indiana, H. W. Sams.

Green, M. B., G. S. Hartley and T. F. West. 1977. Chemicals for Crop Protection and Pest Control. 2nd Press, New York.

Hall, J. L. 1971. Measurement as a science rather than an art. Soc. Automotive Engineers, Inc., New York.

Hedden, 0. K. 1961. Spray drop size and size distribution in pesticide sprays. Transactions of the ASAE 4(2): 158-159.

Hendricks, C. D. and J. M. Schneider. 1963. Stability of a conducting droplet under the influence of surface tension and electrostatic forces. Am. J. Physics 31(6):450-453.

Herring, W. M., Jr. and W. R. Marshall, Jr. 1955. Per­ formance of vaned disk atomizers. A.I.Ch.E. Journal 1(2);200-209.

Himel, C. M., J. P. Keathley, and M. G. Miller. 1971. The case of finely atomized sprays for maximum efficiency in insect control. Paper of the ASAE No. 71-660.

Hinze, J. 0. and H. Milborn. 1950. Atomization of liquids by means of a rotating cup. Transactions of the ASME 72:145-153.

Hogan, J. J. and C. D. Hendricks. 1965. Investigation of the charge-to-mass ratio of electrically sprayed liquid particles. AIAA Journal 3 (2);296-301.

Horsfall, J. G. 1956. Principles of fungicidal action. Waltham, Massachusetts, Chronica Botanica Co.

Johnstone, D. R. and K. A. Johnstone. 1977. Aerial spray­ ing of cotton in Swaziland. PANS 23(l):13-26.

Jones, A. R. and K. C. Thong. 1971. The production of charged monodisperse fuel droplets by electrical dis­ persion. J. Phys. D. Applied Physics 4:1159-1166.

Joyce, R. J. V. 1970. Developments in spray application at ultra-low volume rates. British Crop Protection Council Monograph No. 2:76-82. 129

Kuffel, E. and M. Abdullah. 1970. High-voltage engineering. Pergamon Press, Oxford, England.

Law, S. E. 1976. Embedded-electrode electrostatic- induction spray-charging nozzle: Theoretical and engineering design. Paper of the ASAE No. 76-1502.

Law, S. E. and H. D. Bowen. 1966. Charging liquid spray by electrostatic induction. Transactions of the ASAE 9(4): 501-506.

Law, S. E. and H. D. Bowen. 1975. Theoretically predicted interactions of surface charge and evaporation on air­ borne pesticide droplets. Transactions of the ASAE 18(1):35-39, 45. Liljedahl, L. A. 1971. Effect of fluid properties on nozzle parameters on drop size distribution from fan spray nozzles. Ph.D. dissertation. Library, Iowa State University, Ames, Iowa.

Loeb, L. B. 1958. Static Electrification. Springer- Verlag, Berlin.

MacLeod, G. F. and L. M. Smith. 1943. Deposits of in- secticidal ducts and diluents on charged plates. J. Agric. Res. 66(2):87-95.

Markus, J. (ed.). 1971. Electronic circuit manual. McGraw-Hill, New York.

Marshall, W. R., Jr. 1954. Atomization and spray drying. Am. Inst. Chem. Engineers, Lancaster, Pa.

Mapother, H. R. and N. G. Morgan. 1970. Apple pest and disease control by ULV spraying. British Crop Pro­ tection Council Monograph N. 2:83-88.

Masters, K. 1972. Spray Drying. Leonard Hill Books, London.

Masters, K. and M. F. Mohtadi. 1967. A study of centri­ fugal atomization and spray drying. Brit. Chem. Eng. 12(12):1890-1892.

Mathews, G. 1978. Spinning, the pesticide drops to the target. New Scientist 78(1107): 753-755.

Menzies, D. R. 1975. Design of a simple device for limiting the width of the droplet size spectrum from a hydraulic fan nozzle. Can. Agric. Engng. 17(l):25-27. 130

Menzies, D. R. and R. W. Fisher. 1975. Droplet generator suitable for studying droplets of wetable powder sus­ pensions. Can. Agric. Engng. 17(l);63-66.

Mischke, C. R. 1971. Some tentative Weibullian descriptions of the properties of steels, aluminums, and titaniums. ASME Publ. No. 71-Vlb-64. The American Society of Mechanical Engineers, New York.

Montgomery, D. W. 1964. New techniques of particle-size analysis. Rubber Age 94(5):759-761.

Moore, A. D. (ed.). 1973. Electrostatics and its applications. Wiley, New York, N.Y.

Mugele, R. A. and H. D. Evans. 1951. Droplet size distribu­ tion in sprays. Ind. Engng. 43(6):1317-1324.

National Semiconductor Corp. 1976. Linear data book. National Semiconductor Corporation, Santa Clara, California.

Ostle, B. and R. W. Mensing. 1975. Statistics in Research. 3rd edition. The Iowa State University Press, Ames, Iowa.

Pierce, E. T. 1959. Effects of high electric fields on dielectric liquids. J. Appl. Phys. 30(3):445-446.

Reeves, B. G., L. W. Wilkes, R. L. Ridgeway, and D. A. Lil- quist. 1967. Design and evaluation of equipment for basal application of systemic insecticides to cotton plants. Transactions of the ASAE 3(1):13-17.

Reichard, D. L., H. J. Retzer, L. A. Liljedahl, and F. R. Hall. 1977. Spray droplet size distributions de­ livered by air blast orchard sprayers. Transactions of the ASAE 20(2) :232-237, 242.

Roth, G. A. and G. E. Reins. 1957. Rotating disc apparatus for the production of droplets of uniform size. Weeds 5(3):197-205.

Roth, L. 0. and J. G. Porterfield. 1966. Liquid atomization for drift control. Transactions of the ASAE 9(5):553- 555.

Roth, L. 0. and J. G. Porterfield. 1970. Spray drop size control. Transactions of the ASAE 13(6);779-781, 784. 131

Sasser, P. E., W. E. Splinter, and H. D. Bowen. 1967. Effect of RH on the electrostatic charging process. Transactions of the ASAE 10(2);201-204, 208.

Silverman, L., C. Billings, and M. First. 1971. Particle Size Analysis in Industrial Hygiene. Academic Press, New York.

Skoog, F. E., F. T. Cowan, and K. Messenger. 1965. Ultra low volume aerial spraying of dieldrin and malathion for rangeland grasshopper control. J. Econ. Entomol. 58(3):559-565.

Skoog, F. E., T. L. Hanson, A. H. Higgins, and J. A. Onsager. 19 76. Ultra-low-volume spraying: Systems evaluation and meteorological data analysis. Trans­ actions of the ASAE 19(7):2-6, 10.

Smith, D. B., E. C. Burt and F. J. Benci. 1970. Design of a spinning disc, droplet separator and the determination of the size and density of droplets deposited on corn foliage. Transactions of the ASAE 12(3):664-668.

Smith, D. B., E. C. Burt, and E. P. Lloyd. 1975. Selection of optimum spray-droplet sizes for boll weevil and drift control. J. Econ. Entomol. 68(1):415-417.

Smith, D. B., C. E. Goering, L. A. Liljedahl, D. L. Reichard, M. R. Gebhardt. 1977. AC charging of agricultural sprays. Transactions of the ASAE 20(6):1002-1007.

Snedecor, G. W. and W. G. Cochran. 1976. Statistical methods. 6th ed. The Iowa State University Press, Ames, Iowa.

Splinter, W. E. 1968. Effects of electrostatic charging on spray patterns. Paper of the ASAE No. 68-618.

Stockham, J. D. and E. G. Fochtman. 1977. Particle size analysis. Ann Arbor Science, Ann Arbor, MI.

Sudit, Zh. M., M. I. Shterental, A. I. Gronskii, V. A. Sanin, V. F. Dunskii, and N. V. Nikitin. 1973. Trans­ lation No. 367. National Institute of Agriculture Engineering, Silsoe, England.

Tate, R. W. 1961. Immersion sampling of spray droplets. A.I.Ch.E. Journal 7(4):574-577. 132a

Tate, R. W. 1975. The outlook for meaningful droplet size data. Symposium on Pesticide Application, held at Davis, California, in June 26, 1975.

Tate, R. W. 1977. Droplet size distributions for drift reduction nozzles. Paper of the ASAE No. 77-1503.

Taylor, G. I. 1964. Désintégration of water drops in an electric field. Proc. Roy. Soc. (London) 280A;383-397.

Turner, C. R. and K. A. Huntington. 1970. The use of a water sensitive dye for the detection and assessment of small spray droplets. J. Agric. Engng. Res. 15(4); 385-387.

Vonnegut, B. and R. L. Neubauer. 1952. Production of monodisperse liquid particles by electrical atomiza- tion. J. Colloid Sci. 7(7): 616-622.

Walker, J. N. and L. R. Walton. 1972. Water droplet dispersions from spinning disks for evaporative cooling. Transactions of the ASAE 15(5):685-687.

Walton, W. H. and W. C. Prewett. 1949. The production of sprays and mists of uniform drop size by means of spinning disc type sprayers. Proc. Phys. Soc. 62B; 341-352.

Wampler, E. L. and W. M. Hoskins. 1939. Factors concerned in deposit of sprays; the role of electrical charges produced during spraying. J. Econ. Entomol. 32:61-69.

Weast, R. C. (ed.). 1974. Handbook of Chemistry and Physics. 55th ed. Chemical Rubber Publishing Co., Cleveland, Ohio.

Weibull, W. 1951. A statistical distribution function of wide applicability. J. Appl. Mechanics 73:293-297.

White, H. J. 1956. Chemical and physical particle con­ ductivity factors in electrical precipitation. Chem. Eng. Progress 52(6):244-248.

Wilson, J. D., D. K. Hedden, and J. P. Sleesman. 1963. Spray droplet size as related to disease and insect control on row crop. Ohio Agric. Exp. Sta. Res. Bull. 945. 132b

Yates, W. E. and N. B. Akesson. 1973. Reducing pesticide chemical drift. Pp. 275-341. ^ W. Van Valkenburg (ed.) Pesticide Application. Marcel Dekker, Inc., New York.

Yeomans, A. H., E. A. Rogers, and W. H. Ball. 1949. Deposition of aerosol particles. J. Econ. Entomol. 42(4):591-596.

Zeleny, J. 1917. Instability of electrified liquid surfaces. Phys. Rev. 10:1-6. 133

X. ACKNOWLEDGMENTS

The author would like to express his appreciation to:

EMBRAPA (Empresa Brasileira de Pesquira Agropecuaria),

Ministerio da Agricultura, Brasil, for providing support and

authorization to study abroad as a graduate student.

Conselho Nacional de Desenvolvimento Cientifico e

Tecnologico-CNPq, Brasil, for providing the scholarship

and partial support during the graduate program of studies.

Department of Agricultural Engineering, Iowa State

University for the financial support to conduct this

study.

REAP - Research Equipment Assistance Program at Iowa

State University for providing some of the basic equipment required during this study.

Ames Laboratory - USAEC, for allowing the use of the

Particle Size Analyzer during this study.

Dr. S. J. Marley for serving as major professor and for guidance, advice, encouragement and support throughout this study.

Dr. C. W. Bockhop, Dr. W. F. Buchele, Dr. J. L. Hall, and Dr. D. Kirkham, for serving as committee members and for their suggestions concerning this study.

James Newhouse, for helping with the particle size analysis. 134

Dr. J. F. Carvalho for assisting with the statistical analyses of this study.

His wife. Vera Lucia, whose encouragement was always present, and children, Roberto and Mirela, for their understanding. PLEASE NOTE: Appendices contain computer print-out. Filmed as received. UNIVERSITY MICROFILMS INTERNATIONAL 135

APPENDIX A. SPRAY CHARGING CHARACTERISTICS SPRAY CHARGING CHARACTERISTICS

DISC CISC POTENTIAL DBT waT RH FLO* TOTAL DISC CLCUD RATIO NUMBER SPEEC APPLIED RATE CURR CLRF CURR Q/M

Hz kV °C °C % ml/a yA pA yA yC/kg o 2 50 o 0 27.8 23.9 75.0 1. 11 0.00 0 0.00 0.0 2 50 -a 27.8 23.9 75.0 1. 11 1 e.00 0.20 0.22 1S8.0 2 50 8 27.8 23.9 75.0 1 11 20.00 0.20 0.20 1 80.0 2 50 -15 27.8 23.9 75.0 1 • 11 23.00 0.95 0.70 631.C 2 50 1 5 27.8 23.9 75.0 1 • 11 27. CO 1. IC 0.75 676.0 2 50 -22 27.3 23.9 75.0 1. 12 34.00 10.50 4. 20 42 66.0 2 50 22 27.8 23.9 75.0 1 • 11 38.00 9.OC 2.40 2162.0 2 100 0 26.7 22.2 72.0 1 .12 0.00 0 .OC 0.00 C .0 2 100 — 8 26.7 22.2 72.0 1 • 1 2 21.00 0.5C 0. 44 3S3.0 2 100 a 26.7 22.2 72.0 1. 08 20.00 0.4 0 0.40 370.0 2 100 -15 26.7 22.2 72.0 1 • 10 22.00 1 .11 1. 04 945.0 2 100 15 26.7 22.2 72.0 1. 1 0 25.00 1 .10 1. 06 S64.0 2 100 -22 26.7 22.2 72.0 1. 11 32.00 e .50 2.eo 2522.0 2 100 22 26.7 22.2 72.0 1 • 1 1 40.00 7.00 2.40 2162.0 2 150 0 26.7 22.2 72.0 1. 11 0.00 0.OC 0.00 0.0 2 150 — 8 26.7 22.2 72.0 1. 08 14.00 0.4G 0.32 296.0 2 150 a 26.7 22.2 72.0 1. 08 20.CO 0.40 0.40 370.0 2 150 -15 26.7 22.2 72.0 1 12 26.00 1 .60 1. 50 1339.0 2 150 1 5 26.7 22.2 72.0 1 • 1 2 26.00 1 .20 1. 20 1071.0 2 150 -22 26.7 22.2 72.0 1 . 1 1 32.00 10.00 3. 20 2863.0 2 150 22 26.7 22.2 72.0 1. 1 1 40.00 10.00 4.00 3604.0 SPRAY CHAPGING CHARACTERISTICS DISC CISC POTENTIAL DBT WBT RH FLOW TOTAL DISC CLOUD RATIC NUMBER SPEED APPLIED RATE CURR CLRR CURR Q/M

Hz kV % ml/s yA yA yA yc/kg

3 50 0 31.7 27.2 75.0 1.10 0.00 0.oc 0.00 0.0 3 50 -8 31.7 27.2 75.0 1.08 15.00 0.32 0.32 291.0 3 50 a 31.7 27.2 75.0 1.10 14.00 0.3C 0.28 259.0 3 50 -15 31.7 27.2 75.0 1.11 18.00 0.80 0.70 6 36.0 3 50 1 5 31.7 27.2 75.0 1.10 1 e.00 0.8C 0.70 636.0 3 50 -22 31.7 27.2 75.0 1.10 26.00 7.00 3.40 3091.0 3 50 22 31.7 27.2 75.0 1.10 36.00 6.50 2.40 2162.0 3 100 0 30.6 27.2 78.0 1.08 0.00 0.00 0.00 0.0 3 100 -8 30.6 27.2 78. c 1.11 15.00 0.35 0.34 309.0 3 100 8 30.6 27.2 78.0 1. 08 1 7.00 C.4C 0.40 370.0 3 100 -15 30.6 27.2 78.0 1.11 1 8.00 0.60 0.70 621.0 3 100 1 5 30.6 27.2 78.0 1.08 20.00 0.90 0.90 833.0 3 100 -22 30.6 27.2 78.0 l.OS 30.00 8.00 4.00 3670.0 3 100 22 30.6 27.2 78.0 1.09 26.00 6.50 2.60 2385.0 3 150 0 30.6 27.2 78.0 1.05 0.00 0.00 0.00 0.0 3 150 — 8 30.6 27.2 78.0 1.11 15.00 0.55 0.56 504.0 3 150 8 30.6 27.2 78.0 1.11 12.00 0.6C 0.56 5 04.0 3 150 -1 5 30.6 27.2 78.0 1.11 14.00 1.00 1.10 991 .0 3 150 1 5 30.6 27.2 78.0 1.11 16.00 1.00 1.10 991.0 3 150 -22 30.6 27.2 78.0 1.08 28.00 6.50 3.20 2963.0 3 150 22 30.6 27.2 78.0 1.11 24.00 6.50 3.00 2703.0 SPRAY CHARGING CHARACTERISTICS DISC CISC POTENTIAL DBT WBT RH FLOW TOTAL CISC CLOUD RATIO NUMBER SPEED APPLIED RATE CURR CURF CURR 0/M

Hz kV ml/j UA yA yA yC/kg

4 50 0 28.3 25.6 80.0 1 .10 0 .00 0.00 0.00 0.0 4 50 -8 28.3 25.6 80.0 1 .09 12• CO 0 .5C 0.42 385.0 4 50 8 28.3 25.6 80.0 1 .10 14.00 0 •29 0.40 364.0 4 50 -15 28.3 25.6 80.0 1 .10 18 .00 0 •90 1.00 909.0 4 50 15 28.3 25.6 80.0 1.11 20 .00 1 .OC 1.00 901.0 4 50 -22 28.3 25.6 80.0 1 .11 28.00 e• 20 4.20 3764.0 4 50 22 28.3 25.6 80. 0 1.11 31 .00 6• OC 2,60 2342.0 4 100 0 28.9 26.1 80.0 1.08 0.00 0• OC 0.00 0.0 4 100 — 8 28.9 26.1 80. 0 1.09 14 .00 0.5C 0.42 365.0 U) 4 100 00 8 28.9 26.1 80. 0 1.08 17 .00 0 .ec 0. 56 5 18.0 4 100 -1 5 28.9 26.1 80.0 1.08 20 .00 1 .20 1 .00 926.0 4 100 15 28.9 26.1 80.G 1 .09 19 .00 1• 20 1.20 1101.0 4 100 -2 2 28.9 26.1 80.0 1. oe 30 .00 6.50 4. 20 3869.0 4 100 22 28.9 26.1 80.0 1 .08 30 .00 6 .50 3.40 3148.0 4 150 0 28.9 26.1 80. 0 1.09 0 .00 0.00 0.00 0.0 150 4 — 8 28.9 26.1 80.0 1.1 1 1 1 .00 0.26 0.40 360.0 4 150 8 28.9 26.1 80.0 1 .09 11 .00 0.34 0.42 385.0 4 150 -1 5 28.9 26.1 80.0 1 .11 14 .00 1 .60 i.eo 1621.0 4 150 15 28.9 26.1 80.0 1 • 1 1 14.00 1 .20 1.20 loei.o 4 150 -22 28.9 26.1 80.0 1• 11 26.00 9.cc 6.00 54C5.0 4 150 22 28.9 26.1 80.0 1 .10 26.00 6 .00 5.60 5091.0 139

XII. APPENDIX B. RAW DATA FROM PARTICLE SIZE ANALYZER 140

DISC N0.= 2 DISC SPF?..I,^= 3000. RPM PGTENTIAL= 0.0 KV

CLASS LCWER UPPcK CLASS STA STA GTA STA STA STA NO. LIMIT LIMIT AVE 12 3 4 5 6 E NL A R G c M L N T.....< 7.5 7.5 7.5 7.5 7.5 15.0

4 2 0 0 1 0

C G.sy 1 o c.50 o m r- 2 0./7 C .68 0 0 0 1 0 3 0.77 C. 96 C .86 1 3 0 1 0 c 0 0 0 1 0 c 4 o 1.14 1 .05 1 5 1. 14 1.32 I .23 0 Û 0 1 J 0 3 6 1. 22 l.bl 1 .42 0 1 1 0 1 7 1.51 J .69 1 .60 0 0 0 0 8 0 a 1. 6y 1. dL I .78 0 0 0 1 20 0 9 I. 38 2.06 1.97 0 0 0 1 3 7 2 10 2. C6 2.2 4 2.15 0 0 0 7 0 1 1 1 2.24 2.43 2.34 0 0 0 1 0 6 5 1 2 2.43 Z.O 1 2.52 0 0 2 0 0 1 13 2.6 1 2.-30 2.70 0 0 18 0 0 I 4 2.80 2 .89 0 0 6 0 0 2 0 15 2.98 3.1 6 3.07 0 0 3 0 1 <•) C 16 3. It 3. 35 2.26 0 0 I G 17 3.35 3.53 2.44 0 0 1 0 0 0 0 0 1 8 3.E3 3.72 2 .62 0 3 0 0 p 19 3. 72 3. VC 2.81 0 5 0 0 0 0 0 20 3.90 4.0 8 ?.9> 0 1 a 0 0 21 4.CO 4.27 4.18 0 0 0 0 0 25 4. fc2 5.00 4.91 1 0 0 0 0 0 26 5. 00 5.19 5 .10 4 0 0 0 0 27 5. 19 5.37 £..28 2 0 0 0 0 0 28 5. 37 5.56 5 .4o 1 0 0 0 0 0 0 32 6.11 6.29 6 .20 1 0 0 0 0 33 6. 29 6.48 6.38 1 0 0 0 0 0 36 6.E4 7.)3 C.94 1 0 0 0 0 0 3 7 7. C3 7.2 1 7.12 1 0 0 0 c 48 9. C5 9.;' 4 Ç.14 1 0 0 0 0 0 141

DISC N0.= 2 DISC i>PEED= 300 0. RPM POTENTIAL= -8.0 KV

:LASS LCWEH UPPER CLASS 3TA TA STA STA STA ST, NO. LIMIT L IMI T AVE 1 2 3 4 5 6 : N L A K C E MEN T. . • . . 7.5 .5 7.5 7.5 7.5 15.

1 0.40 0. 69 C.50 0 0 0 5 2 0 2 0. 59 0. 7 7 0.68 0 0 0 0 2 0 3 0.7/ 0.96 C .86 0 I 0 0 5 I 4 0. <56 1.14 1 .05 o 2 0 0 0 2 5 1. 14 I,3k 1.23 0 0 0 0 2 0 6 1 .32 l.bl 1.42 0 n 0 0 2 3 7 1. 51 1.09 1 .6 0 0 0 0 0 1 2 6 i.e^ 1. e> a 1 .73 0 0 0 0 10 3 9 l.ES 2.06 1.97 0 0 0 G 7 2 1 0 2. Co 2.24 2.15 0 0 0 3 15 1 1 1 2.24 2.43 6.34 0 0 0 9 5 0 12 2. 43 2.6 1 2.52 0 0 0 1 3 0 0 13 2.61 2.80 2.70 . 0 0 0 7 0 0 14 2. eo 2.^8 2.89 0 0 3 0 0 0 15 2.Sb 3. 1 1 2.07 o 0 6 C 0 0 16 3. lo ^. 3 5 . 2.26 0 0 1 1 0 0 0 0 I 7 3.35 a.53 3.44 0 1 9 0 0 18 3.53 3.72 J.62 0 4 2 0 0 0 1 9 3. 72 l.VO 3.81 0 3 0 0 0 0 20 3. 50 4.0£ 2.94 0 3 0 r 0 0 0 21 4.06 4.2 7 4.13 1 1 0 0 0 23 4.45 4.6 4 4 .54 1 0 0 0 0 0 24 4.64 4.8 2 4. 73 1 0 0 0 0 0 28 5. 37 5.56 E .46 1 0 0 0 0 0 n 29 5.56 £.74 £ .65 1 0 0 0 30 5. 74 5.42 5.83 2 0 0 0 0 0 3 1 5.92 6.11 € .02 1 0 0 0 0 0 32 6. 11 (...2 9 6 .20 1 0 0 0 0 0 37 7. C3 7.2 1 7.12 2 0 0 0 0 0 48 9.C5 9.24 t .14 1 0 0 0 0 0 142

DISC NC.= 2 DISC 5PP!iO= 3500. RPM PGTrNTlAL= 8.0 KV

LASS LCWEH LPPbr; CLASS S TA STA STA STA STA ST NO. LIMIT LIMIT / VE 1 2 3 4 5 6 ; N L A H G E MENT • ..... 7.5 7.5 7.5 7.5 15.0 15.

1 0.40 0.39 C.50 0 0 0 1 0 1 2 0. 59 0.7 7 C.bB 1 0 0 2 0 1 3 0.77 C.9 b 0.66 2 0 0 0 0 3 4 C. S6 1.14 1. Ob 1 0 0 0 0 0 5 1. 14 1.3 y 1 ,23 2 0 0 1 0 1 6 1.32 1.5 1 1.42 0 0 1 0 0 0 5 7 1.51 1.69 1.oO 0 0 0 0 0 a 1 .fc9 1.a e 1.78 0 0 0 0 5 4 9 1. ea 2.06 1.97 0 0 0 0 0 0 7 1 0 • 2.06 2.24 5.15 0 0 0 0 2 1 1 2.24 2.43 2.34 0 0 0 5 0 0 0 12 2.43 2.6 1 2.52 0 0 0 4 3 0 1 3 2.61 2.80 2. 70 0 0 0 H 0 14 2.80 2.9d 2.8J 0 0 0 2 1 9 0 15 2.ça 3. 11; 3.07 0 0 0 4 0 16 3. It) 3. .5 0 3 .26 0 0 1 4 2 0 1 7 3.35 J.3 3 3.44 0 0 4 2 0 0 0 1 8 3. £3 3.72 3.62 0 0 7 4 0 19 3.72 3.ai 0 0 0 G 3 0 20 3. SO 4.00 3.99 0 0 4 0 0 0 p 21 4. Cd 4.Jf 4.18 0 1 1 C 0 22 4.2/ 4.45 4.3b Q 3 0 c 0 23 4. 43 4 .'3 4 4.54 0 5 1 0 0 0 0 24 4.C4 4.62 4.73 0 1 0 c 0 0 2b 4. 22 5.?0 4.91 0 3 1 0 0 0 26 5.CO 5.1; e.io 0 0 0 0 0 27 5. 19 5.37 5.28 0 1 0 0 0 0 0 2« 5.37 U.uC 5.46 1 0 0 0 0 29 5.56 5.74 5.OS 0 2 0 0 0 0 30 5.74 5.92 5.83 1 1 0 0 0 0 31 5. Ç2 fc.l 1 6.02 2 2 0 0 0 0 0 32 6.11 e.29 fc .20 1 1 0 0 0 0 33 6.29 6.48 6.38 2 1 0 c 0 0 0 0 34 t> a 43 6.66 6.57 1 0 0 36 6.64 7.13 6.94 2 0 0 0 0 0 37 7. C3 7.2 1 7.12 1 0 0 0 0 0 38 7.21 7.4C 7.30 1 0 c n 0 0 39 7.40 7.56 7.49 1 0 0 0 0 4 1 7.76 7.95 7.86 1 0 0 0 0 0 43 3. 13 8.32 8.22 1 0 0 0 0 0 143

DISC NC.= 2 DISC SPFcU= 3000. RPM POTENTIAL^ -22.0 KV

CLASS LOWER UPPER CLASS STA STA STA STA STA STi NO. LIMIT LIMIT AVE 1 2 3 4 5 6 E N L ARCH MEN T • « «. . • 7.5 7,5 7.5 7.5 7, 5 15,

1 0.40 0.59 C.50 0 0 0 0 6 1 2 C,E9 0,77 G .68 0 0 0 I 3 4 3 0.77 0.96 C .86 0 G 0 I 1 3 4 0.96 1.14 1.05 1 J 0 0 1 1 5 1. 14 1 .32 1.23 0 •> c 0 2 3 6 1.32 1.5 1 1 .42 0 0 0 0 9 6 7 1.51 1.69 1.60 0 0 0 1 26 6 8 1 .69 l.dO I .78 i) n 0 0 33 7 9 1. eb 2.U6 I .97 0 0 0 0 22 4 1 0 2. C6 2.^4 Z.15 0 0 0 0 6 5 11 2.24 2.43 2.34 Q 0 0 1 0 1 2.43 2.61 2.52 0 0 0 3 1 0 12 •J 13 2.61 2.60 2.70 1 3 2 0 0 14 2. eo 2,9 8 2 «89 0 0 2 4 0 0 15 2.sa 3.16 .0 7 0 0 0 1 0 0 0 16 3.16 3.35 ].2b 0 0 2 g 0 0 17 3.35 3.53 3.44 0 1 1 6 0 0 18 3.5j 3.72 3.62 0 0 7 2 0 0 19 3.72 3.90 2.81 0 5 9 G 0 0 20 3.90 4.08 0 2 1 1 1 0 0 21 4.CÔ 4.27 4.18 0 2 3 0 0 0 22 4.27 4.45 A ,3b 0 3 4 1 0 0 23 4. 45 4.64 4 .54 1 2 0 0 0 0 25 4.62 5.00 4.91 0 0 0 1 0 0 26 5. OU 5.19 S.10 0 1 1 0 0 0 2 7 5. 19 5.17 5 .28 1 0 0 0 0 0 31 5.92 6.11 e.02 2 0 0 0 0 0 32 6. 11 6.29 6,20 2 0 0 0 0 0 35 b •60 6.84 6.75 1 0 0 0 0 0 36 6. €4 7.03 6.94 1 0 0 0 0 0 37 7. 03 7.2) 7.12 1 0 c 0 0 0 38 7.21 7.4 0 7.30 1 0 G c 0 0 39 7.40 7.56 7,49 1 0 0 0 0 a 41 7.76 7.95 7.86 1 0 0 0 0 0 43 8. 13 e.32 a,22 1 0 0 0 0 0 48 9.05 9.24 9.14 1 0 0 0 0 0 144

DISC NC«= 2 DISC 55PPtl)= 3000» RPM PGIFNTIAL- 22,0 KV

CLASS LGWEP UPPL4 CLASS STA STA JTA STA STA STA NO. LIMIT L \ AVE 1 ? ? 4 5 6 E N L /> R G Ê N fi N r t <...• 7.5 7.:; 7.3 7 .b 7.5 15.0

1 0.40 O.L>9 C.50 0 0 0 C 0 1 2 0 1 5 2 0.59 •:.71 C .68 0 1 3 0. 77 C.U6 C .06 0 2 g 0 1 0 4 C. Ç6 1.14 1.05 0 1 0 0 1 1 g 5 1.14 1 .32 1.23 J 0 0 4 0 6 1. 32 1.5 1 1.42 0 0 0 0 30 6 7 1 .51 1 .( 9 1 .60 0 0 0 0 48 6 8 1.69 I.U8 1 .78 0 0 0 0 31 7 9 1 . £8 2. 06 1.97 0 0 0 c 9 13 10 2. 06 2.24 S .1 5 1 0 0 0 6 4 12 2.43 2.0 1 2.52 0 0 0 2 0 0 1 3 2.61 2.40 2.7 0 0 0 0 1 0 0 14 2.60 2.98 Z .89 0 1 0 4 0 0 15 2.9a 3. 1 6 3.07 0 1 1 1 2 0 0 16 3. 16 i. 75 5 3 .26 0 0 0 8 0 0 17 3. 35 2.53 J.44 0 0 2 6 0 0 18 3. 53 3. 72 3.62 0 0 2 a 0 0 -j 0 19 3.72 3. V 0 3 .o 1 0 0 1 0 20 3. 90 4.18 2.99 0 1 6 0 0 0 21 4. C8 4. 7 4.18 0 0 6 0 0 0 22 4.27 4.4 b 4.36 Û 0 4 û 0 0 23 4. 45 4.04 4.54 0 2 2 0 0 0 24 4.64 4.1)2 4.73 1 2 4 0 0 0 25 4.62 5.00 4.91 1 2 1 0 0 0 26 5. 00 5.19 5.10 0 0 2 0 0 0 n 27 5. 19 5.3 7 E .28 0 3 0 0 0 28 5. 37 5.56 £ .46 2 0 0 0 0 c 3C 5.74 b. 9 2 £ .83 2 0 Û 0 0 0 32 6.11 L.2 9 6.20 1 0 0 c 0 0 34 6.48 6.66 6 .57 1 0 0 0 0 0 35 6. 6o 6.64 t .75 1 0 G c 0 0 39 7.40 7.58 7.49 1 0 0 0 0 0 44 8.32 8.b0 t" .41 1 0 C 0 0 0 145

Oise N0«= 2 DISC SPEED= 6000» RPM POTENTIAL- OoO KV

CLASS LOWER UPPEK CLASS 5TA STA STA STA STA STA NC. LIMIT LIMIT AVE 12 3 4 5 6 ENLARGENEN T...... ^.5 7.5 7,5 15.0 15.0 15.0

1 0.4C C.5S C .50 0 2 0 1 0 0 2 0.59 0.7 7 C .68 2 1 1 0 0 0 3 0.77 G.9<: n .86 1 0 5 5 0 0 4 C.96 1.14 1 .05 0 0 2 2 0 0 5 1. 14 1.32 i .23 0 0 3 2 0 4 6 1.22 1 . 1 1.42 0 0 C 2 1 3 7 1 .51 1.6 9 1 ,60 0 0 0 1 1 9 a i.e; 1 .86 1 .78 0 0 1 0 0 5 9 1 .88 H.r6 1.97 0 G 2 1 3 8 1 0 2. Co 2.3 4 £.15 0 2 0 3 8 13 11 2.24 2.43 2. 34 0 • 0 2 1 3 12 12 2.43 ?. .t 1 2.52 0 3 1 1 3 3 13 2.CI 2.30 Z .70 0 3 1 1 2 2 14 2.60 2.48 2.89 0 6 6 1 3 2 15 2.Ç8 3.16 3.07 1 8 1 1 1 3 2 K 16 3. lo 3.35 2.26 0 8 15 6 1 17 3.35 3.5 3 2.44 J 10 14 4 5 0 9 18 3.53 3.72 2.62 6 1 1 1 4 0 19 3.72 3.90 2.81 4 1 4 4 1 0 20 3. 90 4.08 2.99 12 1 1 3 0 0 21 4, CÔ 4.2 7 4.18 5 0 5 4 3 0 22 4. 27 4.4 5 4.36 5 0 3 5 0 0 23 4. 4b 4 .o 4 4.54 4 0 1 4 1 0 24 4.64 4.62 4 .73 4 0 0 C 0 0 5.30 4.91 4 0 1 1 1 0 25 4.E2 i o M 26 5.00 5. 1 9 2 • 0 0 1 0 0 27 5. 19 b.3 7 5.28 1 0 0 0 0 0 28 £.37 5.56 5.46 1 0 1 0 0 0 29 5. 56 5.74 5 .65 1 0 0 0 0 0 30 5. 74 Ù.02 5.83 1 0 c 1 0 0 146

DISC NC.= 2 DISC SPELU= 6000 . RPM POTENTIAL.: -6.0 KV

CLASS LGWtlR UPPcR .CLASS STA STA STA STA STA STA NO. LIMIT LIMIT fVE 1 2 3 4 5 6 ENLARGE W L N T 7.5 /.5 Ib.O 15.0 15.0 15.0

1 0. 40 0.59 C.50 0 0 0 1 0 1 2 0. £9 0.77 C .68 0 0 0 2 0 4 3 0.77 0.96 C.U6 0 0 0 1 2 9 4 0.Ç6 1.14 1.05 0 0 0 2 5 6 i 5 1 . 14 1.72 1.23 0 0 0 3 17 6 1.32 1.b I 1.42 0 0 0 4 3 14 7 l.El 1.69 1.60 0 0 0 2 a 4 8 1.69 1.80 1.76 0 0 0 0 14 4 9 i.eu 2.06 1.97 0 0 0 2 16 2 10 2. Cb P. 2 4 2.15 0 5 0 6 22 1 n. I 1 2.24 2.4J 2 .34 0 11 Û 13 1 12 2. 43 2.6 1 2.52 0 29 0 10 8 0 1 3 2. CI 2. ac 2.70 0 17 0 9 6 1 14 2.60 2.9f.' 2.89 2 0 0 17 0 0 15 2.SB 3.16 3.07 5 1 0 12 0 0 16 3.16 3.15 2 .26 10 0 0 13 0 0 1 7 3.35 3.53 2.44 8 0 2 2 0 0 18 3.53 3.72 2.62 8 0 I 0 1 0 1 9 3.72 3.90 2 .81 3 0 7 0 0 0 20 3.SO 4.16! 2 .99 0 0 10 0 1 0 21 4. CB 4.27 4.18 1 0 11 0 0 0 22 4.27 4 ,4b 4.36 2 0 4 0 0 0 23 4.45 4.64 4.54 0 0 J 0 0 0 24 4.€4 4.82 4.73 1 0 I 1 0 0 147

DISC NC.= 2 UISC 3PEED= 6000. RPA/ PCTLNTI AL= 3.0 KV

CLASS LOWER kPPER CLASS 3TA ST A ST A STA STA STA NO. LIMIT LIMIT />VE 12 3 4 5 6 ENLARGE ^ E N T...... 7.5 7.5 7.5 15#0 15.0 15*0

1 0.40 0.59 C.50 0 0 0 0 1 1 5 2 0.59 G.7 7 C.68 0 1 3 c 3 6 3 0. 77 C. 9 6 C.86 0 0 0 1 2 4 C.S6 1.14 1.05 0 0 2 1 1 3 5 1. 14 1 .32 1.23 0 0 1 0 4 10 6 1. 32 1.5 1 1 .4 2 0 1 7 2 3 13 7 1.51 1.6 9 1.60 0 1 1 5 0 5 5 8 1.69 1 .88 1.78 0 1 42 0 7 3 1 9 1.ea 2. 06 1 .9 7 0 43 12 1 2 10 2.06 2.24 2.15 0 6 16 3 1 1 11 2.24 2.4 3 2.34 2 13 4 4 7 0 12 2.43 2.6 1 2 .52 1 17 0 4 7 1 13 2.61 2.30 2.70 3 6 0 '• 5 0 14 2. 60 ?,

DISC NO.- 2 DISC SPKFU= 6000. RPM PCIC;NTIAL= -22.0 KV

:LASS LCWFCK UPPHR CLASS JTA STA STA STA STA ST NO . LIMIT LIMIT AVE 1 2 3 4 5 6 •; N L A R G £ N E N T...... 7.5 7.5 15 .0 15.C 15.0 15.

0. 40 U .') 9 C.50 0 0 0 0 1 0 1 Y 2 0.59 C.77 C .66 0 1 0 0 0 3 0. 77 C.96 C .86 1 0 c 0 2 33 4 0. 91.-, 3.14 1 .05 0 N 0 0 1 49 5 1 . 1 I 1.32 1.23 0 0 c 0 1 36 6 1 . 22 1.51 1.42 0 0 0 0 7 35 7 1.51 1.09 1 .60 0 0 0 0 1 1 10 8 1 .09 I .Sti 1. ra 0 1 0 0 23 1 9 l.Efi :. ot-. I .97 1 "•i 0 0 41 0 10 2. Co 2.24 Z,li> 0 11 0 c 15 0 1 1 2. 24 2.43 2.34 0 1 7 0 1 5 0 12 2. 43 K .63 C .52 0 1 1 0 2 1 0 13 2.6 1 2. JO Z .70 2 6 0 7 0 0 14 2. eo 2.V6 2. y .y 4 2 0 9 0 0 15 2.«=a 3. IT 2 .0 7 20 1 1 19 1 0 16 3. 16 3.J5 2 .26 12 1 0 12 0 0 1 7 3. 35 2.44 li5 0 2 9 0 0 18 3.53 3.72 3.62 7 0 12 C 0 0 IS 3. 7 2 J .•J 0 2.01 2 0 5 2 0 0 3. 90 4.08 2 .YY 3 0 10 0 0 0 20 G 21 4. CB 4.27 4.10 2 0 5 0 0 22 4.27 4 .4 5 4.36 1 0 3 1 0 0 23 4. 45 4.64 4 .54 0 0 1 0 0 0 ] 24 4.64 4.f.2 4.7 J 0 0 I 0 0 25 4.62 &.0C 4 ,y 1 0 0 1 0 0 0 149

CISC NC.= 2 DISC SPEED= 6000. fiPW PCTENT.IAL= 22.0 KV

:LASS LChEd UPPEH CLASS STA STA STA STA STA ST, NC. LIMIT LIMI T AVE 1 2 3 4 5 6 E N L A R C E PEN T . # .# # # 7.5 7.5 7.5 15.0 15.0 20.

1 0 0 O 0 o 1 • C.59 G.sa 0 1 2 C. £9 G.77 C .68 2 0 2 0 0 3 3 0. 77 C.90 G .86 4 1 1 1 1 1 4 C. 56 1.14 1.05 1 0 0 1 2 1 5 1.14 1.7 2 1.23 0 0 0 1 0 0 6 1.22 1.5 1 1 .42 0 0 0 0 8 11 7 1 ,51 1.69 1.60 0 0 3 0 6 6 8 1.69 1 .se 1 .78 0 0 18 2 7 7 9 I.EJ 2.06 1 .97 0 1 26 0 18 10 1 0 2. Co 2. 24 2. 15 1 1 39 1 19 22 1 1 2. 24 2.43 2 .34 1 5 40 1 23 25 12 2.43 2.6 1 2.52 0 <5 19 c 14 6 13 2.61 ?. 80 2.70 2 11 12 2 9 0 14 2. go 2.98 2,89 0 18 5 4 7 0 c IS 2.Sd 3.16 2.07 B 11 2 4 0 c 16 3. 16 2. 35 2 .26 9 8 1 4 1 17 3.33 3.5 2 2.44 1 1 1 4 1 2 0 0 18 3.5 3 3.72 2.62 7 1 0 14 0 0 19 3.72 3.90 2 .81 6 1 1 10 0 0 20 3. 90 4.06 2.99 6 3 0 7 0 0 21 4. Cfa 4.37 4.18 3 1 1 9 0 0 22 4. 27 4.45 4.36 2 0 0 1 C 0 0 23 4.4U 4.64 4.54 4 1 0 2 0 0 24 4.€4 4.32 4.73 3 0 0 2 0 0 25 4. £2 5.30 4.91 1 0 0 3 0 0 26 5. CO 5.19 5.10 1 0 0 0 0 0 26 5.3Y 5.56 5 .46 1 0 0 0 0 0 150

DISC NC.= 2 DISC SPEED= 9000. RPM POTENTIAL= 0.0 KV

:LASS LGWER UPP2H CLASS STA STA STA STA STA ST NO. Liwir LIMIT f VE 1 2 3 4 5 6 : N L A R C E PEN T...... 15.0 15.0 15 ,0 15.0 15.0 15.

1 C.40 0.59 C .50 0 0 0 1 0 0 2 C. 59 C.f7 C .68 3 6 5 9 10 2 3 C. 77 0.96 C »Sfi 4 2 5 6 9 0 4 C.96 1.14 1 .05 1 2 7 9 8 6 5 1. 14 1.32 1 .23 2 3 2 9 9 0 6 I .32 1.51 1.42 1 3 5 12 19 0 c 7 1.51 1.69 1.ÔG 0 2 2 17 2 1 .69 I.ea 1.7a 0 0 0 4 16 1 a •3 9 i.ea 2.06 1.97 0 0 1 9 23 1 0 2.ct> 2.24 2.15 G G 0 1 1 24 1 1 1 2.24 2.43 2.34 0 0 0 IC 11 3 1 2 2.4j 2.61 2 .52 0 0 2 15 6 1 12 2.61 2.-30 Z.70 0 0 4 12 2 0 14 2.60 2.96 2 .89 0 0 3 1 4 4 1 1 5 2.sa 2. 16 2.07 0 0 3 2 1 2 0 16 2. 16 2.35 2 .26 0 1 4 Ic 2 0 1 7 J.25 2.S2 2 .44 0 1 4 6 3 0 1 8 3.53 3.72 2.62 0 5 7 9 0 0 19 3.72 2.90 2.81 0 4 1 1 2 0 0 20 3. ÇÛ 4.08 2 .99 0 4 4 0 0 0 21 4. ca 4.27 4.18 2 8 5 1 1 0 22 4.27 4.45 4 .36 3 4 1 2 6 0 23 4.45 4.64 4 .54 6 2 1 0 0 0 24 4.(4 4.82 4 .73 e 2 1 c 0 0 25 4.E2 5.00 4.91 5 0 1 0 0 0 26 5. CO 5. IS 5.10 1 1 0 c 0 0 27 5. 19 5.37 5 .28 2 0 0 0 0 0 151

DISC NC.= 2 DISC SPEED= 9000. l^FM PCTENTI AL= -8.0 KV

ILASS LOkER LFPER CLASS STA STA STA STA STA ST NC. LIMIT LIMI T AVE 1 2 3 4 5 6 7.5 7.5 15.0 15.C 15.0 20. r z A R G £ PEN T ......

1 0.40 O.iiS C .50 0 0 2 C 1 0 2 o.sy C.77 C .66 0 0 2 4 2 0 3 C. 77 c.ve C.86 2 0 2 7 3 0 4 C.S6 1.14 1 .05 1 0 2 1 1 2 1 5 1 .14 1.32 1.23 0 0 3 1 13 c 6 1.32 1.5 1 1.42 0 0 5 3 12 3 7 1 .f 1 1 .o9 1.60 0 0 2 6 13 2 8 1. 69 1.88 1 .78 0 3 0 4 23 6 9 1.E8 2.06 1.97 0 6 1 7 18 8 10 2.C6 2.24 2.15 1 13 C IS 21 7 11 2.24 2.43 2.34 5 31 2 1 1 9 6 12 2.43 2.0 1 2 .52 3 9 0 20 3 5 13 2.61 2.bO 2 .70 5 0 0 1 4 1 2 14 2. £C 2.se 2.89 4 1 0 1 2 2 2 15 2.S8 3.16 3.0 7 5 0 4 6 1 0 le J. 16 3.35 3 .26 1 0 1 1 6 1 0 17 3. 25 3.53 3 .44 0 0 5 3 0 0 18 3.£3 3.72 2 .62 0 0 5 6 0 0 IS 3. 12 3.9 0 3.81 0 0 10 G 0 0 20 3.SO 4.36 2 .99 c 0 5 0 0 0 21 4. ca 4.27 4.18 0 0 5 C 0 0 23 4. 45 4.64 4.54 0 0 1 c 0 0 152

DISC N0.= 2 DISC SPEED= 9000. KPM PCTENTIAL= 8.0 KV

CLASS LCWER UPPER CLASS STA STA STA STA STA ST NO. LIMIT L IMIT AVE 1 2 3 4 5 6 E N L A R C E ^ E h T...... 7.5 15.0 15 .0 15.0 15.0 15.

1 0.40 C.59 C.50 1 0 1 2 0 1 2 0.59 0. f 7 C.68 3 c 3 9 2 2 3 C. 77 {.96 C.86 0 0 7 1 0 11 5 4 0.96 1.14 1 .05 0 0 10 14 17 6 5 1. 14 1.32 1.23 0 0 10 17 7 4 6 1.22 1.51 1.42 0 1 9 12 9 3 7 l.Sl 1.69 1.60 0 0 7 S 11 6 8 l.t9 1.80 1.76 0 0 5 15 6 3 9 i.ea 2.06 1 .97 0 0 5 18 9 8 10 2.06 2.24 2.15 0 0 4 13 15 2 1 1 2.24 2.43 2.34 1 0 2 16 12 2 12 2.43 2.6 1 £ .52 2 0 6 e 13 1 13 2.61 2.ao 2.70 1 0 4 10 7 0 14 2.€0 2.98 2.89 3 0 2 É 5 0 15 2.98 3.16 3.07 4 0 7 18 6 1 16 3. 16 3.35 3.26 1 0 0 7 12 3 0 17 3.35 2.53 3 .44 4 0 8 9 1 0 18 3.53 3.72 2 .62 6 0 10 9 1 0 19 3. 72 3.90 3.81 0 0 8 3 2 0 20 3.90 4.(8 2 .99 1 0 10 Z 1 0 21 4.Cti 4.27 4.18 2 0 8 4 0 0 22 4. 27 4.45 4 .36 0 1 4 2 0 0 23 4.45 4 «a 4 4 .54 0 1 9 1 0 0 24 4. £4 4.82 4 .73 0 4 6 1 0 0 25 4.82 5.00 4.91 0 7 5 1 0 0 26 5.00 5.1 9 5.10 0 7 6 0 0 0 27 5.19 5.3 7 5.26 0 10 2 0 0 0 28 5.37 S.56 E .46 0 7 4 0 0 0 29 5.56 5.74 £ .65 0 0 2 0 0 0 3C 5. 74 £.9 2 S .83 0 1 0 c 0 0 31 5.S2 6.11 e .02 0 1 0 c 0 0 32 6.11 £.29 e.2C 0 0 1 0 0 0 33 6. 29 6.48 e .38 0 1 1 0 0 0 35 6*66 6.64 €.75 0 0 1 G 0 0 4 1 7. 76 7.95 7.86 0 1 1 0 0 0 153

DISC NG.= 2 DISC SPEED= 9000. RPM PCTENTIAL= -22.0 KV

;LA£S LOWER UPPER CLASS STA STA STA STA STA ST LIMIT f VE 1 2 3 4 5 6 NO. LIMIT o o : N L A R C E N E N T . < .. . . 7.5 7.5 7.5 1 5 .0 # 22.

2 0. 59 C./7 C .66 2 0 0 C 0 2 3 C .77 C.9 6 C .60 0 0 0 0 3 22 4 0. Ç6 1.14 1 .Ob 0 0 I 0 7 31 5 1 .14 1.32 1 .23 0 0 1 1 9 E6 6 1.22 1.51 J .42 a 1 0 0 19 42 7 1.51 1 .69 1 .60 0 2 6 c 13 22 a 1 .69 1.JD 1 .78 0 6 16 0 20 1 1 9 1.E8 2.06 1.97 6 13 23 0 21 7 1 0 2. 06 2.24 £.15 1 8 22 22 7 13 0 11 2.24 2.4 3 2.34 27 21 6 7 3 1 12 2.43 2.6 1 2 .52 25 1 0 0 9 2 0 13 2.61 z.ao 2.70 6 0 0 1 1 0 0 14 2. 80 2.98 2.89 7 3 0 14 1 0 15 2.sa 2.16 2.07 1 0 0 1 1 1 0 16 3.16 3.35 :.26 0 0 0 12 1 0 1 7 3.35 3.53 2.44 1 0 0 1 0 0 16 2.52 2.72 2.62 0 G 0 4 0 0 1 9 3.72 2.90 2.81 0 0 0 1 0 0 20 3. 90 4.0 8 2.99 0 0 0 1 1 0 21 4.C6 4.27 4.18 0 C 0 1 0 0 24 4.64 4.62 4.73 0 0 0 1 0 0

<< << 154

DISC NC«= 2 DISC 5PEED= 9000 , HiPM PCTfc;NTIAL= 22.0 KV

CLASS LCkER UPPER CLASS STA STA STA STA STA STA NO. LIIVIT LIXI T /AVE 1 2 3 4 5 6 E N L A P G t N E* N T ...... 7.5 7.5 15.0 15.0 15.0 22.5

1 C. 40 O.bÇ C .50 0 0 0 C 0 5 2 C. 59 C.77 C .68 0 2 u 0 1 13 3 C. 77 C.9<6 C .80 0 1 0 1 0 37 4 0.96 1.14 1.05 0 1 0 2 3 34 5 1 . 14 1.32 1.23 0 1 0 3 5 18 6 1 .32 1.5 1 1 .42 0 0 c 4 12 10 7 1.51 1.69 1 .60 0 0 0 1 10 e 8 1.69 l.t>8 1 .78 0 0 0 4 21 2 9 1.88 2.06 1 .97 0 2 0 12 63 4 IC 2. Co 2.24 2.15 2 8 0 IS 54 3 11 2.24 2.4 3 2 .34 1 26 c 24 44 0 12 2.43 2.C 1 2.52 8 21 3 24 22 0 13 2.6 1 2.30 2.70 1 3 14 t 21 16 1 14 2.80 2.98 2 .89 14 12 4 18 5 0 15 2.98 2.16 2 .07 1 6 3 5 17 8 0 16 3. 16 3.35 2 .26 1 2 3 14 9 3 0 17 3.35 2.52 2 .44 6 0 14 1 0 c le 3.£3 2.72 2.62 5 0 13 1 2 0 2.90 2 .81 4 1 8 2 1 0 IS 3.72 O o C 20 3. 90 2 .99 1 0 10 0 1 0 21 4.C8 4.2 7 4.18 0 0 5 2 1 0 22 4. 27 4.45 4 .36 0 0 1 1 0 0 23 4.45 4.6 4 A .54 c 0 2 C 0 0 24 4.64 4.32 4.73 0 0 2 1 0 0 25 4. E2 5.00 4.91 0 0 1 C 0 0 27 5. 19 5.37 e .28 0 0 2 c 0 0 28 E .37 5.56 f .46 0 0 0 I G 0 30 5. 74 5.92 5.83 0 0 1 0 0 0 155

CISC NC.= 3 CISC SPEED= 3000. fiPM PCTENTIAL= 0.0 KV

CLASS LOk ER UPPER CLASS STA STA STA STA STA STA NO. LIMIT LIMIT fVE I 2 .3 4 5 6 ENLARGEMENT...... 7.5 7.5 7.5 10.0 10.0 15.0

1 0. 4C 0.59 C.50 1 2 1 0 6 2 2 C.SS 0.77 c.6â 0 1 1 2 1 0 3 C. 77 G.96 c .86 1 0 1 1 1 1 4 C.Î6 1.14 1 .05 0 0 0 0 0 2 7 1. £1 1.69 1 .60 0 0 0 0 1 0 e 1.69 1.88 1 .78 0 0 0 0 0 1 9 i.es 2.06 1.97 0 0 0 0 1 1 10 2.Cfc 2.24 2 .15 0 0 1 0 0 4 11 2.24 2.43 2.34 0 0 0 0 1 3 12 2.43 2.61 2.52 0 0 0 0 4 2 13 2.61 2.60 2.70 0 0 0 0 3 5 14 2. EG 2.98 2.89 0 G 1 0 5 3 15 2.56 3.16 2.07 0 0 1 0 5 1 16 3. 16 3. j5 3.26 0 0 0 0 2 0 1 7 3.35 3.53 2.44 0 0 0 0 4 0 18 3.53 3.72 3.62 2 c 0 0 2 0 19 3.72 3,<)0 3.81 0 0 . 0 1 0 0 20 3.90 4.06 2.99 0 0 3 1 1 0 21 • 4.ca 4.27 4.18 0 0 2 2 1 0 22 4.27 4.45 4.36 0 0 2 2 0 0 23 4.45 4.64 4 .54 1 1 3 1 0 0 24 4.64 4.y2 4 .73 2 1 2 2 0 0 25 4. 62 5.00 4.91 1 1 2 5 0 0 26 5.00 5.1 9 5.10 1 0 2 4 0 0 27 5. 19 5,:i7 5.28 2 2 1 2 0 0 28 5.37 5.56 E.46 1 0 1 1 0 0 29 6.56 5.74 £.65 2 1 0 2 0 0 31 5. Ç2 6.1 1 € .02 2 1 0 0 0 0 32 6.11 6.29 é .20 2 1 0 C 0 0 33 6.2y 6.4a t .38 0 1 c 0 0 0 34 6.48 6.66 É .57 1 2 0 0 0 0 35 6. 66 6.84 € .75 2 1 0 c 0 0 36 6.£4 7.03 6.94 0 1 0 0 0 0 37 7. C3 7.2 1 7.12 2 0 0 0 0 0 47 e.£7 S. 0 5 £.96 1 0 0 0 0 0 156

DISC NC.= 3 CISC SPE E0= 30JO. fiPy PCTENTiAL= -8.0 KV

CLASS LOWER UPPEA CLASS 5TA STA STA STA STA STA NO. LIMIT LIMIT fiME 12 3 4 5 6 ENLARGE M E N T # ..... 7.D 7.5 7.5 7.5 10.0 15.0

1 0.40 0.59 C.50 0 0 0 2 30 2 2 C. 59 C.7? C.68 0 2 0 2 19 17 3 0.77 0.96 C .86 0 0 0 0 3 1 4 C.Ç5 1.14 1.05 0 0 0 c 3 0 6 1.69 1.88 1.78 0 0 0 0 0 1 9 l.€8 2.06 1.97 0 0 0 0 0 2 10 2.06 2.24 2.15 0 0 0 0 0 6 11 2.24 2.4 3 2 .34 G 0 0 c 0 5 12 2.43 2.5 1 2.52 0 0 G 1 2 1 13 2.61 2.8C 2.70 0 0 0 4 3 0 14 2.eo 2.ye 2 .89 0 0 0 i 1 1 15 2.Gd 3.16 2 .07 0 0 0 2 3 1 16 3.16 3.35 2.26 0 0 2 2 2 0 17 3.35 2.53 2.44 0 0 0 3 5 1 18 3.5 3 2.72 2 .62 0 2 2 2 7 0 19 3.72 2.90 2.81 0 0 0 2 3 0 20 3.SO 4.0 8 2 .99 0 G 4 4 2 0 T 21 4.(3 4.2 7 4.18 1 0 3 1 0 22 4.27 4.45 4 .36 0 1 1 1 2 0 *3 23 4.45 4.6 4 4 .54 1 1 1 2 0 24 4.£4 4.92 4.73 2 1 2 1 0 0 25 4.E2 5.30 4.91 0 2 2 1 0 0 26 5. CO 5.19 5.10 2 4 1 0 1 0 27 5. 19 5.3 7 £ .28 2 0 1 0 0 0 28 5.37 5.56 5 .46 0 1 0 0 0 0 29 5.56 5.74 5.65 2 1 1 1 0 0 30 5.74 5.92 5 .83 1 2 1 0 0 0 31 5.92 6.11 t.02 3 D 0 0 0 0 32 6.11 e,2 9 6.20 1 1 0 0 0 0 33 6.2% 6.48 6 .38 I 1 2 0 0 0 34 6. 43 6.L 6 e .57 3 0 0 0 0 0 35 6.66 6.«4 6 .75 0 2 0 c 0 0 36 6«€4 7.0 2 6.94 3 C 0 0 0 0 37 7. C3 7.21 7.12 2 0 0 0 0 0 38 7.21 7.40 7 .30 1 J 1 c 0 0 41 7.76 7.95 7 .86 0 1 0 0 0 0 42 7.S5 e.1 3 E .04 0 1 0 c 0 0 45 e.EO 8.68 e .59 1 0 0 0 0 0 48 9. C5 9.24 S .14 1 0 0 0 0 0 157

DISC NC.= 3 DISC SPEED= 3000. RPM PCTENTIAL- 3.0 KV

CLASS LCKEK UPPER CLASS STA ST A STA STA STA STA NC. LI Y IT LIMIT ;VE 1 2 3 4 5 6 ENLARGE E N T ...... 7 9 o 7.5 7.5 7.5 10.0 15.0

e 29 9 o 1 o C.5S C .50 6 0 33 2 c. £y C. f 7 C .68 0 0 10 6 2 4 3 C. 7/ C.96 C .86 0 0 1 1 0 1 4 c.sc 1.14 1.05 0 0 2 1 0 1 5 1.14 1 .32 I .23 0 0 0 1 0 1 8 1.6S 1.88 1 .78 0 0 0 0 0 2 9 1 .68 2.06 1.97 0 0 0 0 1 2 10 2. Gb 2.24 2 .15 0 0 0 0 1 3 11 2. 24 2.43 2 .34 c 0 0 1 5 6 12 2.43 2.61 2 .52 0 0 0 4 8 0 13 2.6 1 2. BO 2 .70 0 c c 6 5 2 14 2. EC 2.S 8 2.89 0 0 0 1 3 2 15 2.56 3.16 3 .07 0 0 1 4 2 2 16 3. 16 3.35 3.26 0 u 0 3 4 2 17 3. 35 3.53 3 .44 0 0 1 2 3 0 le 3.53 3.72 3 .62 0 0 2 3 0 0 19 3. 72 3.9C 3 .81 0 0 2 1 3 0 20 3. 90 4.08 3 .99 0 0 3 C 0 0 21 4. 0(3 4.27 4.18 0 0 2 1 0 1 22 4. 27 4.45 4 .36 0 0 0 1 1 1 23 4.45 4.6 4 4 .54 1 0 1 c 0 0 24 4.64 4.82 4 .73 3 3 3 0 0 0 25 4.£2 £.00 4.91 2 2 1 0 0 0 26 5.00 5.19 £.10 2 2 0 c 0 0 27 5. ly £.37 £ .28 3 0 0 G 0 0 28 5. 37 5.56 £.46 3 1 0 C 0 0 29 5.56 £.74 £ .65 3 2 1 0 0 0 30 5. Ï4 5.92 £ .83 0 0 1 0 0 0 31 5.S2 6.11 t .02 3 c 0 0 0 0 32 6. 11 6.29 6 .20 0 1 0 0 0 0 34 6.48 6.66 6 .57 0 I 0 c 0 0 35 6.66 6.84 6 .75 1 0 0 c 0 0 36 6. €4 7.03 6 .94 1 0 c 0 0 0 37 7. C3 7.2 1 7 .12 2 1 0 c 0 0 38 7.21 7.4 C 7.30 3 0 0 0 0 0 41 7.76 7.95 7 .86 2 0 0 0 0 0 42 7.Ç5 8.13 e .04 1 0 0 0 0 0 44 8.32 6.5C 6.41 2 0 0 0 0 0 158

CISC NC.= 3 CISC 5PEED= 3000. RPM PCTENTIAL= -22.0 KV

:LASS LCWER UPPER CLASS STA STA STA STA STA ST NC« LIMIT LIMIT /> VE 1 2 3 4 5 6 o E N L A K G E (WEN T...... 7.5 7.5 7.5 7.5 O 20.

1 C .40 0.59 C.50 0 2 0 0 2 1 2 G. 59 C.77 C .68 0 0 0 0 3 1 6 1.32 1.5 1 1 .42 0 0 0 0 0 1 7 1.5 1 1.69 1.60 0 c 0 0 1 1 e 1. EG I.as 1.78 0 0 0 0 0 4 9 I.FIA 2.06 1.37 0 0 0 1 1 3 10 2. 06 2.24 2.15 0 0 0 1 0 5 9 1 1 2. 24 2.43 2.34 c 0 0 e 12 3 12 2.43 2.6 1 2.52 0 0 0 13 13 2 13 2.61 2. 30 2.70 0 0 0 8 4 2 •a 14 2.eo 2.98 2 .89 0 0 1 4 1 15 2.S8 3.16 ;.C7 0 0 2 2 6 2 16 3. lo 3. 3 5 3.26 0 0 3 c 9 3 17 3.35 5.5 3 3 .44 0 0 0 2 9 1 16 3. 53 3.72 3 .62 0 0 0 2 6 1 19 3. 72 3.90 3.81 1 0 1 2 3 2 20 3.SO 4.0 8 3 .99 0 3 4 1 2 2 •5 21 4. C8 4.27 4.16 3 3 2 0 0 22 4.27 4.45 4 .36 2 1 2 c 0 2 23 4.4b 4.6 4 4 .54 2 2 0 0 0 0 24 4.(4 4.(32 < .73 3 4 2 0 0 0 25 4. €2 5.0C 4 .91 4 1 0 0 0 0 26 5. CO 5.19 5.10 6 0 0 0 0 0 27 £. 19 5.37 5 .28 5 1 0 c 0 0 28 5.37 5.56 5 .46 3 0 c 0 0 0 29 5. 56 5.74 5.65 5 1 1 0 0 0 30 5.74 5.92 5 .83 2 0 1 0 0 0 3 1 5.S2 6.11 e .02 J 1 0 0 0 0 33 e. 2J 6.48 f .38 1 1 0 c 0 0 35 & .6t) 6.64 € .75 0 0 1 0 0 0 36 6. €4 7.03 C .94 0 1 0 0 0 0 159

DISC NC.= 3 DISC SPeCD= 3000. RPV PCTENTIAL= 22.0 KV

CLASS LOWER UPPER CLASS STA STA STA STA STA STA NC. LIMIT LIMIT fVE 1 2 3 4 5 6 E NL AR G E N E N T « «.. .. 7.5 7.5 7.5 10.0 10.0 15.0

1 0. 40 0.59 C.50 0 0 0 0 2 3 2 0.59 C.77 c.6a 0 0 0 0 0 2 3 0.77 0.96 0.86 0 0 0 0 0 1 4 C.9Ô 1.14 1 .05 0 0 0 0 0 1 5 1.14 1 .32 1 .23 0 0 0 c 0 2 6 1.22 1.5 1 1.42 0 0 0 c 1 5 7 1 .51 1 .69 1.60 0 0 0 0 0 3 e 1.69 1.88 1 .78 0 0 0 0 3 12 9 i.ea 2.06 1.97 0 0 0 0 6 5 1 0 2.(6 2.24 2.15 0 0 G 0 6 13 11 2.24 2.4 3 2.34 0 0 0 2 6 19 12 2.43 2.61 2 .52 0 0 0 1 6 10 13 2.61 2.50 2 .70 0 c 0 2 5 14 14 2.60 2.98 2 .89 0 0 2 10 10 14 15 2.98 2.16 2.07 0 0 3 8 7 5 16 2. 16 2.35 2 .26 0 a 5 e 8 4 17 3.35 2.52 2 .44 0 0 1 5 5 2 18 3.53 2.7 2 2 .62 0 1 2 9 8 2 19 2.72 3.90 2.61 0 1 1 2 2 0 3. 50 4.08 2.99 0 2 3 6 0 0 20 •3 21 4.C8 4.2 7 4.18 0 0 4 0 0 22 4.27 4.45 4 .36 2 1 4 4 0 0 23 4.45 4.6 4 4.54 1 0 6 4 0 0 24 4.64 4.82 4 .73 1 0 5 C 0 0 25 4. E2 5.0 0 4 ,91 1 1 1 4 0 0 5.19 £ .10 3 0 2 7 0 0 26 5.n 00 i 27 5.37 5 .28 5 0 3 2 • 0 0 22 5.37 5.56 £ .46 2 0 0 1 0 0 29 5. 56 5.7 4 5.65 1 1 I 1 0 0 30 5. 74 5.92 5.83 2 1 1 0 0 0 3 1 5. S2 6.11 6.02 2 0 1 2 0 0 33 6.29 6.4 8 6 .38 1 0 1 0 0 0 35 6. 66 6.84 t .75 2 0 1 0 0 0 43 8. 13 €.32 £.22 1 0 0 0 0 0 160

DISC NC.= 3 CISC SPEED= 6000. RPM PCTENTIAL= 0.0 KV

ILASS LClmER UPPEfi CLASS STA STA STA STA STA ST, NC. LIK IT L IMIT AVEZ 1 2 3 4 5 6 : N L A R G E E N T 7.3 10-0 10.0 15.0 15-0 20.

1 0. 40 0.59 C.50 4 10 18 6 11 0 2 0. 59 C. f 7 C .68 1 3 13 4 5 0 3 C .77 C.96 •C .86 0 7 1 7 5 1 0 4 C. Ç6 1.14 1 .05 0 4 4 4 4 0 5 1 .14 1 .32 1 .23 0 0 3 6 3 0 6 1.22 1.5 1 1.42 0 1 1 ( 2 0 7 1.51 1.69 1.60 0 0 0 6 2 0 8 1.69 1 .oS 1 .78 0 1 1 1 2 0 9 1 .88 2.06 1 .97 0 0 0 4 5 1 10 2. Cb 2.24 2.15 0 0 0 6 7 2 "ê 3 1 1 2.24 2.43 2 .34 0 0 3 3 •a 12 2.43 2.6 1 2 .52 0 0 1 7 4 1 3 2.(1 2.90 2 .70 0 0 0 2 1 4 14 2.EC 2.98 Z .09 3 0 0 1 2 4 1 5 2. Ç8 2.1c 3.07 0 0 3 2 5 7 16 3. 16 3.35 3 .26 4 1 6 1 0 2 17 3.35 3.53 3 .44 7 1 3 2 3 4 18 3. £ 3 3.72 2 .62 16 1 6 2 0 2 19 3. 72 3. 30 3.81 8 6 2 3 5 T 20 3. Ç0 4.08 3 .99 1 1 6 4 2 3 21 4.CH 4.27 4.18 4 8 1 w 1 2 22 4.27 4.4 5 4 .36 4 6 0 4 2 2 23 4.45 4.64 4 .54 0 Ô 0 0 0 0 24 4.6 4 4.02 4 .73 1 2 0 2 0 0 25 4.22 £.0 0 4 .91 2 3 0 0 0 0 26 £. CO 5. 19 5.10 2 1 0 c 0 0 27 5. IW 5.3 7 5 .28 0 2 0 Û 0 0 28 5.37 £.56 5 .46 0 1 0 0 0 0 29 5. 56 5. 74 5 .65 0 1 0 c 0 0 32 6. 11 6.29 € .20 0 1 0 0 0 G 161

DISC NC»= 3 DISC SPEED= 6000. RPM PCTENTIAL= -8.0 KV

:LASS LOWER UPPER CLASS STA STA STA STA STA ST. NO. LIf IT LIMIT f VE 1 2 3 4 5 6 i N L A R G E PEN T...... 7.5 10.0 15 .0 15.0 15.0 20. '

1 C. 40 C.59 C.50 1 2 0 1 0 0 0.59 C.77 C .68 0 2 2 3 6 1 2 C 3 C.17 C.96 C .86 1 0 2 5 3 4 0.96 1.14 1 .05 0 1 4 3 5 3 5 1.14 1.32 1 .23 0 0 3 5 6 3 6 1.32 1.51 1 .42 0 0 2 5 4 7 7 l.£l 1 .6^ 1 .60 0 0 2 S 6 13 8 1.69 1.66 1 .78 0 0 1 2 10 17 9 1.68 2.06 1.97 0 0 0 2 6 27 10 2.06 2.24 2.15 0 0 2 4 12 46 11 2.24 2.43 2.34 0 0 1 6 8 27 12 2.43 2.61 2 .52 4 0 1 3 5 7 c 13 2.61 2.80 2 .70 0 0 1 5 4 14 2. 60 2.98 2 .89 4 0 0 7 4 1 15 2.SB 3.16 3 .07 0 0 0 e 3 0 16 3. 16 3.35 3 .26 1 0 1 7 2 0 17 3.35 3.5 3 3 .44 2 2 0 5 0 0 18 3.53 3.72 3 .62 1 0 4 0 0 19 3.72 3.90 3 .81 5 4 2 6 0 0 20 3.90 4.08 3 .99 1 4 1 0 e 0 0 21 4.C8 4.27 4.18 6 4 8 8 0 0 4.27 4.45 4 .36 a 8 9 6 0 0 22 C 23 4.45 4.64 4 .54 4 13 8 0 0 24 4.64 4.82 4 .73 5 2 4 1 0 0 25 4.62 5.DO 4.91 5 5 2 1 0 0 26 5.00 5.19 5.10 4 2 5 0 0 27 5. 19 5.37 5 .28 10 0 5 1 0 0 26 5.27 £.56 £ .46 5 0 2 1 0 0 29 5.56 5.74 £.65 8 0 . 0 1 0 0 30 5. <4 5.92 E .83 3 0 0 1 0 0 31 5. S2 6.1 1 e .02 1 0 c 0 0 0 32 6. 11 6.29 6 .20 2 0 0 0 0 0 33 6.29 6.46 € .38 1 0 0 0 0 0 34 6.48 6.66 e .57 1 0 0 0 0 0 36 6.64 7.0 3 t .94 1 c 0 0 0 0 39 7.40 7.56 7.49 2 0 0 0 0 0 1 162

DISC NC.= 3 DISC SPEED= 6000. KPW PCTENTIAL= 8.0 KV

CLASS LOWER UPPER CLASS STA STA STA STA STA STA NO. LIMIT LIMIT / VE 1 2 3 4 5 t» 2 N L- A R Q & jv E N T...... 7.5 7.5 7.5 10.0 15.0 15.0

c 1 0.40 . O.iS C.50 0 4 2 9 13 2 0.59 C .77 C .68 0 0 1 1 2 6 3 C. 77 C.96 C .86 0 0 1 0 5 4 4 C.S6 1.14 1 .05 0 0 0 1 1 7 6 1 .14 1 .32 1.23 0 0 0 2 0 7 6 1.22 1.51 1 .42 0 0 0 I 0 1 7 1.51 1.6 9 1.60 0 0 0 à 2 1 8 1.69 1.88 1 .78 0 0 0 1 1 1 3 9 1. £d 2.06 1.97 0 0 2 13 6 0 10 2-CÔ 2.24 2.15 0 0 4 22 5 1 1 1 2. 24 2.43 Z.34 0 2 9 21 a 0 12 2.43 2.6 1 £.52 0 0 18 1 2 3 0 1 3 2.61 2.80 2 .70 0 2 10 e 5 0 14 2. eo 2.98 2 .89 0 7 5 13 5 0 15 2.98 3.16 2 .07 0 0 6 2 6 0 16 3.16 3.J5 2.26 0 1 0 •a 5 c 1 7 3.35 3.53 2,44 1 I 0 c 3 0 1 a 3.53 3.72 2 .62 0 7 0 2 6 0 19 3. 72 2.90 2 .81 5 4 Q 0 1 0 20 3.90 4.08 2 .99 3 1 0 c 0 0 2 1 4.C8 4.27 4.18 5 0 0 0 0 0 22 4.27 4.45 A .36 8 0 0 c 0 0 23 4. 45 4.64 4 .54 5 0 0 c 0 0 24 4.64 4.82 4.73 8 0 0 0 0 0 25 4. E2 5.0C 4.91 4 1 0 c 0 0 26 5.00 5.19 £ .10 3 0 0 c Û 0 27 5. 19 5.37 5.28 4 0 0 0 0 0 2€ 5. 37 5.*J6 £ .46 5 0 0 0 0 0 29 5.56 5.74 5 .65 2 0 0 c 0 0 30 5.74 5.92 5 .83 1 0 0 0 0 0 31 5.<2 6.11 É .02 1 Û c C 0 0 32 6. 11 6.29 6.20 1 0 0 Q 0 0 34 6. 43 6.66 É .57 1 0 0 0 0 0 163

Oise NO.= 3 DISC SPEED= 6000. KPM PCTENTIAL= -22.0 KV

:LASS LOUER UPPER CLASS STA STA STA STA STA ST L IMI T AVE 1 2 3 4 5 6

LIMIT o NO. O : N L A R. G E y E N T ...... 7.5 7.5 15.0 20.0 20.

1 0.40 C.59 C.50 0 0 0 0 1 0 2 0.59 0.77 C .68 0 0 2 1 0 0 3 C. 77 C.96 C .86 1 0 1 0 0 2 4 0.S6 1.14 1 .05 0 0 0 0 0 9 5 1. 14 1.32 1 .23 0 0 0 0 0 26 6 1.32 1.51 1 .42 0 0 0 0 0 26 7 , l.£l 1.69 1 .60 0 0 0 0 1 28 8 1.69 1.88 1 .78 0 0 0 0 0 18 9 1. £6 2.06 1.97 0 0 0 0 0 7 10 2.C6 2.24 2.15 0 0 1 0 0 2 1 1 2.24 2.43 2.34 0 2 3 0 0 1 12 2.43 2.61 2 .52 2 6 3 0 1 0 13 2.61 2.80 2 .70 1 8 5 4 0 0 -a 14 2.60 2.96 2 .89 1 10 7 2 0 15 Z.S8 3.1 û :.07 6 2 1 0 6 6 0 16 3.16 3.35 3.26 4 1 7 17 1 1 0 17 3.35 3.53 3 .44 14 1 6 14 10 0 18 3.S3 3.72 3.62 1 4 0 2 e 24 0 19 3.72 3.90 3.81 1 1 0 1 4 14 0 20 3.SO 4.08 3 .99 18 0 1 3 10 0 21 4. ca 4.27 4.18 11 0 0 1 3 0 22 4.27 4.45 4 .36 12 0 0 0 1 0 23 4.45 4.64 4.54 7 0 0 0 2 0 24 4.64 4.82 4 .73 2 0 0 c 3 0 25 4. €2 5.00 4.91 3 0 0 0 2 0 26 5. 00 5.1 S £ .10 2 0 0 0 0 0 27 5. 19 5.37 5 .28 0 c 0 1 1 0 28 5.37 5.56 5 .46 0 0 0 0 1 0 30 5.74 5.'J2 5 .83 1 0 0 0 0 0 164

DISC NC.= 3 CISC SPEED= 6000. RPM PGTENTIAL= 22.0 KV

:LASS LOIȣR UPPER CLASS STA STA STA STA STA ST, L IMI T A VE 1 2 3 4 5 6

LIM IT o NO. O : N L A R • G E KEN T • « •. . . 7 .5 7.5 7 .5 20.0 20.

1 C. 40 C.59 C .50 5 7 16 0 0 21 2 C. 59 C.77 C .68 1 3 3 c 0 6 3 0. 17 C.96 C .86 0 2 1 0 0 7 4 C.S6 1.14 1 .05 0 0 0 0 0 9 5 1. 14 1.32 1 .23 0 0 0 0 0 10 6 1.22 1.5 1 1 .42 0 0 0 2 1 22 0 0 0 33 7 1.51 1.69 1.60 0 0 C e 1.69 1.38 1 .78 0 0 1 0 43 9 i.ea 2.06 1 .97 0 U 1 24 0 41 10 2.C6 2.24 2.15 1 1 1 0 25 4 30 11 2.24 2.43 2.34 0 1 13 24 3 26 0 10 9 5 1 12 2.43 2.61 2 .52 0 C 1 3 2.61 2.80 2 .70 0 2 6 5 1 14 2.€0 2.48 2 .89 0 5 2 5 8 0 15 2.sa 3.1c. 3 .07 2 2 0 1 7 0 16 3. 16 3.35 2 .26» 0 7 0 0 14 0 17 3.35 3.53 2 .44 I 4 0 0 16 0 18 3.53 3.72 2 .62 2 2 0 0 14 0 19 3. 72 3. 'J C 2.81 2 1 0 0 12 0 20 3.90 4.08 2 .99 5 0 0 0 0 0 21 4.C8 4.27 4.18 6 1 0 0 3 0 22 4. 27 4.45 A ,3b 7 0 0 0 1 0 23 4è 45 4.64 4 .54 a 0 0 0 1 0 24 4.(4 4.82 4 .73 1 3 0 0 0 0 0 25 4.62 5.00 4.91 10 0 0 0 1 0 26 5.00 5.19 5.10 a 0 0 0 0 0 27 5. 19 5 .37 5 .28 7 0 0 0 0 0 28 5.37 5.56 5 .46 3 0 0 0 0 0 29 5.56 5.74 £ .65 3 0 0 c 0 0 30 S.T4 5.92 5 .83 2 0 0 0 0 0 32 6.11 6.29 6 .20 1 0 0 0 0 0 33 6.29 6.46 6 .38 1 0 0 c 0 0 35 6. 66 6.84 6 ./5 3 0 c 0 0 0 40 7.58 7.76 7 .67 1 0 0 0 0 0 165

OISE NC.= 3 CISC SPEÊO= 9000. RPW PCTENTIAL= 0.0 KV

:LASS LOWER UPPER CLASS 5TA STA STA STA STA ST< NO. LIMIT LIMIT A V£ 1 2 3 4 5 6 O O : N L A R G E HEU T . • .. . • e 15.0 15 .0 15.0 15.0 22. 0

o 0 • 1 O C.55 C .50 12 0 2 1 2 0.£9 C.77 C .68 1 7 5 7 4 2 0 3 0.77 C.96 0.86 10 5 15 4 0 1 4 0.S6 1.14 1.05 3 2 12 4 1 1 5 1.14 1.32 1 .23 2 a 14 7 0 1 6 1.22 1.51 1 .42 0 8 19 7 0 2 7 L.EL 1.69 1.60 0 2 15 7 0 5 a i.es i.aa 1.78 1 2 18 6 1 0 9 1.88 2.06 1.97 0 3 12 5 3 3 1 0 2.C6 2.24 É.15 0 4 18 10 4 6 1 1 2. 24 2.43 2.34 0 1 16 S 4 2 12 2.43 2.61 Z.52 0 1 13 Ê 4 4 c 13 2.61 2.80 2.70 0 0 9 3 2 14 2.60 2.98 2.89 2 0 b 4 4 6 15 2.98 3.16 3.07 4 0 10 7 3 0 16 3. 16 2.35 -.26 4 1 9 9 1 4 17 3.35 3.53 3.44 2 0 2 13 2 4 18 3.£3 3.72 3 .62 1 1 0 3 e 1 a 19 3.72 3.90 3.81 7 0 5 c 1 6 2C 3.90 4.0 8 - .99 1 0 0 8 6 0 7 21 4.C8 4.27 4.18 13 0 7 •- 1 5 22 4.27 4.45 4.36 7 1 13 6 1 4 23 4. 45 4.6 4 4 .54 1 4 4 2 0 4 24 4.64 4.82 4.73 3 5 7 2 0 2 25 4. £2 5.00 4.91 0 14 10 0 0 1 26 5.00 5.19 £ .10 0 13 8 0 0 0 27 5. 19 £.37 £.28 0 12 1 0 0 0 2S £.37 £.56 £.46 2 9 1 0 0 0 29 5.£6 5.74 £.65 0 4 1 0 0 1 30 5. 74 £.92 £ .83 0 1 1 0 0 0 33 C. ZY 6.48 6 .38 0 1 2 0 0 0 35 6. 66 6.84 6.75 0 1 0 0 0 0 38 7. 21 7.4C 7 ,30 0 1 0 0 0 0 45 8.50 e.6E e .59 0 0 1 0 0 0 166

DISC NC.= 3 CISC SPEED= 9000. RAM POTENTIAL^ -8.0 KV

;LASS LOWER UPPER CLASS STA STA 3TA STA STA STA NC. LIP IT LIMIT F VE 12 3 4 5 6 : N L A R c E W E N T.... . iO.O 15.0 15.0 22.5 22.5 22.5

1 0.40 0.59 C .50 6 1 0 0 1 0 2 0. ES 0.77 C .68 1 1 3 3 0 1 1 3 0. 77 C.96 C.86 9 3 3 c 0 3 4 C.S6 1.14 1.05 2 2 5 0 1 2 5 1. 14 1.32 1 .23 0 0 3 c 1 1 6 1.32 1.51 1 .42 0 1 6 2 0 3 7 1.51 1.69 1 .60 0 1 0 0 0 1 8 1.69 1.88 1.78 0 1 2 1 1 1 9 1.88 2.06 1.97 1 1 2 c 2 4 1 0 2. C6 2.24 2.15 0 1 3 1 3 7 1 1 2.24 2.43 2 .34 0 0 0 5 3 6 12 2.43 2.6 1 2 .52 0 0 1 2 3 8 13 2.61 2.30 2.70 0 0 2 2 1 6 •5 14 2.80 2.98 2 .89 2 1 3 1 3 15 2.S3 3.16 3.07 2 0 S 4 7 3 16 3. 16 3. 35 2 .26 7 0 1 4 6 6 17 3.35 3.53 2 .44 8 1 7 4 5 0 18 3.£3 3.72 2 .62 14 I 8 2 11 3 19 3.72 2.90 2 .81 11 5 8 4 0 0 20 3.SO 4.C8 2.99 6 10 13 2 1 0 21 4.(8 4.27 4.18 3 10 8 4 2 1 22 4.27 4.45 4 .36 2 1 1 4 4 0 0 23 4.45 4.6 4 4 .54 1 15 5 2 3 0 24 4.64 4.32 4.73 0 9 0 1 1 0 25 4.€2 £.00 4.91 0 7 2 4 0 0 26 5.CO 5.19 £.10 0 0 0 2 0 0 27 5. 19 £.3 7 £ .28 0 0 0 1 1 0 28 5.37 £.56 £ .46 0 0 0 1 0 0 29 5.56 £.74 £.65 0 0 0 1 0 0 30 5.74 £.92 £ .83 0 2 0 1 1 0 167

DISC N0.= 3 DISC SPEED= 9000. RPM PCTENTIAL= 8.0 KV

:LASS LCWEH UPPER CLASS STA STA STA STA STA STi NC. LIM IT L IMI 1 AVE 1 2 3 4 5 6 : N L A R C E PEN T . «.. . . 10 .0 15.0 15.0 15.0 22.5 22.1

1 0.40 C.5S C.50 1 2 0 2 0 0 2 0.59 C.77 C .68 11 9 4 1 2 C.96 C.86 7 5 10 3 0 1 3 0. 77 •3 4 0.96 1.1 4 1.05 1 2 6 0 0 5 1.14 1.32 1.23 3 1 4 4 0 2 à 1.32 1 .51 1 .42 1 6 6 2 0 3 c 7 L.SL 1 .69 1 .60 0 4 2 1 4 a 1 .69 1.88 1.78 0 5 6 4 0 2 9 1.68 2.06 1.97 0 1 7 9 1 4 10 2.06 2.24 2.15 0 0 6 9 2 3 11 2.24 2.43 2.34 0 5 3 2 3 3 12 2.43 Z.6 1 2.52 1 6 3 7 1 3 13 2.61 2. 30 2.70 1 1 6 5 1 5 14 2. 60 2.98 2.89 0 2 10 1 C 1 3 15 2.S8 3.1Ô 3.07 0 6 3 1 1 3 1 16 3. 16 2.35 :.26 0 4 1 1 7 7 1 17 3.35 3.53 3.44 5 4 10 7 4 4 18 3.S3 3.72 3.62 4 1 10 1 2 1 19 3.12 3.90 3.81 9 4 9 2 1 1 20 3.90 4.06 3.99 1 2 7 4 C 1 0 21 4.C8 4.27 4.18 9 6 4 1 3 0 22 4.27 4.45 4.36 4 9 5 C 0 0 23 4.45 4.6 4 4.54 5 10 6 1 0 0 24 4.(4 4.8 2 4.73 2 17 7 c 1 0 25 4.€2 5.00 4.91 1 11 2 0 0 0 26 5. CO 5.1 9 5 .10 0 6 0 c 0 0 27 5. 19 5.37 5.28 0 3 0 0 1 0 28 5. 37 5.56 5.46 0 2 2 c 0 0 29 5.56 5.74 5.65 1 1 0 0 0 0 31 5.S2 É.H C.02 1 2 1 0 0 0 32 6. 11 6.29 t .20 0 1 0 c 0 0 34 6.48 6.66 t .57 . 1 1 0 0 0 0 168

DISC NC.-= J CISC SPEEÛ= 9000. RPM PCTTNTIAL- -22.0 KV

:LASS LOKEA UPPER CLASS STA STA STA STA STA ST NC. LIMIT LIMI T AVE 1 2 3 4 5 6 : N L A R C E IV E N T ...... 1 0.0 10.0 15.0 22.5 22.5 33.

1 0.43 C.59 C.50 3 2 2 1 1 2 2 0.59 C.77 c.ea 5 32 6 2 2 0 3 C. 77 C.S6 C .86 3 11 6 0 0 5 4 0.Ç6 1.14 1.05 0 1 1 1 1 10 5 1 .14 1 .3 2 1 .23 0 1 3 0 0 12 6 1.22 1.5 1 1.42 0 0 1 1 0 21 7 1.51 1 .69 1.60 0 0 0 0 0 18 8 1.69 1 .de 1 .78 0 0 0 c 0 12 9 L.ÉD 2.36 1.9 7 1 1 0 c 2 1 1 10 2. 06 2.-^4 2.15 4 2 0 0 5 16 11 2. 24 2.43 2 .34 3 3 1 1 9 6 2.61 2.52 5 4 0 c 14 3 12 2.43 C 12 2.61 2 .ao 2 .70 2 13 0 1 29 14 2.60 2.98 2 .89 a 10 1 0 28 1 IS 2.Ç8 2.16 3.07 9 21 2 c 27 0 3. 16 2 .35 2 .26 5 12 3 1 17 1 16 -3 17 3. 25 2.52 2.44 1 0 5 4 4 0 18 3.53 2.72 2 .62 e 3 7 6 4 0 19 3. 72 2.90 2.81 12 3 12 7 3 0 20 3.50 4.08 2 .99 5 1 8 1 C 0 0 21 4.CB 4 .27 4.18 7 3 7 1 1 3 0 22 4.27 4.45 4 .36 a 0 7 Ç 1 0 23 4. 45 4.64 4.54 6 0 2 e 0 0 24 4.64 4 .82 4 .73 1 0 1 6 0 0 2£ 4.62 5.30 4.9 1 4 0 0 7 1 0 26 5.00 5.19 £.10 3 0 0 6 0 0 27 5. 19 5 .3 7 5.28 1 0 0 1 0 0 28 5.27 5 .56 5 .46 2 0 0 1 0 0 30 5.74 5.9 2 E .03 0 0 0 1 0 0 31 5.S2 6.11 6.02 0 0 0 1 0 0 33 6.29 6 .48 6.38 0 0 0 1 0 0 169

Oise N0«= 3 DISC SPE£0= 9000* RPW POTENTIAL^ 22«0 KV

:LASS LOkER UPPER CLASS STA STA STA STA STA ST. NO. LIMIT L IMIT fVE 1 2 3 4 5 6

: N L A R C E WENT...... o O 15.0 15.0 22.5 22.5 33.

1 0.40 C.39 C .50 0 1 0 1 1 2 2 0.59 C.77 C .68 2 0 1 0 0 5 3 0.77 C.96 0 .36 1 1 1 0 1 3 4 C.96 1.14 1 .05 0 2 0 2 7 5 1.14 1.32 1 .23 0 1 1 1 0 3 6 1.32 1.51 1 .42 0 0 1 0 0 2 7 1.51 1.69 1.60 0 0 0 3 4 9 1.68 2.06 1 .97 0 0 1 0 7 2 10 2.CÔ 2.24 2.15 0 0 1 0 14 0 0 11 2.24 2.43 2 .34 0 0 6 0 20 12 2.43 2.61 2.52 0 0 3 c 23 1 13 2.(1 2.80 2 .70 0 0 4 0 15 0 14 2.60 S.98 2 .89 0 0 10 0 18 0 15 2.SA. 3.16 2.07 3 1 8 0 11 0 1 16 3. 16 3.35 3 .26 7 0 12 9 0 17 3 .25 3.53 3 .44 17 2 a e 2 0 18 3.53 3.72 2 .62 23 1 6 10 1 0 19 3. 72 3.90 3.81 9 6 4 14 3 0 20 3.90 4.08 3.99 14 4 2 12 3 0 21 4. ce 4.27 4.18 7 8 2 6 0 0 22 4.27 4.45 4 .36 3 10 0 e 0 0 23 4.45 4.6 4 4.54 3 4 0 1 0 0 24 4.64 4.82 4.73 0 7 0 0 0 0 25 4.62 5.00 4 .91 3 5 0 0 0 0 26 5.00 5. 1 9 £ .10 1 0 0 0 0 0 27 5.19 5.37 £ .23 1 2 1 2 0 0 26 5.37 5.56 5 .46 0 2 0 1 0 0 30 5.74 5.92 £ .83 0 1 0 0 0 0 34 6.48 6.66 e .57 0 1 0 c 0 0 170

DISC NC«= 4 CISC SPEED- 3C 00. RPM POTENTIAL= 0.0 KV

LASS LOWER UPPER CLASS TA STA STA STA STA ST, T NO. LIV IT L IMI T AVE 1 2 4 5 6 : N L A R C E MEN T.«... .5 7.5 7 .b 33 .0 15.0 10.

1 0.40 0.39 C.bO 2 0 2 31 104 65 •3 2 0.E9 C.f7 C .68 0 0 26 82 4 3 C. 77 C.96 C .86 0 0 0 27 11 1 4 C.S6 1.14 1 .05 0 0 1 22 9 1 5 1.14 1 .32 1.23 0 0 0 13 2 0 6 1.32 1.51 1 .42 0 0 0 4 0 2 7 l.£l 1 .65 1 .60 0 0 0 2 0 0 8 1.6S 1 .ae 1.78 0 0 0 0 0 2 S 1.E8 2.06 1.97 0 0 0 0 1 1 10 2.C6 2.24 2.15 0 0 0 1 0 4 11 2.24 2.4 2 2.34 2 c 0 0 0 2 12 2.43 2.6 1 2 .52 0 0 0 c 0 2 13 Z.6 1 2.80 2 .70 0 0 0 0 0 2 14 2. €0 2.se 2 .89 0 c c 0 0 1 15 2.Sd 3.16 2 .07 0 0 0 c 0 1 1 7 3.3b 3. 'i 3 2 .44 0 0 c 1 0 0 18 3.53 3.72 3.62 0 0 0 • 0 1 0 19 3.72 3.90 2 .31 1 0 1 0 0 0 20 3. SO 4.3 6 2 .99 0 0 5 0 0 0 22 4. 27 4.45 4 .36 0 1 0 0 1 0 23 4.45 4.6 4 4 .54 0 1 1 0 1 0 24 4.É4 4.82 A .73 0 0 1 0 0 0 25 4.E2 5.00 A .91 0 2 1 c 0 0 26 5. 00 5.1 9 5.10 0 2 1 0 2 0 27 5. 19 5.3 7 5 .28 0 3 0 0 0 0 28 £.37 5.56 £ .46 1 1 0 c 0 0 29 5. 56 5.74 £ .65 0 4 0 c 0 0 30 5.74 5.92 £.83 1 3 0 c 0 0 31 5.S2 6.11 6.02 0 3 0 ,2 0 0 32 FC. 11 6.25 6.20 1 0 0 0 0 0 33 e. 29 6.48 t .38 0 2 0 0 0 0 34 6. 48 6.66 t .57 0 2 0 0 0 0 35 à. to FC..3 4 6.75 0 1 0 0 0 0 36 6.£4 7.03 fc .94 0 1 0 0 0 0 38 7.21 7.40 7.30 0 1 0 0 0 0 39 7.40 7.56 7.49 0 1 1 c 0 0 41 7.76 7 .95 7.86 1 0 0 c 0 0 42 7. «5 8.13 € .04 0 1 0 c 0 0 43 a. 13 E .32 a .22 1 0 1 0 0 0 47 6.67 9.0 5 £.96 0 0 1 0 0 0 48 9.C5 9.24 Ç.14 1 0 1 0 0 0 51 10.CO 10.50 10.25 1 0 0 0 0 0 52 10. 50 11.OC IC .75 1 0 0 0 0 0 171

DISC NC.= 4 DISC SPEED= 3000» RPM PCTENTLAL= -8*0 KV

:LASS LOWER UPPER CLASS STA STA STA STA STA STi NO. LIMIT LIMIT AVE 1 2 3 4 5 6 o : N L A P G E WEN T . « .. . . 7.5 7.5 7.5 10 .0 o 15.

0 1 C.4C 0.59 C.50 7 1 1 4 1 2 C.59 C.7 7 C .68 0 0 0 3 0 1 3 0.77 0.96 C .86 0 0 0 2 0 0 4 0.S6 1.14 1.05 0 0 0 0 0 1 5 1.14 1.32 1.23 0 0 0 1 0 0 6 1.22 1.51 1.42 0 0 0 0 0 1 3 7 1.51 1.69 1 .60 0 0 0 0 0 8 1.69 1.88 I .78 0 0 0 0 0 2 9 1.88 2.06 1.97 0 0 0 0 0 3 6 10 2.06 2.24 £ .15 0 0 0 0 1 0 11 2.24 2.43 2.34 0 0 0 0 4 0 12 2.43 2.61 2.52 0 0 3 1 4 0 12 2.6 1 2.80 2.70 0 0 1 1 0 0 14 2. £G 2.98 2.89 0 0 1 0 0 0 15 2.98 2.16 2 .07 0 0 5 2 0 0 16 3. 16 2.35 2 .26 0 1 1 2 0 0 17 3.35 3.53 3.44 2 2 0 1 0 0 0 18 3.S3 3.72 2 .62 1 3 0 0 19 3.72 3.90 2.81 0 5 0 0 0 0 0 20 3.90 4.08 2.99 5 7 0 0 0 0 0 0 21 4.ca 4.27 4.18 5 9 0 0 22 4.27 4.45 4 .36 5 0 0 0 0 0 23 4.45 4.64 4 .54 2 0 0 0 0 0 24 4.64 4.32 4.73 3 1 0 0 0 0 25 4. £2 5.00 4.91 2 0 0 0 0 26 5.CO 5.19 5 .10 0 1 0 0 0 0 0 27 5. 19 5.37 5.28 2 0 0 0 0 0 28 5.37 5.56 £ .46 2 0 0 0 0 0 29 5.56 5.74 £.65 1 0 0 0 0 32 6.11 6.29 6 .20 1 0 0 0 0 0

/ 172

DISC NC.= 4 DISC SPEED= 3000. RPM PCTENTIAL= 8.0 KV

:LASS LCWER UPPER CLASS STA STA STA STA STA ST NC. LIMIT L IMI T /OVE 1 2 3 4 5 6 o N L A fi C- E WEN 7 .5 7.5 10 .0 O 33.0 33. 1 1 0.40 C.5S C .50 16 2 2 1 7 2 C.S9 0.77 C .68 3 0 1 14 0 3 C.77 C.96 C .86 1 0 0 0 16 1 4 C. 56 1.14 1 .05 1 0 C 0 8 8 5 I .14 1.32 1 .23 0 0 0 c 9 24 6 1.22 1.51 1 .42 1 0 0 0 1 25 7 1 .£1 1.69 1.60 0 0 0 0 1 8 8 1 .69 1 .'JB 1.70 0 0 0 1 0 2 15 2.S8 3. It 3.07 0 1 0 1 0 0 16 3. 16 2.35 2.26 0 0 0 1 0 0 17 3. 35 2.53 2.44 0 1 0 1 0 0 18 2.53 3.72 2.62 0 1 0 c 0 0 0 0 IS 3. 72 3.9C 2 .81 0 2 0 - 20 3. SO 4.OH 2.99 0 2 0 0 0 0 21 4. C6 4.2 7 4.18 0 2 0 c 0 0 22 4.27 4.4 5 4.36 Ù 6 c 0 0 0 23 4.4b 4.04 4 .54 0 3 0 c 0 c 24 4.64 4.82 4 .73 0 4 0 0 0 0 25 4.62 £.00 4 .91 1 5 2 0 0 0 26 5. CO 5.19 £.10 0 4 2 0 0 0 27 5 .19 5.37 5 .28 1 2 2 c 0 0 26 5.37 5.56 £ .46 2 1 1 c 0 0 29 5.56 5.74 5.65 1 1 1 c 0 0 30 5.74 5.92 S .83 1 0 2 0 0 0 31 5.Ç2 6.1 1 e.02 1 0 0 0 0 1 0 32 6. 11 6.29 6.20 2 0 0 c 0 33 6.29 6.48 t .38 1 0 0 <3 0 1 34 6.46 6.66 6.57 2 0 0 0 0 0 35 6. 66 6.84 6 .75 1 0 0 c 0 0 36 6.64 7.03 6.94 0 1 0 0 0 0 37 7.C3 7.?1 7.12 1 0 c c 0 0 42 7.(5 E.13 £ .04 0 0 c 0 1 0 0 44 e.32 8.50 e .41 0 0 0 0 1 0 45 8.50 e.ùE € .59 c 0 0 c 1 Q 47 8.67 9.05 e .96 0 0 0 1 0 48 9. C5 9.24 9.14 0 0 0 0 1 0 0 50 9 .60 IC.OO 9 .80 0 Û 0 0 1 173

DISC NC.- 4 DISC SPE£D= 3000. PPM PCTENTIAL= -22.0 KV

CLASS LCWEK UPPER CLASS STA STA STA STA STA STA NO. LIMIT LIMIT AVE 1 2 3 4 5 6 ENLARGEWEN 7.5 7.5 7.5 10.0 15.0 22.5

1 0. 40 0.59 C.50 7 5 7 71 3 3 2 0.53 C.77 C.68 0 0 0 1 9 I 3 3 C.77 C.96 0 .86 1 1 1 S 0 5 4 C.S6 1.14 1.05 1 0 0 1 0 1 5 1. 14 1.32 1 .23 0 0 0 1 0 0 6 1.22 1.5 1 1.42 0 0 0 0 0 1 7 L.EL 1.69 1 .60 0 0 0 0 1 0 9 1.88 2.06 1 .9 7 0 0 0 0 1 3 1 0 2.C6 2.24 2.15 0 0 0 0 0 3 11 2.24 2.43 2.34 0 0 0 0 0 10 12 2.43 2.6 1 2 .52 0 0 0 0 1 4 13 2.61 2.80 2 .70 0 0 2 0 0 5 14 2.80 2.98 2 .89 0 0 1 0 1 2 15 2. 58 3. 16 2 .07 0 0 1 0 0 2 16 2.16 2.I5 2 .26 0 1 2 0 1 0 1 7 3.25 2.53 2 .44 0 2 1 0 3 1 16 3.S3 3.72 2.62 0 1 0 0 1 0 1 9 2. 72 3.90 2 .81 0 5 4 1 4 1 20 3. SO 4.)e 2.99 2 4 3 2 3 0 21 4. 08 4.27 4.18 1 5 4 1 1 0 22 4. 27 4.45 4.36 1 5 4 2 3 0 23 4. 45 4.64 4 .54 2 3 6 1 6 0 24 4. €4 4.82 4.73 4 2 4 1 3 0 25 4. £2 5.00 4 .91 0 4 6 2 0 0 26 5. 00 5.19 5.10 1 4 3 0 0 0 27 5. 19 5.37 5.28 2 5 2 2 0 0 28 5.27 5.56 £.46 1 0 5 1 1 0 29 5.56 £.74 £ .65 1 2 1 2 0 0 30 5. 74 £.92 E .83 0 1 7 0 0 0 3 1 5. Ç2 6.1 1 6.02 0 2 0 1 0 0 32 6. 11 E.2S 6.20 1 2 3 0 0 0 34 6-43 6.66 L .57 0 0 1 0 0 0 35 6.€6 6.84 6 .75 1 0 2 0 0 0 37 7. C3 7.21 7.12 0 0 1 0 0 0 39 7.40 7.58 7.49 0 1 0 0 0 0 42 7. <5 6.13 E .04 0 0 0 1 0 0 174

DISC NC.= 4 DISC SPEED= 3000 . RPI*' PCTENTl AL= 22.0 KV

CLASS LOWER UPPER CLASS STA STA STA STA STA ST NO. LIMIT LIMIT AVE 1 2 3 4 5 6 [ N L A R G E N e N T « * .. . . 7.5 7.5 7 .5 10 .0 10.0 22. o o 1 C.5S C .50 1 84 38 • 1 5 2 2 0.59 C.f7 C .68 0 2 15 5 2 0 3 C. 77 C.9 6 C .80 0 1 5 0 0 0 4 C.96 1.1 4 1 .05 0 I 0 0 1 5 1 .14 1 .32 1.23 1 0 0 1 0 0 6 1.22 1.51 1 .42 1 0 4 C 1 1 T 7 1.51 1.69 1 .6C 0 0 1 0 0 8 1. e9 1 .83 1 .78 1 0 0 0 1 2 9 1.68 2.06 1 .97 0 0 0 0 4 1 10 2. Co 2.24 2.15 0 0 0 1 I 3 1 1 2.24 2.43 1 .34 1 0 0 G 2 5 12 2.43 2.6 1 2 .52 0 0 0 0 5 2 13 2.61 2.80 2 .70 0 0 0 C 9 3 14 2. 80 2.98 2.89 1 0 1 0 5 1 15 2.ça 3.16 3 .07 I 0 0 1 5 3 16 3. lb 3.35 2 .26 0 0 2 1 5 2 c 17 3. 35 3 .52 2.44 0 0 1 3 3 1 8 3.53 3.72 2 .62 0 0 3 0 2 0 19 3. 72 3.30 2.81 0 0 7 2 0 0 20 3.50 4.0 8 2 .99 0 I 7 2 1 0 21 4. CB 4.27 4.18 0 1 4 1 0 0 22 4.27 4.45 < .36 0 2 3 2 0 0 23 4.45 4.64 4 .54 Û 3 8 0 0 0 24 4.(4 4.32 4.73 1 6 5 1 0 0 25 4.62 5.00 4 .91 0 5 3 2 0 0 26 5.00 5.19 £ .10 1 1 1 2 0 0 27 5. 19 5.37 £ .28 0 2 0 2 0 0 28 5.57 5.56 £ .46 0 0 2 G 0 0 29 3.56 5. 74 £ .65 2 2 0 2 0 0 30 5.74 5.9 2 £.83 3 0 0 1 0 0 31 5.S2 6.11 6.02 2 1 2 1 0 0 32 6.11 6.29 6.20 2 0 1 C 0 0 33 6. 29 6.48 6 .38 1 2 0 0 0 0 34 c. 43 6.66 t .57 3 C 1 0 0 0 35 6. 6u 6.84 6.75 4 0 0 1 0 0 38 7.21 7.40 7 .30 1 0 0 0 0 0 39 7.40 7.58 7.49 1 0 0 0 0 0 40 7.58 7.76 7 .67 1 0 0 c 0 0 41 7.76 7.95 7.86 1 0 0 c 0 0 175

DISC NC.= 4 CISC SPEED= 6000. «PM PCTENTIAL= 0.0 KV

CLASS LCWEk UPPER CLASS i.TA STA STA STA STA STA NC. LIMIT LIMT />VE I 2 3 4 5 6 E N L A R G E M E N T .« .. * * 7.5 7.5 10.0 10.0 10.0 10.0

2 1 0.40 c.5 g • 0.50 J5 12 0 2 8 2 C. 55 c.77 C .68 7 13 4 2 5 0 3 0.77 0.96 C .86 2 7 8 6 0 0 4 0. S6 1.14 1.05 1 0 7 2 0 0 1. 14 1.32 1.23 1 0 5 2 2 5 K e 1.22 1.5 1 1.42 0 1 2 1 6 5 7 1.51 1.69 1.60 1 1 2 2 5 8 1.69 1.8Ê 1.78 0 0 3 G 5 4 Ç l.£8 2.06 1.97 0 0 0 2 4 9 10 2. C6 2.24 2. 15 0 0 1 3 5 6 11 2.24 2.43 2 .34 0 4 1 e 4 e 7 12 2.43 2.61 2.52 0 3 5 e 3 2.30 2.70 0 1 c 12 2 3 2.61 O 13 M C C 14 2.80 $ 2.89 1 4 6 12 3 3 15 2.S8 3.1 C 2.07 5 5 6 1 0 1 0 c. 0 16 3. 16 2.35 2 .26 2 10 7 1 17 3.35 2.5 2 2.44 6 7 5 3 0 0 18 3.53 2.72 2 .62 2 8 2 1 0 0 19 3.72 3. V 0 2 .81 4 9 3 c 0 0 0 0 20 3.SO o 2.99 i 9 0 0 0 21 4.C8 4.2 7 4.18 2 5 0 c 0 0 22 4.27 4.45 4 .36 3 3 1 c 0 23 4.45 4.64 4.54 1 3 1 0 0 0 24 4.€4 4.82 4.73 3 2 1 0 0 0 25 4.€2 5.00 4.91 2 0 0 0 0 0 26 5. 00 5.1 S 5.10 1 0 0 0 0 0 28 £.27 5.56 5 .46 1 0 0 c 0 0 fin 176

DISC NC.= 4 DISC SPEED= 6000. RPM POTENTIAL^ -8.0 KV

CLASS LCkER UPPER CLASS STA STA STA STA STA STA NC. LIMIT LIMI T /I VE I 3 4 5 <3 E N L ARC! N F N T * .... 4 7.5 7.5 10.0 10.0 10.0 15.0

1 0.40 0.59 C .50 3 7 0 1 9 10 2 C. 59 0.77 C .66 3 1 0 1 4 G 3 0. 77 C.96 C.B6 1 0 2 2 5 3 4 C.S6 1.14 1.05 0 0 0 1 0 6 5 1 .14 1.32 1.23 0 0 2 2 3 8 c 6 1.22 1.5 1 1.42 0 0 0 5 6 •a 7 l.El 1 .69 1.60 0 0 0 6 6 •3 8 1 .69 i.ee 1 .78 0 0 0 10 9 1.68 2.06 J .97 0 0 0 1 11 2 1 0 2.C6 2.24 Z.15 0 c 1 6 9 0 11 2.24 2.4-3 2.34 0 0 3 1 0 3 0 12 Z.43 2.6 1 2 .52 0 0 3 e 7 0 1 3 2.61 2.80 2 .70 0 1 4 8 2 1 14 2. eo 2.96 2 .89 1 0 7 1 e 4 1 15 2•sa 3.16 3.07 1 2 12 9 2 0 16 2-16 3.35 3.26 0 U 18 4 1 0 1 7 3. 35 2.5 3 2 .44 2 20 1 1 1 0 0 16 3.53 3.7 2 2 .62 3 5 a 0 0 0 19 3. 72 2.90 2.81 3 3 6 0 0 0 20 3.SO 4.C 8 2 .99 5 4 3 0 0 0 21 4.C8 4.27 4.18 1 4 1 0 0 0 22 4.27 4.45 4.36 4 0 1 c 0 0 ] 23 4. 45 4.6 4 4 .54 1 1 c 0 0 24 4. £4 4.32 A .73 1 0 0 0 0 0 25 4. £2 5.0 0 4 .91 3 0 0 0 0 0 26 5. ao 5. I 9 e.io 2 1 0 c 0 0 28 5.27 5.56 5.46 0 1 0 c 0 0 29 5.56 5.74 5 .65 1 a 3 c 0 0 31 5. «2 6.11 € .02 1 0 0 0 0 0 33 6. 29 6.48 t .38 1 0 0 0 0 0 34 6.46 6.66 e .57 1 0 c c 0 0 36 7. 21 7.4 0 7 .30 1 0 0 0 0 0 177

DISC NC.= 4 DISC SPEED= 6000. HHW PCTENTIAL= 8.0 KV

CLASS LCWER UPPER CLASS STA STA STA STA STA STA NO. LIMIT LIMIT AVE 12 3 4 5 6 E N L A R G E N E N T...... 10.0 10.0 10.0 10.0 15.0 15.0

1 0.40 0.59 C.50 121 6 4 3 0 3 2 0.59 C.7 7 0.68 50 5 3 1 2 2 3 G. 77 C.96 C .86 34 0 2 0 4 6 4 0.S6 1.14 1 .05 0 1 1 3 0 3 1 5 1 . 14 1.32 1 .23 2 0 1 1 6 6 1.22 1.51 1 .42 1 0 1 1 0 10 7 1.51 1.69 1 .60 1 0 1 2 1 11 8 1.69 1.88 1 .78 0 0 0 4 0 7 9 1.68 2.36 1 .97 0 0 1 0 0 5 •5 10 2.C6 2.24 2.15 0 0 0 1 4 1 1 2.24 2.43 2.34 0 0 1 2 1 3 12 2.43 2.6 i 2 .52 0 0 2 6 1 1 13 2.61 z.ao 2 .70 0 0 0 4 0 0 14 2.80 2.98 2.89 0 0 0 4 2 0 c 15 2.98 3.16 3.07 0 3 1 6 0 16 3. 16 3.35 3 .26 0 2 0 12 2 0 17 3. 35 3.33 2 .44 0 1 0 7 7 0 le 3.52 3.7 2 3.62 0 6 4 6 2 0 19 3.72 3.90 3.81 1 4 3 4 1 0 20 3.SO 4.0 8 3 .99 0 1 1 6 5 0 21 4.C8 4.27 4.18 0 1 3 1 4 0 22 4.27 4.t5 4.36 0 2 8 1 0 0 23 4.45 4 .6 4 4.54 3 2 7 0 1 0 24 4.64 4.82 4 .73 0 3 7 0 0 0 25 4.62 £.00 A .91 3 2 2 c 0 1 26 5.00 5.19 5.10 3 1 3 0 1 0 27 5. 19 £.37 £.28 4 0 0 1 0 0 28 5.37 5.56 £ .46 3 0 2 0 0 0 29 5.56 £.74 £.65 4 0 1 0 1 0 30 5.74 5.9 2 £.83 2 0 0 1 0 0 31 5.Ç2 6.1 1 6 .02 1 0 0 0 0 0 32 6. 11 6.29 6.20 0 1 1 c 0 0 33 6.29 6.48 6.38 1 0 0 0 0 0 35 6.66 6.84 6.75 1 0 0 0 0 0 37 7. C3 7.2 1 7.12 1 0 1 0 0 0 40 7.58 7.76 7 .67 1 0 0 0 0 0 178

DISC NC.= 4 CISC SPEED= 6000. RPh' PCTENTl AL= -22.0 KV

:LASS LCHFCR UPPF-R CLASS STA STA STA STA STA ST L IMIT AVE 1 2 2 4 5 6 NC. LIMIT o O : N L A K G T N E N T ...... 7 .5 10.0 10.0 15 .0 22.

1 0. 40 C. 5 9 C .50 23 81 26 1 3 26 10 2 0. 59 C.77 C .68 1 43 0 1 7 7 3 C. 77 €.96 C .36 0 14 2 0 10 9 4 C.S6 1.14 1.05 0 9 0 I 5 3 5 1. 14 1.32 1 .23 0 G 0 0 3 2 6 1.32 L.DL I .42 0 3 0 0 1 2 7 1.51 1 .69 1 .60 0 0 0 0 1 4 e 1.69 i.aa 1.78 0 0 0 c 2 7 c 9 1.88 2.06 1 .97 0 0 0 0 12 10 2.G6 2.24 2.15 0 0 0 0 1 9 11 2.24 2.43 2 .34 0 0 0 0 0 14 12 2.43 2.C) 1 2 .52 0 0 0 c 0 13 13 2.6 1 2.ao 2.70 0 0 0 0 0 2 14 2. 80 2,98 2.89 0 0 0 0 0 2 15 2.Sd 5.16 3 .07 0 0 0 c 0 1 16 3. 16 I. 35 3 .26 0 0 2 0 1 1 1 7 3. 35 3.53 :.44 0 0 2 c 0 2 18 3.5 J 3.72 2 .62 2 0 5 0 0 0 19 3.72 3.90 3.81 2 0 11 2 0 0 20 3. SO 4.08 3-99 4 0 6 2 2 0 21 4. ca 4.27 4.18 4 0 a 4 2 0 •3 22 4.27 4.45 4.36 1 0 0 9 0 1 23 4.45 4.6 4 4 .54 5 0 2 2 2 0 24 4.64 4.82 4.73 4 1 1 8 3 0 25 4.E2 5.0 0 4 .91 1 1 2 5 5 0 26 5. CO 5.19 5.10 1 2 4 3 0 27 5. 19 5.3 7 5 .28 0 5 2 1 4 0 28 5.37 5.56 £ .46 0 3 1 2 1 0 29 5.56 5.74 5.65 0 3 1 •3 0 0 30 5.74 5.92 £ .83 1 5 0 0 0 0 31 5. <2 6.11 e .02 0 6 0 0 1 0 32 6. 11 6.29 f: .20 0 2 1 1 0 0 33 6.29 6.48 C- .38 0 4 0 c 1 0 34 6.48 6.6 6 T .57 0 3 0 0 0 0 35 6.66 6.84 t .75 0 2 0 0 0 0 36 6.64 7.0 3 T .94 0 2 0 c 0 0 37 7. C3 7.2 1 7.12 0 3 0 c 0 0 38 7.21 7.4 C 7.30 0 2 0 0 0 0 40 7.58 7.76 ? .67 0 1 0 c 0 c 41 7. 76 7.95 7 .86 0 1 0 0 0 0 43 8. 13 €.32 £ .22 0 1 0 0 0 0 48 Ç.C5 9.24 9.14 0 1 0 0 0 0 179

OISE NG«= 4 DISC SF£EÛ-= 6000* FIPM POTENTIAL— 22m0 KV

:LASS LGWER UPPER C L ASS STA STA STA STA STA £Ti 6 NO. LIMIT L IMIT AVE 1 2 '3 4 5 o o O • N L A R G E N E N T ...... 7.5 7.5 O 15.0 33.i 0 1 0.4€ 0.59 C .50 2 27 3 32 3 •3 0 2 0.E9 0. 77 C .68 2 11 2 6 3 0.77 c.yt C .86 1 2 0 1 2 0 4 C.S6 1.14 1 .05 1 1 0 0 0 0 5 1.14 1.32 1 .23 0 1 0 c 0 0 8 1.69 1.88 1 .78 0 0 0 c 1 1 9 1.E8 2.06 1.97 0 0 0 1 2 1 5 10 2.C6 2.24 £ .15 0 2 0 0 4 5 9 11 2.24 2.43 2 .34 0 1 0 2 12 2e43 2.61 2 .52 1 5 0 4 9 11 7 13 2.61 2.30 2.70 1 1 0 12 13 6 14 2. SO 2.98 2 .89 1 2 1 9 18 15 2.98 3.16 2 .07 1 5 1 13 10 4 16 3. 16 3. 35 3 .26 0 1 2 8 3 0 17 3.35 3.53 3 .44 0 5 7 6 5 1 18 3.£3 3.72 3 .62 4 6 10 4 1 0 19 3.72 3.yo 3 .81 0 4 11 1 1 0 20 3.90 4.06 3 .99 4 6 6 0 0 1 21 4. 08 4.27 4.18 2 2 4 0 0 1 0 22 4. 27 4.45 4 .36 2 2 2 0 1 0 23 4.45 4.6 4 4 .54 3 2 2 0 0 0 24 4.64 4.82 4 .73 1 2 2 0 0 0 25 4.E2 £.00 4 .91 1 0 0 0 0 26 5.CG 5.19 £ .10 1 0 0 c 0 0 180.

DISC NC .= CISC SPEEO= 9000. RPM PCTENTI AL.= 0 «0 KV CLASS LOWER UPPER CLASS STA STA STA STA STA STA NO. LIMIT LIMI T / ve 1 2 3 4 5 6 E: N L A R G E PEN T • • .. . . 15.0 15.0 15.0 22.5 20.0 15. 1 0.40 C.5S C.50 30 14 13 1 0 18 2 0.59 0.77 €.68 35 7 7 I 2 2 3 0-77 C.96 C.86 60 26 15 0 2 0 4 C.S6 1.14 1 .05 82 32 1 1 0 1 0 5 1 .14 1.32 1 .23 59 28 10 2 0 0 6 l.c2 1.5 1 I .42 51 22 7 2 2 1 7 l.£l 1 .o9 1.60 33 26 4 1 1 0 6 1.69 1 .88 1 .78 25 18 6 1 0 1 9 1.88 2.C6 1 .97 24 15 8 2 0 4 1 C 2. C6 2.24 2.15 17 10 1 1 2 0 2 1 I 2.24 2.43 2 .34 1 1 11 8 C 0 8 12 2. 43 2.6 1 2 .52 9 1 1 9 0 0 6 c 13 2.6 1 2.ao 2 .70 6 a 1 0 5 14 2. eo 2.98 2 .89 5 10 10 c 0 6 15 2.Sd 3.16 3.07 4 10 6 G 0 7 16 3. IÔ 3.35 3 .26 4 3 4 2 0 9 17 3.25 2.53 3 .44 0 4 6 0 2 7 18 3.53 3.72 2.62 0 2 7 2 1 4 19 3.72 3.90 2.81 0 1 10 1 1 6 20 3.SO 4.08 2 .99 G 3 6 2 2 5 21 4.C8 4.2 7 4.18 0 2 6 1 5 4 22 4. 27 4.45 4 .36 0 6 6 C 2 2 23 4. 45 4.64 4.54 0 J 6 4 2 3 24 4.64 4.82 4 .73 0 7 5 3 1 0 25 4.62 5.00 4 .91 0 2 0 C 0 2 26 S. CO £.19 5.10 1 4 2 0 4 1 27 5.IS 5.3 7 £ .28 0 4 5 2 3 1 28 5.37 5.56 £ .46 0 1 3 1 1 0 29 5. 56 5.74 £ .65 2 1 0 C 1 1 30 5.74 £.92 £.83 0 4 1 1 2 0 31 5.<2 6.11 (.02 c 1 1 c 1 1 33 6.29 6.48 6 .36 0 0 0 1 0 0 34 6.46 6 .66 6 .57 0 1 0 0 2 0 35 6.66 6.84 € .75 1 1 1 0 0 0 36 6.(4 7.03 É .94 3 1 0 c 0 0 37 7. C3 7.2 1 7 .12 2 0 0 0 0 0 38 7.21 7.40 7 .30 2 0 0 c 0 0 3S 7.40 7.58 7 .49 1 0 0 1 0 0 40 7.5b 7 .76 7.67 0 0 0 1 0 0 41 7. 76 7.95 7 .86 1 0 0 0 0 0 43 a.13 e.J2 8 .22 3 0 0 0 0 0 44 8.32 e.50 £ .41 3 0 0 c 0 0 45 £.50 8.08 € .59 1 0 0 c 0 0 48 9. C5 9.24 Ç .14 1 0 0 0 0 0 50 9.60 10.00 G .80 1 0 c 0 0 0 52 10. 50 11.DC IC .75 1 0 0 c 0 0 55 12. CO 12.50 12.25 1 0 0 0 0 0 181

DISC N0.= 4 DISC SPEED= 9000. «PM PCTENTIAL= -8.0 KV

CLASS LOWER LPPER CLASS STA STA STA STA STA ST, NO. LIMIT L IMI T fVE 1 2 3 4 5 6 5 N L A P G E N E N T • • .. . « 1 5.0 15.0 15 .0 15.0 15.0 20. c 1 C.40 0.59 C.50 39 14 1 10 22 2 0.59 C.77 C .68 34 31 16 6 7 3 3 0.77 0.96 C .86 43 41 22 4 .3 10 4 0.96 1.14 1 .05 25 39 7 4 1 3 T S 1.14 1 .32 1.23 20 34 1 1 0 5 6 1.32 1.51 1 .42 25 21 7 2 0 4 7 l.El 1.69 1 .60 20 13 5 3 1 7 a 1.69 1 .38 1.78 24 26 3 3 0 5 9 l.€6 2.06 1 .97 21 10 4 5 2 4 10 2.C6 2.24 2.15 12 4 8 1 4 8 -J 11 2.24 2.42 2 .34 13 11 4 3 12 12 2.43 2.61 2.52 7 6 3 2 3 12 12 2.61 2.80 2.70 5 6 1 0 1 10 14 2.60 2.98 2 .89 5 4 7 4 7 12 IS Z.S8 3.16 3.07 1 10 2 3 4 8 16 3. 16 2.35 2.26 1 6 3 3 6 6 17 3.35 2.53 2.44 1 2 4 2 3 4 16 3.£3 2.72 2.62 0 2 2 2 4 3 T 19 3,12 3.90 2.81 0 2 3 5 3 20 3.90 4.0 6 2.99 0 5 4 1 5 2 21 4.(8 4.27 4.18 1 5 1 1 3 2 22 4.27 4.45 A .36 0 2 4 2 1 1 23 4.45 4.64 4.54 0 1 4 4 3 1 •3 24 4.64 4.82 4.73 0 3 1 1 0 25 4.52 5.00 4.91 0 2 2 4 1 1 26 5. 00 5.19 5.10 4 1 6 2 0 1 27 5. 19 5.37 E .28 3 2 2 2 0 0 26 5.37 5.56 £.46 2 1 2 1 0 1 29 5.56 5.74 £.65 5 3 1 0 0 0 30 5.Î4 5.92 £ .83 1 3 1 0 0 0 31 5.S2 6.11 €.02 1 1 0 0 0 0 32 6.11 6.29 e .20 1 2 1 0 0 0 33 6.29 6.46 e.38 2 3 0 1 0 0 34 6.48 6.66 6.57 0 1 0 0 0 0 35 6.66 6.84 € .75 1 1 0 c 0 0 36 6.€4 7.03 €.94 1 1 2 c 0 0 37 7. C3 7.2 1 7.12 1 0 0 1 0 0 38 7.21 7.40 7 .30 1 1 0 0 0 0 39 7.40 7.58 7.49 1 1 0 0 0 0 41 7.76 7.95 7.86 1 0 0 0 0 0 44 8.22 6.50 6.41 2 0 0 0 0 0 182

DISC NC.= 4 DISC SPEED= 9000. RP^/ PCTENTI AL= 8.0 KV

CLASS LCWER UPPER CLASS STA STA STA STA STA STA NO. LIVIT LIMIT /SVE I o 3 4 5 6 ENLARGE N t N T « « .. « 15.Û 15.0 15.Û 15.0 15.0 20.0

C.50 26 3 2 90 27 36 1 C. 40) G. 55 o U 2 f C. 7 7 C .68 20 9 7 45 21 18 3 0.77 C.96 C .86 29 29 17 1 e 1 7 4 0.S6 1.1 4 1 .05 23 20 16 1 2 11 5 1. 14 1.32 1.23 24 17 12 3 1 S 6 1.32 1.51 1.42 18 14 15 1 1 7 -> 7 1.51 1 .6S 1.60 1 4 15 12 4 a 6 1 .69 1.88 i .78 1 9 10 13 4 0 14 S 1. £8 2.06 1.97 1 5 12 5 1 5 6 10 2.06 2 .24 2.15 7 à 10 6 8 10 11 2.24 2.43 2 .34 6 7 a 7 15 13 12 2. 43 2.61 2 .52 7 8 2 5 15 6 13 2.61 2.BC 2 .70 2 7 9 6 4 5 14 2. eo 2.se 2.89 1 5 6 4 t> t 15 2.S8 3.16 3.07 2 2 6 2 1 5 16 3. 16 3.35 3.26 0 1 4 6 2 1 17 3.35 3.53 3 .44 1 6 4 0 1 le 3.53 3.72 3 .62 0 2 3 4 1 C IS 3. 72 3.90 3.8 1 0 3 2 4 1 2 20 3.SO 4.06 3 .99 1 2 1 4 0 1 21 4.C8 4.27 4 .Iti 0 2 0 2 0 0 22 4. 27 4.45 4 .3o 0 5 0 2 0 0 23 4.45 4.6 4 4.54 1 1 2 C 0 0 24 4.64 4.82 4.73 0 2 1 c 0 0 25 4. £2 5.00 4.91 0 3 4 1 0 0 26 5.CO 5.19 5.10 1 0 3 0 0 0 27 5. 19 5.3 7 5 .28 2 1 0 c 0 1 28 5.37 5.56 5.46 2 3 c c 0 0 29 5.56 5.74 5.65 3 4 1 c 0 0 30 5.74 5.92 £ .83 3 4 1 0 0 0 31 5. S2 6.11 € .02 5 5 0 c 0 0 32 6. 11 6.2% € .20 4 2 1 0 0 0 33 6.29 6.48 € .38 6 3 0 0 0 0 34 6.48 6.66 e .57 2 0 0 c 0 0 35 6. 66 6.84 e .75 5 0 0 0 0 0 36 6.£4 7.03 e .94 0 1 0 c 0 0 37 7.C3 7.2 1 7.12 2 0 0 G 0 0 40 7.58 7.76 7 .67 0 1 0 c 0 0 41 7. 76 7.95 7 .86 1 0 0 c 0 0 46 e.68 3.8 7 e .78 1 0 0 c 0 0 183

DISC NC.= 4 DISC SPEP.D= 9000. RPM PCTENTIAL= -22.0 KV

:LASS LCHER UPPER CLASS S FA STA STA STA STA ST NO. LIMIT L IMIT AVE 1 2 3 4 5 6 : N L A H c e KEN T...... 15.0 15.0 15.0 15.0 22.5 23.

1 0.40 C.5S C .50 1 2 29 86 257 16 1 2 0.59 C. 77 C .68 1 1 1 1 1 1 75 3 5 3 0. 77 C.96 C.86 13 13 6 IS 2 12 4 0.96 1.14 1 .05 3 9 2 4 1 6 S 1. 14 1.32 1.23 5 2 0 0 1 3 € 1.22 1.51 1 .42 8 1 1 c 3 9 •a 7 1.51 1.69 1 .60 4 3 1 6 9 a 1.69 i.ae 1 .78 5 2 1 2 5 8 9 1.28 2.06 1 .97 7 2 2 3 9 7 10 2.06 2.24 2.15 3 0 2 4 10 19 1 1 2.24 2.43 2.34 1 1 5 1 1 18 11 12 2.43 2.61 2 .52 4 1 2 1 1 20 8 13 2.6 1 2.80 2.70 1 1 3 8 10 5 14 2.E0 2.9 8 2.89 1 2 3 9 16 7 15 2.98 3.16 2 .07 0 0 1 10 15 4 16 3. 16 3.35 3 .26 2 0 2 7 14 4 17 3.25 2.S3 3.44 0 1 2 7 5 4 1 8 3.53 2.72 3 .62 2 4 5 Ç 10 0 19 3.72 3.90 2.81 0 2 7 e 4 4 20 3. SO 4.08 3 .99 0 0 3 e 5 1 21 4.C8 4.27 4.18 0 0 6 7 1 2 22 4.27 4.45 4.36 1 1 2 C 0 1 23 4.45 4.64 4 .54 2 4 4 4 0 1 24 4.64 4.82 4.73 3 3 1 1 3 3 1 25 4.62 £.00 4.91 2 1 5 0 0 0 26 5.00 5.19 £.10 4 3 2 1 0 1 27 5. 19 5.37 E ,28 4 5 5 1 0 C 28 5.37 5.36 £ .46 4 2 3 0 0 0 2S 5. 5b 5.74 £ .65 4 3 2 0 0 0 30 5. 74 5.32 £.83 4 2 1 0 0 0 31 S.S2 6.11 C .02 5 2 1 0 0 0 32 6.11 6.2S 6.20 5 0 0 0 0 0 33 6. 29 E.48 e .38 2 0 0 c 0 0 34 6.48 6.6 6 £ .57 3 0 0 0 0 0 35 6. 66 6.34 C .75 4 0 0 0 0 0 36 6. £4 7.0 2 E .94 2 2 0 c 0 0 37 7. C3 7.2 1 7.12 2 0 0 0 0 0 38 7.<1 7.40 7.30 1 0 0 0 0 0 39 7.40 7.58 7 .49 2 0 0 0 0 0 40 7.58 7.76 7.67 1 0 0 0 0 0 43 6. 13 €.32 £.22 0 0 1 0 0 0 45 8.SO 8.68 £.59 1 0 0 0 0 0 184

DISC NC«= 4 DISC SPEEO= 9000. RPM PCTENTIAL= 22.0 KV

CLASS LCWER UPPER CLASS STA STA STA STA STA ST. NC. LIMIT LIMIT A\IE 1 2 3 4 5 6 E N L A R C E MEN T...... 15.0 15.0 15.0 20 .0 22.5 33.

1 0.40 0.5S C.50 10 7 4 6 0 0 2 0.59 C.77 C .68 9 8 1 0 0 0 3 0. 77 C.9 6 €.86 23 2 2 c 0 3 4 C. 96 1.14 1 .05 1 9 3 I 2 0 3 5 1.14 1 .32 1.23 1 0 3 2 0 0 7 6 1.22 1.51 1 .42 8 2 9 0 0 6 7 1.51 I .69 1 .60 9 0 3 0 2 5 e 1.69 1.38 1 .78 6 2 0 0 4 5 9 1.88 2.06 1 .97 8 3 3 1 5 8 10 2. 06 2.24 Z .15 5 1 5 1 8 13 11 2.24 2.43 S .34 3 1 14 2 13 18 12 2.43 2.6 1 2.52 2 1 4 1 9 19 13 2.6 1 2.30 2. 70 2 2 6 2 11 11 14 2.eo 2.98 2 .89 3 1 5 4 15 15 15 2.Sd 3. 16 3.07 0 3 10 7 15 6 le 3. 16 3.35 3.26 1 3 7 4 7 5 17 3.23 .3.5 3 3.44 0 6 4 12 9 3 18 3. £3 3.72 3.62 0 9 a 6 7 2 •5 19 3.72 3.90 3 .81 1 4 3 4 1 20 3. 90 4.0 8 3.99 2 6 7 14 11 2 21 4. C8 4.27 4.18 0 2 2 8 7 0 22 4. 27 4.45 A .36 0 3 1 2 5 1 23 4.45 4.64 4 .54 4 6 1 3 7 1 24 4.64 4.d2 A .73 3 3 0 1 7 0 25 4.62 5.00 4.91 4 1 0 2 0 1 26 5. 00 5.19 5.10 1 0 0 0 1 0 27 5.19 5.37 5 .28 5 c 0 1 0 0 0 28 5.37 5.56 5 .46 3 0 1 1 0 29 5. 56 5.74 5.65 4 0 0 2 1 0 30 5.74 5.92 5 .83 3 0 0 C 1 0 31 5.S2 6.1 1 £ .02 3 0 0 0 2 0 32 6. 11 6.29 £.20 2 0 0 0 0 0 33 6.29 6.46 6.30 5 0 0 0 0 0 34 e. 48 6.66 t .57 3 0 0 0 1 0 35 6. 66 6.34 e .75 2 0 0 0 0 0 36 6.£4 7.0 3 e .94 1 0 0 0 0 0 37 7. C3 7.2 1 7.12 1 0 0 0 0 0 39 7.40 7.58 7 .49 2 0 G 0 0 0 42 7.(5 8. 13 £ .04 1 0 0 0 0 0 43 a.13 6.32 Ê.22 1 0 0 0 1 0 185

XIII. APPENDIX C. COMPUTER PROGRAM ÎJGE •ERANDINI»,TIME=aO»PAGES=500 C C c c c This PPOGPAM CALCULATES DROPLET SIZE OISTKiaUTICN ASSOCIATED hITH c WATER SENSITIVE TARGETS FGR SPOTS MEASURED USING A PAKTICLE SIZE c ANALf/EP, CARL ZEISS. MODEL TG2 - 3. c c THE LlNE/ïH SCALE WAS USED, AS kcLL AS THE REÛUCtU RANGE. c PICTURES *ERE TAKEN AT DIFFERENT SAMPLING STATIONS ACROSS CNE c RADIAL DIPECTICN. AFTER ENLARGEMENT UP TO 33 TIMES, WHEREVER c NECESSARY, SPCTS WEWC CCUNTEO. THE CCUNTS WERE SCANNED INTC c 48 CLASSES, REPRESENTING DIAMETERS FROM 0.4 TO 9.24 MM. SEVEN c EXTRA CLASSES WERE CREATED TO ACCOUNT FOR SGME SPOTS LARGER THAN c 9.24 MM IN DIAMETER, IN SUCH WAY TO HAVE A REASONAELE ENLARGEMENT. c SPOTS UNDER SUCH CLASSES HERE MEASURED BY USING A COMMON SCALE c AITH 0.5 MM DIVISIONS. THE LARGEST CLASS CCULC RECEIVE SPCTS c UP TO 11.5 MM IN DIAMETER. c c THF PROGRAM CALCULATES THE EQUIVALENT AREA FOR THE c SAMPLED STATION AFTcR CLNSIDERING THE ENLARGEMENT USED FDR THE c PICTURE, AND THE CHARACTERISTIC POSITION OF THE STATION ALONG c THE RACIAL DIRECTION, THE DROPLET DENSITY IN THE SAMPLED AREA c IS CORRECTED BY A FACTOR DETERMINED BY THE SLIT OPENING. c c c 1 OIMENSICN INTL(56), CINT(55)« PCT(5), ENLG(6). AREAS{fc).DIST(6 » 2 DIMENSICN D1STLC6),KCLASS(G5)fKCCUNT(55).ARED(6J,FSLIT(6) 3 DIMENSICN NCUASS(6), SUIT(6), SLWA(6)»SUMC(6J. SUMD(6J.SUMS(C) 4 DIMENSICN SUMV(6). DMEANÎô). DVMEAN(6), 0MEANV(6J. SSD(6),33V(6) 5 DIMEMSILN VARO(6)» VARV(6), STOOCe), ST0V(6). CV0(6}, CVV(6) 6 DIMENSICN DAVE(6.55), DSUKF(6.55). DAREA(6,55), 0VCL{6,55) 7 DIMENSICN FHACD(6,55). FRACV(6,55),CCOUNT(6.55>,CUMOt6,55) 8 ûlfENSICN CUMV(6.55), NCOUNT(6,55 ) , OLLIM(6.55). DUUIM(6.55> 9 DIMENSION SSA(6). SSS(6), VAR(6) 10 DIMENSICN SAUT(6). 5UNV2(6).DVH(e) 1 1 DIMENSICN XCCUNTOO), XLL ( 3 1 ) . XAVE(30) 12 DIMENSICN DIAD(220), RADD(220) 13 REfL INTL 14 CCNMLN CCCUNT.DLLIM,DULIM,INTL.CINT«DIAD,RADD M 15 CCWMGN XCCUNT, XLL, XAVE 00 16 RL = 67.5 C READ INTERVAL LIMITS AND MEAN VALUES ASSOCIATED WITH, FOR THE C CLASS ES id »-ERE THE SPOT DIAMETERS »ERE SCANNED CN 17 READ(5, ICI) ( INTLtl), 1=1,So) 18 READ(5,101) (CINT(I), I = 1, 55) 19 101 FCRMAT( e(F10.2)) 20 PRINT 115 21 1 ly FORMAT(• 1 • ) c RE40 CATA c 22 KMARK = 1 DC-LOCP TC READ DATA ASSOCIATED WITH EACH OF THE USED SPEEDS 23 DC 5960 MSP =1, 3 DC-LOOP TC READ DATA ASSOCIATED kITH EACH ONE OUT THE FIVE POT. DC 9990 MID=1,5 188

» X • je < -« a U 2: -> UJ • J Q _i • X H a 1-4 » a s M •> CM CL < y. Q f- # Q m LU s O < Ui _1 u Z •J UJ a 0) -J a Z 0: U) X M UJ < u * K •H Q < » t- X! H *»4 # z 1/1 HH X' CO :»C 3 z J a X X: O a H- en "4 o < X! W L3 '/) OJ u s I m X J z * • » a t— w • Z 'OJ X oy V) • < X UJ « Q: o • z X z T\j I _i H 1- 1— (- u < o # (/5 z a h- Z J —* S •S) z O) CM • m • •H * CM Q 10 z X t- •o • in u • lil z o m CJ e X a K tJU t- < f- w a a H z M X < X J '.0 ca iO » J J m *-• V < -4 t- z a o LO CM UJ z n z N » » «•H » # '-9 a •X , •> m I •> • vO (M *-4 _J rvi ILJ _j cr z n: /L o- z • # » t- m • a: X 3 U z Q z V O J •H 0-) m O Q X X D » H M z T-4 X p, z. .« X < n Q X • u. LU "W en o 5 o • n % z ro C3 o M » K Z • z o o O O o o o J V o 3 • O • » » U) ff » ijj o o • • * ( II cc >-( O X tn (M •H CM n • o o O O o o o • 3 J 2 z Z y z «H u m w m II o u U X n 1- • m • (M O II II It II ll cg m O u D cn H a i-i X (/) •J Û z M •/) X Z u t— M O CVJ " T Q » n Q m < Z CO • H N < Q #4 m T # •H ^ i\i rvj N CO -"J IM rj Z cr CJ J LJ (\j #-l *"4 rH «H f> 3 z U m ex Z w • M II II «M » • -< -) -1 n "1 ~5 -) w U • m II O O III II w* • M w * # » f# M »- ••X U V l X U) t- *-4 -> O U1 o J m h- ro o • » •H -) -> #"4 rH «H #»4 UJ C\l r m u Y m n W -) n -) -) -j -> D Q » w (M a w 0. tn ro _J h- _J O M H* H Z _» U) -) • h" u M h* -J-» Z ? < H a < o o\ -t •H :J u Q > O H Q h- 2 Z D 2 CM Q lu % z cn Z I O _j a ui «t LU IX w w X J u U 3 K _J -J < Z X. u Z II < u (ï -4 V U, 1 U a li U z U u > I/) < J 3 u _J _> V U UJ u. U LL h- U u U LU < u (X O UJ Q LU a u Q O Q Q Q X U U z U -) ce X a X o a a u. a IL N •~4 "-i •H o o o O O r- r- V u» o m «s CM t\J n n U V

invoi^o3y'0»^c\jn'^invoNoo(?>0'^w ") lo HIN OOCT* o {\jw<\jc\ic\jni')n;nrr)nni')nro = G 54 370 CCMINUE 55 MA/CL = NCLASS(Kl) 56 READ(5.4CC) (KCLASS(K2) .KCCUNT(K2),K2=1,MAXCL) 57 400 FCRMAT(( ÊX, 10(12,IX,13,IX ))J C FILL CLT THE CCUNT(NSTNS,NCLASS) MATRIX C REDUCE CHCPLET COUNT TC A REFERENCE AREA, SAY. AREF=10.0 CM2« 58 AREF = 10.0 C ARED(Kl) IS THE AREA SAMPLED IN STATION Kl, C AfiEA5(Kl) IS THE AREA OF THE PICTURE AFTER ENLARGEMENT. 5Ç AKPD(Kl) - AREAS(K1 )/{£NLC(Kl )*ENLG(K1 ) > ^ 00 C vo C CCRR=CTIC^ CN DROPLET CONCENTRATIGN DUE TC VARIATION IN SLIT C WIDTH. . THE RADIAL LENGTH GF THE SLIT IS RL=67.5 CM. C C THE SLIT kIDTH AT THE Kl-TH STATION IS 60 SLIT(Kl) = SLIT2-((SLIT2-SLIT1)/FL>*CIST(K1) 61 FSLIT(Kl) = SLITC 1 )/SLIT(K1) C 62 DC 399 K2= 1, MAXCL 63 KK = KCLA£S(K2) 64 XLG = ENLGCKl) 65 NCCUNT(K1, KK ) = KCOUNT(KZ) 66 IF(NCCUNT(K1,KK).EQ« 0 i 60 TO 398 C CALL SLERCUTINE CSIZE. 67 CALL DSI2E(KK,XLG»DAVE1,DCLIM1,DULIM1,OVGLI,DSURF1,DAREA1 ) C THIS ÔECyENT CF MAIN PRCGRAM ENSENfcLcS TFC FULL C!« ING MATRICES» C COKHcSFCKCING TO THE NEAN CRCPLET CIAMETER, LOWER AND UPPER C LIMITS OF EACH CLASS, DROPLET MEAN VOLUME, DROPLET MEAN SURFACE, C DROPLET PEAN CROSS-SECTICN AREA, 66 DAVE = DSURFl 73 £)AfiEA(Kl,KK> - OAREAl C C A NE« MATRIX FOR COUNT IS CREATED ( REAL ), CALLED CCUUNT(K1,KKÏ C WHICH REPRESENTS THE DROPLET CONCENTRATION ON A AREF AREA. C CORRECTICh 15 ALSO MADE IN TERMS CF SAMPLING TIME. CTIME C REPRESENTS THE RATIO OF THE ACTUAL COVER SPEED, CSFEED, BY C A REFERENCE CCVEH SPEEC, REFVEL, FIXED AS 10.0 CM/S, FOR THIS C EXPERIMENT. C M 74 REFVEL = 10.0 g 75 CTIME = CSPEED/REFVEL 76 CAREA = AREF/ AREO(Kl) 77 CCCUNT(K1 ,KK)=FLOAT(NCGUNT(K1 ,KK ) )*CARFA*CTIME*FSLiT(Kl) 78 CONTINUE C 7^ 3Sy CONTINUE 80 WRITE(6,4E0) N1,N2,N3,N4,N5,N6,(KCLASSC K3),KCCUNT < K3) ,K3=1,MAXCD 81 450 FCRMATdH ,614, 1(T30,10(214))) 82 2SS CONTINUE C PRINT INPUTS FOR CONFERENCE C PRINT HEALINGS ALFA = 5CC0.*FLOAT( NSPD) WRITE(6,2000) NDISC. ALFA, POT(J),(ENLG(J5),J5=1,6) 2000 FORMAT(IHl,' DISC N0.= ',12," CISC SPEED= ',FS.O,' RPM',' PCTEN 1TIAL= F5.1, • KV',///, 2* CLASS LOWER UPPER CLASS STA STA STA STA STA STA'./, 3' NO. LIMIT LIMIT AVE 1 2 3 4 5 6 4' ENLARGEMEN T..... ,6F5.1, /) ee KTl = C 87 DC 2010 L1=1,55 88 DC 2005 Nh=l.N5TNS 89 20C5 KTl = K71 + NCOUNKMN, LI) 90 IF(KTl«EG-0) GC TC 2009 91 WRITE(6,2C01J L1» INTL(Ll), INTL .CINT(LI),(NCOUNTCK1.LI 1• 1 K1=1,NSTNS ) 92 2001 FCfiMATClJ- , 15» 2X, 3F7.2, 615 J 93 20C9 KTl = 0 94 2010 CChTIhLE C C KMPT VECTUKS BEFORE STATISTICAL CALCULATIONS

95 CC 60QC — 0.0 99 SUMS(J7) — 0.0 100 SUNVC J7) — 0.0 101 5LtV2(J7) = 0.0 102 SSAIJ7) — 0.0 103 SSC{J7) = 0.0 104 SSV(J7) = 0.0 106 SSSiJ 71 — 0.0 106 STCDt J7) — 0*0 I o o I 107 V/>R( J7) • 108 STCV(J7J — 0*0 109 CVC(J7) = 0.0 110 CVV/( SUMG { I I J - 1.} 149 STCD(II) = SQRT(VARO(II)) ISO VAKV(II) =(3SV(II)— SUNVC11 )*SUMV(I I)/SUMCTI I)JX(SUMCT11 ) —1•0) 151 STDV(IIJ = 5QRT(VARV(I 1)) C COEFFICIENT OF VARIATICN 152 CVC(XI) = STDD(I 1)/DMEAN{ II ) 163 CVV(II) = STOVCII>/DVMEAN(iI> 154 ISCO CCNTINLE C PRINT GLTFUT PER STATION. SUPPRESS PRINTING CLASSES WITH NO CCUNT H vo C u> 155 DC 3100 II = 1. NSTNS : PRINT HEACINGS FOR STATION DATA AND STATISTICS. 156 *PITF(6,3C09) NDISC, ALFA, PGTtMUD). II 157 30C9 FCHMATdHl.» DISC NO.= '.12.* / 0 SPEEO= «.FS-O.» RPM / FC 1TENTIAL= ',F5.1,' KV / STATION N0.= «.12.//. 2* CLASS LOWER UPPER CLASS DROPLET FRACTION FRACTION CUMU ILATIVE CUMULATIVE './, 4' NO. LIMIT LIMIT DIA.AVE NUMBER DIAMETER VOLUME DIA 5METER VOLUME*.// J 158 CC 3101 KK-=1.55 159 IF(CCCLNT(II .KK).EQ.Û.O) GO TC 3200 160 *RITE(6,2110 ) KK.OLLIK(II .KKi.OULIMflI.KK).DAVECI I.KK).CCOLNTCII. IKK), FRACCCII.KK),FRACVCI I .KK),CLMDCII,KK).CUMVCII.KK) 161 3110 FCRMATCIH . 15. 3F8.1. F9.3. 4F10.5 ) 162 52Ca CCNTINLE 162 3101 CCNTINLE 164 WR ITL(C,3C50) ÛMEANCI I),OVMEAN(1 I ) , OMEANV(II), VAHOCII), 1 V ARV(1 I ) .STOD{11 ), STDV(II), SAUT(II), ÛVH(I I) .CVDT 11).CVVI I I ) 2 SUMV( Ii ) , SUMC(I I) 165 30 SO F G FMATDHC. • STATISTICS PEN STATION»,// 1 • ARITHMETIC MEAN DIAMETER. OMEAN-....., . F10.3,/. 1 • /IFITHMFTIC MEAN VOLUME, OVMTAN =..... ,E10.3,/, P' NEFN VOLUME DI A ,( M UG EL ECR LVANS)OMEANV . F10.3,/. J' VARIANCE FOR DIAMETER, VARO-...... , F10.3,/, 4* VARIANCE FOR VOLUME, VARV = ...... ,El 0.3 ,/, 1 • STANDARD DEVIATION FOR DIA.. DTDD=... . F10.3,/, 4' STANDARD DEVIATICN FCR VOLUME, STOV = ,ElC.3f/, T SALTER DIAMETER, SAUT = , F10.3,/, 7 • VOLUME MEAN DI A(HHRCAN) ,DVH= , Flo.3,/, 5» COEFF OF VARIATION FOR DIA, CVD= .... ,F10.3,/, H* 6 • CCCFF OF VARIATION FOR VOLUME,CVV=..O ,P1C.3,/ , VO a « TC7AL VOLUME PEK REFERENCE AREA^..... , E1Z.5,/, 9' TC7AL NUMBER OF DROPLETS IN REF AREA= , F10.3,//)

1 66 31CO CONTINUE C c 167 DC 3300 NCP-1,2 c c c DROPLET SIZE RADIAL DISTRIBUTION c c CALCULATE STATISTICS FOR THE NEW RADIAL DISTRIBUTION c c ARITHMETIC MEANS AND RESPECTIVE STANDARD DEVIATIONS CAN BE c CALCULATED FROM PREVIOUS STATIONS DATA. c INITIALIZE EMPTY VARIABLES Il TCTO - C .C 1 TCTl = 0 .0 1 T0T2 = c. c 1 TGT3 = 0 .c 1 TCT4 - 3.0 1 TC 15 = c .c 1 TCT6 = c .c 1 TCT7 = c. c 1 DC 66CC IT = 1 .NSTNS 1 CF AC -= C I£T( IT )/DIST(1) 1 IF{NOP. EC.2) CFAC = 1.0 1 TGTC - TOTO + SUMC(IT)»CFAC 1 TCTl = TGTl + SUMD{ IT )*CFAC 1 TC 12 = TO 12 + SUMV( IT)*CFAC 1 TOT3 = TLT3 + SUMA( IT }»CFAC 1 TCT4 = TCT4 + 5UMS(IT>*CFAC 1 TGT7 = TCT 7 + 3UMV21IT)*CFAC SLM OF SCLARES 1 TCT5 = TOTS + SSD(IT)*CFAC 1 TCT6 = T076 + SSV(IT>*CFAC 1 6600 CCKTINUe C CALCULATE MEANS AND STANDARD DEVIATIONS 1 RDWEAN = TUTl/TQTO 1 RVMEAN = TOT2/TOTO 1 RMVOL = (6.0*RVMEAN/3.l415y)**0.J33j 1 PAREA = TCT3/TOTO 1 RSAUT = 6.0*T0T2/T0T4 1 RVh = TCT7/TOT2 1 RVARD = (TOT5-TOT1*TOT1/TOTO)/(TCTO - 1.) 1 RSTDD - SCRT(RVARO) 1 RVARV = (TOT6-TOT2*TOT2/TOTO)/(TCTO - 1.) 1 RSTDV = SGRTCRVARV) 1 RCVD = RSTDD/RDMEAN I RCVV = RSTDV/RVMEAN C PRINT OUTPUT FOR RADIAL U I 5 TM I rH U T I UN C 200 WRITE(6, 119} 201 IF{NûP.eC .2) GO TU 3330 202 *fiiTÇ(e,32y9) 203 FCRMATdH ,//, RADIAL OISTklRUTlUN*,// ) 204 GO TJ 3240 205 3330 WKITfr {C, 3331 ) 206 !1 FCRMATdHC.//» ' SUM CF STmTILNS 0I STRIBUT1CN« ,// ) 207 33 4U *RITd(6,599) NSTN5.TOTO.ROMEAN.kVMEAN,ftMVOL,RSAUT.RAREA,RVH.«STDD, 1 RSTOV.f^CVDtRCVV, TCT7 208 959 FCFMAT( 1 HC» /. 1 ' NUMBER OF STATIONS SAMPLFID, ..•, 15,//, 2» TCTAL NUMBER GF DROPLET (SPCTS) IN RUN =.... F10.3,/, 3' ARITHMETIC MEAN DIAMETER, BY NUMHiEK .H DM£ A N .. F 1 0. 3, /, . 4» ARITHNFTIC MEAN VOLUME. RVMEAN=... El^.3./, 5' VTLUME MEAN l) I AMETER( MUGELE AND EVANS) »KMVOL F10.3,/, (-• vo 6* SAUTuR DIAMETER, RSAUT= F1Q.3,/, cri ?• ARITHMETIC MEAN CROSS-AREA, AA&EA= E12.5,/, 7« VOLUME MEAN DIAMETER, RVh { hERDAN) F10.3,/, A* OIA. STANDARD DEVIATION, NUMaFR, RSTD F10.3,/, 9« VOLUME STD OEVI AT ICN, (MUGELE & EVANS).RSTDV= E12.5,/, 1 « CCEFFICIENT OF VARIATION FOR DI A,RCVD=. ....• F1C.3,/, 2» CCEFFICIENT OF VARIATION UF VOLUME ,RCVV=... F 10.3,/, 3« TOTAL VOLUME OF DROPLETS I N RUN=.. E10.3, //

209 33C0 CCNTINLE

210 OC AQGG NCP=I,2 C CREATE ARFAY DIA0{M2) REPRESENTING ALL DROPLET SIZE INTERVALS C FCR THE TCTAL NSTNS IN A RUN. ONLY THE NON-ZERO CCUNT INTERVALS C ARE STORtC IN THIS ARRAY. M2 MAX IS SET AT 250 . C A SECOND ARRAY RAOD(M2) , STANDS FOR RADIAL DISTRIBUTION COUNTING C TAKING IN ACCOUNT THE CORRECT CONCENTRATION FCR EACH STATION, C ACCORDING TC ITS POSITION, OlSTd) FROM THE CENTER. THE REFERENCE C IS THE CLTERMOST STATION, NUMBLR 1. 211 740 MM2 - 0 212 DC 7GC Ja=ItNSTNS 213 M2 = MM2 214 DC 7yO Ka=l.S5 215 IFtCCCUNT(JS.Ka).EQ.0.0) GO TO 750 216 M2 = N2 + 1 217 CFAC = C1£T(J8>/0IST(1) 218 IF(N0P.EC.2J CFAC-l.O 2 19 0IAD(M2j = DAVetJa.Kd) 220 RADC(M?)= CCUUNT(J8.K8)*CFAC 221 MM2 = M2 222 7 53 CCNTINOE 223 7S0 CONTINUE 224 7C0 CONTINUE C 225 CALL SCFT( MM2 ) C M C GECMSTRIC MEAN ( MEDIAN ) AND GEOMETRIC STANDARD DEVIATION FCR C RACIAL DISTRIBUTION. C 226 SGN = 0.0 227 SGC = 0.0 228 SSGD - C.C 229 SGV = 0.0 230 SSGV - O.C 231 RSVOL - 0.0 C C DISTRIBUTION BY NUMBER C 232 DC 785 I =1.MM2 233 IF(RADD(I J.LE.O.O.OR.DIADd ).LE.0.0 ) GO TO 786 234 AA = ALCC(DIAO(l)) 235 SGD = SGD + RADD(I)»AA 236 SSGD = SSGD + RADD(I)*AA*AA 237 SGN = SGN + RAOD(I) C ÛISTRleUTILN 8Y VOLUME 238 AAC = PAOCD )*(OIAO( I )**3) 239 ^!SVOL = S£VCL + AAO 240 SGV = SGV + AAO+AA 241 SSGV = SSGV + AAÙ*AA*AA 242 7t5 CCh^IKLE C C FKACTICNAL CUMMULATIVE RACIAL DISTRIBUTIONS FOR C ANO DRLFLET VOLUME C 243 K - 1 244 RFRACJ = HADÛ(K)/ SGN 245 RFRACV = (HAOO(Ki+01A0(K)*+3)/WSVCL 246 RCLMV = RFRACV 247 RCUMJ = RFRACD 248 IF(NOP.EC.GO TO 777 249 wRiTe:(e,7£7) ^ 250 7£7 FCRMATC IHl ./. I'jX, • RADIAL 0I5 1RIBUTI0N',// ) vo 00 251 GC TO 76 2 C SUM OF STATIONS DISTRIdUTlLN 252 777 WR ITE (6, ?79) 25 3 779 FCRMAT(IH1t/. 15X, • SUM OF STATIONS DISTRIBUTION» «// ) 254 7t3 CONTINUE 255 WRITC(6,7ea) K# 01A0(KJ, RAOD(K) .RFRAGO»HFRACV.RCUMO»RCUMV 256 WRITf <7. 788) K.DIAD(K)» RADO(K>, RFRACD. RFRACV, RCUMD, RCUMV 257 7ea FCPMATdH » 15, 2F10.2, 4P 10.6 ) 256 DO 78^ K = 2,MM?. 259 RFRACD = RADD(K)/ SGN 260 RFRACV -= ( RADU{K )+0 IAD( K) *»3)/KSVCL 261 RCUMD = RCUMD + RFRACD 262 RCUMV = RCUMV + RFRACV 263 WRITC(6.7ea) K. OIAD(K). RADD(K),RFRACD,RFRACV,RCUMD.RCUMV 264 WRITE(7, 788) K,DIAO(K), RADD(K), RFRACD, RFRACV, RCUMD, RCUMV C 265 7 89 CCNTINLE C RADIAL GECMETRIC MEAN AND 3TL) DEVIATION CF NUMBER DISTRIBUTION C 266 RÇ> = SGC/5GN 267 RMD = EXP(REX) 268 50 = (SSGC -SGD*5GD/SGN)/(SGN — 1 •) 269 51 = SQRT( SO) 270 RGSTOC = EXP(SL) c c RADIAL GECMETRIC MEAN AND STO DEVIATION OF VOLUME DISTRIBUTION 271 REX -= SGV/RSVOL 272 RMV = EXP( REX ) 273 30 = ( SSGV - SGV+SGV/RSVCL>/HSVCL 274 SI = SORT(SO) 275 RGSTO = EXP(Sl) 276 WHITE(6,7S1) RMD.RGSTDD.RMV.RGSTC 277 791 FCRMATdHC./. • RADIAL D13TRIÛUTI ON GEOMETRIC MEAN AND STANCA M VD IRD D-VIATICN VO 2* GECMETRIC NUMOER MEAN DIAMETER, RDGN=. FLO.J,/, 3* GECMETRIC 5TD DEVIATION. NUMSEK DISTRIB,RSGN=•• F10.3,/, 4» GECMETRIC VOLUME MEAN DIAMETER,ROGV=. F10.3./, 5* GECM. STD DEV., VOLUME DISTR IBUTIQN»RSGV=.•«.•» F 10.3,// )

276 8999 CCNTINLE CALL SUBFCUTINE XCLASSdl ,12. 13, I4,AI ,A2,A3 ) THIS SUBPCUTINE WILL GENERATE A NEW ARRAY OF THE DROPLETS SAMPLED I H ALL STATIONS FOR A SPECIFIC RUN.

279 NCP = 2 280 DC 9002 K=1.30 281 XLL(K) = C.O 282 XAVECKJ = 0.0 283 XCCUNT(K) = 0.0 284 9CC2 CCMINCE 285 XLL(3l) = 0.0 286 CALL XSCALE(2, 25, LO.O, 720. ) C 287 00 90C1 I=1,NSTNS 288 DC 9007 K= 1.30 289 9CC7 XCCLNT(K) - 0,0 290 14 = I 291 DISTF = 0IST(I)/01ST(1) 292 IF(NOP.EC.2) OISTF = 1.0 293 DC 9011 J=l.55 294 Ml = J 295 IF{CCCUNT(I»J).ro.o.0) GO TO 90 10 296 CALL XCLASy(2,Ml, 25, 14, 10.0, /20.0, OISTF > 297 90 10 CONTINUE 298 90 11 CC NT INCH 299 KC 1 - 1 300 KC2 = id 301 KC3 - 3 302 KC4 = 4 303 KC5 = 5 304 KCfc - 6 305 WRITE(7,9401 ) NO ISC,LIU,NSPD,NPÛT, I ,DI ST( I),POT(MUD) , ENLG(I ) , 1 ANfA£( I ) .DOT ,WBT,RH,TCUR,DCUR,CLDCUP.KCl, KMAPK 306 94C1 FGHMAT( £12. 3F6.1, F7.1, 3F5.1, 3F7.3, T75.I2, 14 ) 30 7 WRITE(7,9402) (XCOUNT(I I), 11 =1,S), KC2, KMARK 308 WRITF(7,9402) (XCOUNT(II), 11=6,10), KC3, KMARK 309 tRITE(7,9402) (XCOUNT(I I), 11 =11,15), KC4, KMARK 310 WRITE(T,9402) (XCOUNT(II), 11=16,20), KC5, KMARK 311 WRITE(7,9402) (XCOUNT(II), 11=21,25), KC6, KMARK 3 12 94C2 FCRMAT( 5(F10.3, 2X>, T75, 12, 14 ) KMARK = KPARK + 1 9001 CONTINUE 315 DC 9080 K =1,30 316 XCCUNT(K) = 0.0 317 9Ceo CCNTINUE 318 DC 9024 NCP=1.2 319 DO 9081 X^I.NSTNS 320 14 = I 321 DISTF = O 1ST( I )/DIST( 1) 322 IF(NOP.EG.2) DISTF = 1.0 323 DC 9082 J=1.55 324 Ml = J 325 IF (CCCUM ( I.J)-EQ .0 .0 ) GO TG 9086 326 CALL %CLASS(2,M1.25,I4,10.0, 720.0.DISTF > 327 9066 CCNTINLE 328 SCE2 CCNTINOE 329 SCei CONTINUE to 330 DC 9 2C9 NP= 1.5 G 331 NMIN = 1 + 5*(NR -1) 332 NMAX = 5*NR 333 WRITF(7,9210) (XCOUNT(IO) , I 0=NM I N,NMAX),NDISC,NSPD,NPCT,NH 334 9210 FGRMAT( 5F12.3. 514) 335 92C9 CCNTINLE C CALCULATE STATISTICS FOR THE NEW DlSTRiaUTICN 336 SRN = 0.0 337 SP 1 = 0.0 338 SR2 = 0.0 339 Sfi3 = 0.0 340 SR4 = 0.0 341 SR5 = 0.0 342 SGND = O.G 343 SGV = 0.0 344 SSGND = 0.0 345 SSGV = 0.0 C ARITHMETIC DISTRIBUTION 346 DC 9500 J =1,25 347 SRN = SF-IN + XCGUNT(J) 348 Sftl = SRI + XCUUNT(J)*XAVE(J) 349 SR2 = SR2 + XCOUNT(J)*XAVE(J)*XAVE(J) 350 SR3 = SR3 *• XC0UNT(J)*XAVE(J)**3 351 SR4 = SR4 + XC0UNT{J)*XAVE(J)**4 352 SRS = SR5 + XCOUNT(J)*XAVE(J)**5 C GECMSTRIC JISTRldUTIQN 353 A = ALG6(XAVE(J)) 354 SGNO = SGhD 4- XCOUNT(J)*A 355 SSGNJ = 3SÔND •••• XCOUNT(J)*A*A 356 SGV = SGV 4- (XCOUNT(J)*XAVE(J)**l)*A 357 SSGV - SGGV + (XC0UNT,RFRACD,PFRACV«RCUMD, FCUMV, 1 NDIACFNSPO. NPOT. NOP 375 9530 FOKMAT( 15 $ 2F10.2» 4F10.5, 3X, 413 ) 376 9610 FCRMATdh 12X. I2.F10.2, F9.2, 4F10.4 ) 377 "35C1 CONTINUE : ARITHMETIC MEAN AND STD DEVIATION 378 XMTAND = SRl/SRN 379 XMVD = (SP3/SRN)**0.3333 380 XVhD = Sr4/SR3 381 XSAUT = SR3/SR2 382 XMAREA = SURTC SR2/SRN) 383 XVC = (SR2- SR1*5R1/SKN)/(SRN - 1.) 384 XSTDD = SGRT(XVD) XVVHO = (£R5 -SR4*5R4/SR3)/SR3 M 385 o 386 XSTDVH = £QRT( XVVHO ) U) 387 XCVD = XSTOO/XMEANO 388 XCVV = XSIUVHXXVHO > Q X 389 kRITE(6,S502) SRN.XMEANO, XMVD.XVHO • 1 XCVD,XCVV 390 9502 FGFMATdH */» 20 X • • STATISTICS PER RUN*•/• 113X. 'TOTAL DROPLET SPOT NUMBER IN A RUN FIG # 3# /# 213X .'NUMBER MEAN DIAMETER* ...... F 10 #3*/# 213X, 'VOLUME MEAN DIAMETER* MUGELE EVANS > FI 0• 3 • /» 413X, 'VOLUME MEAN DIAMETER* HifRDAN ) FID # 3* /# 513X, 'SALTER DIAMETER ...... FIG # 3# /# 613X. «ARE4 MEAN DIAMETER ...... FIG #3#/* 713X, 'STANDARD DEVIATION OF DIAMETER. BY NUMBER...... F 10 *3#/# 613*. 'STANDARD DEVIATION CF VOLUME FIO •3 9 /t 913X, 'COEFFICIENT OF VARIATION OF DIAMETER*NUMBER)..... FIO •3 • /• 113X, 'COEFF. OF VAR. OF VOLUME MEAN DIAMETEfi* HERDAN) ... FIO .3./) 391 CCNTINUE C GECMETRIC DISTRiaUTIQN 392 X> = SGND/SRN 393 GMD = EXF(XX) 394 SO = (SSGND - SGNO*SGND/SfiNj/(SRN-1.0) 395 31 = SGRTCSO) 396 GSTDi) = &XP(S1) 39 7 XX = SGV/SH3 398 GMV = CXF(XX) 399 50 = (SSGV - 5GV»SGV/ShiJ)/SH3 400 51 = SGRT(SO) 401 iSTDV = E/P(S1) 402 WRITt(6.9504) GMD, GMV, GSTCût GSTDV 403 95C4 FCFMAT(IH , /. ^ IIJX, 'GECNcTRIC NUMBER MEAN OI ATER{MEOI AN).* F 10.3,/, o 213X, «GECNCTRIC VOLUME MEAN D I AM >5 TvH R ( MEÛ I AN ) •, F10.2,/, 313X, «GECy. STANDARD DEVIATION OF NUMBER DIAMETER ...... F10.3./, 413X, «CiECNCl RIC STD UEV OF VOLUME OIAMETEK . .. . . FI 0.3,/) 404 90S4 CONTINUE 405 GO TO S5CE 406 7£b WRITL(6,7SÙ) RADD(I), DIA'J(I) 40 7 7S6 FOFJMAK IHG,/» • *** EKRCR MESSAGE *** ',/, 1' OHGPLtT CONCENTRATION, RADO(I)= ', F10,3, ', CR MEAN DROPLET 2 DIAMETER. DIAD(l)= », F10.3, /,• HAS VALUE ZERO',// ) 408 95C5 CONTINUE 409 9990 CONTINUE 410 99EO CONTINUE 41 1 WRITECe, 119) 4 12 STCP 413 END C ****************************************************************** C c SUBROUTINE OSIZE(Il.Al, Bl,D2.62, 34.85,86 ) C C C A CGMMCN STATUENT, FOR INTL AND CINT HAS TO BE PROVIOEO IN MAIN C PRGGRAI*/. C

414 SUURGUTINE OS IZE(NN.EN,OAVE1.DLL IM 1.DUUI M 1,OVOL 1.ùSURF 1,DAREA 1 ) 415 OlMENSICN CCCUNT (6,55 ) . DLL IM { t. ,55 ) , OUHM(6,55) 416 OIWENSICN XCOUNT(30). XLL{31), XAVE(30) 417 DIMENSION DIAD(220J, RADD<220), 1NTL{56), CINT(55) 418 REAL INTL 419 COMMON CCCUNT,OLHM,UULIM,INTL,CINT,DI AD,RAOD O 420 COMMON XCCUNT, XLL, XAVE C THE DIAMETERS CALCULATED ARE IN MICRONS ( 0.000001 METER ), C ALTHOUGH THE SPOT DIAMETERS ARE GIVEN IN MILLIMETERS. C 421 SAVEl = 1000.+01NT(NN)/EN 4 22 SLLIMl = 1003.*iNTL(NN)/EN 423 SULIMl = 1000.*INTL(NN+1)/EN C USE SUBPROGRAM FUNCTION SFACTl lO CALCULATE THE REAL C DROPLET DIAMETER 424 DAVEl = SFACTl(SAVEl} 425 DLLIMl = SFACTKSLLIMl) 426 OUHMl = SFACTKSULIMl) 427 DVOLl = 0.52J5983*OAVE1**3 428 DSURFl = 2.1415y*DAVEl*DAVEl 429 DAREAl - CSURFl/4.0 430 RETURN 431 END C *44***$* 44*********************************** ********************* C C SCcPROGHAN FUNCTICN SFACTI(X) C THIS FUNCTION RETURNS A VALUE Of- THE DROPLLT OIAMLTR (SPHERE) C CORR-iLATEC TU A GIVEN SPOT CIAMETER PRCDUCEO CN THE TARGET. C THt RtGRESSIUN EOUATICN WAS OBTAINED AFTER CALIBRATION OF THE C ORCPLt-T UIAMETiZRS. THIS METHOD IS DESCRIBED IN TURNER,C.H.. ANC C K.A. HUNTINGTCN. 1^70. C

432 FUNCTICN SFACTKX) 433 AA = 1.147 434 BE = C .£G75 435 IF(X.Lr.O.O) GO TC 3001 436 IFCX.CF.ieOO.) GO TC 3005 437 SFACTl = 436 nr TURN 439 3001 CALL FRINT1(1,X) 440 SFACTl = -9999. 441 RETURN 44 2 3005 CALL FRINT1(2.X) 443 SFACTl - Ç999. 444 RETURN 445 END C C c ********* **************** ***************************************** c c SLERQUTINE PRINT(K,Y) C C c THIS SUEPCUTINE IS USED TG PRINT EKROR MESSAGES. C FCR THE SFOT DIAMETERS QUTISIOE THE SAMPLED RANGE.

446 SUEROLTINF PRINT1(K,Y> 447 GC TO ( 4CQ1.4002). K o 446 4CC1 WRITE(O,4C03) Y ^ 449 4CC3 FCFMAr('0',' *** ERROR MESSAGE ***',//, 1' SPOT DIAMETER = '.ElO.Z,' . IS SMALLER THAN 10 MICRONS'.// ) 450 RETURN 451 40C2 VkRITE (ô,4C04) V 452 4004 FOKMATC'O «,'*** ERROR MESSAGE***',//. 1' SPOT DIAMETER EQUALS '.510.2.' IS LARGER THAN 1800 MICRONS' ) 453 RETURN 454 END C C SUBROUTINE SORT(NT) C

455 SLe^fjLTIMI SGRT( NT ) 456 JIMENSICN 0140(220), RADD(22C), 1NTL(56), CINT(bb) 457 OIWLNSICN CCGUNT(6.55), DLLIM(0,55), 0ULIM(6,55) 458 Jl^CNLIlN XCOUNT(30)i XLL(31), XAVECoO) 459 REAL IML 460 CC-^MON CCCUNT.OLL I M,DUL IM ,I NTL,CINT,DI AD, R ADD 461 CGMMC^ XCCUNT, XLL, XAVE 462 N2 = NT - 1 463 OC 80 00 1=1, N2 464 .43 = NT - I 465 ÛC Ô120 M= 1,N3 466 IF (DIAD(M) .LE.DIAD(NH-l) ) GO TO ai IV 467 T1 = CI AC(NI ) 468 OIAD(M ) = D I AD(N1+l) 469 01AD(Nl+1) = T1 470 T2 = FADC(M) 471 RADDCNl) = RAD0(N1+1) 472 RADD(NI+1 ) = T2 C 473 ai 19 ccntinlp: 474 dl20 CONTINUE 475 8000 CCNTINUE C RETURN (END C c ********* 4***********4'********************************************

C C SUEROCTINE X3CALE{ II. 13. Al, A2 i C C PREE4PTY ARRAYS XCOUNT(30).XLL Cî I), XAVE(30) C 11=1. EOUALLY SPACED INTERVALS I^ REGION (A1.A2) C 11=2. GECSETRIC SCALE WITH CONSTANT GECMETRIC RATE C 13 = NUMBER OF CLASSES FOR THE NEW SCALE. UP TO 30 C A1 = EXTREME LLWER LIMIT PGR THE NEW SCALE C A2 = EXTREME UPPER LIMIT FOR THE NEW SCALE

478 SUBROUTINE XSCALE( 11. 13. Al. A? ) 479 DIWEMSILN CCOUNT(6.55). DLLIM(6.55>. 0ULIM(O.55) 480 DIMENSILN OIAD(220>. RADO(220). INTL(56), CINT(55) 481 ÛIMENSILN XCQUNT(30). XLL(31). XAVE{30) 482 REAL INTL 483 COMMON CCCUNT.ULLIM.OULIM.I NTL.CI NT.0 I AD.RAOD o 484 CCMMON XCCUNT. XLL. XAVE 465 GC Ta{73Cl.7302). II 466 73C1 DEL= (A2-41)/I3 467 XLL(1) = 41 488 00 7310 J=1.I3 489 XLL( J+1) = XLL(J) + DEL 490 XAVE(J) = (XLLlJ+l) + XLL(J))/2. 491 73 10 CCNTINUe 492 RETURN 493 73C2 IF(Al .EQ.C.O.OR.A2.EQ.0.0) GO TC 7396 494 DEL = (A2/A1)**(1./FL0AT(I3)) 495 XLL(1> = AI 496 NP = 13 + 1 497 DC 7320 J=2.NP 498 XLL(J) = XLL(J-1)»DEL 499 XN= ALCiGlC (XLLC J-1) > + ALQG 10 ( OEL ) /2 . 500 XAVE{J-1) = 10»*XN 501 7220 CCNTINUE 50 2 f^tTUF N 503 73<,o WRITC (e,73<;:7) A1,A2 504 7?Ç7 FOKMATtlHG» • ***ERRCK MESSAGti ****,/, 1» LCwEk LIMIT.Al= ',E10«3, • CR» UPPER LIMIT.A2= •» E10.3./. 2» HAS A ZEkC VALUE ',// ) 505 PETURh 506 CND C

C C SURROUI INE XCLASS(I 1 , I2 ,1 3,14.Al , A2,A3 ) C C c THIS SbtPfiûGRAM TAKES THE CCUNT ( OROPLET NUMBER ) CF CNE CF C THE JLO J-TH INTERVALS AND AND KHùISTRldUTE IT ON ONE CR MURE C ( LP TO FCUR ) OF THE NEW CLASSES GENERATED dY SUBROUTINE XSCALE. C WHICH M L S T dE RUN d E F U R û CALLING XCLASS. C C C THE FRACTION OF ORIGINAL CCLNT IS ASSIGNED TO THE NEW CLASS C ACCORDING TO THE FRACTION THAT THE NEW CLASS INTERCEPTS THE OLD C INTERVAL. C THE HEW ARRAY, PARTICLE SIZE DISTR10UTION. IS PASSED BACK TO C THE MAIN PROGRAM VIA A COMMON STATEMENT, C C II IS A KEY. 11=1.. THE NEW INTERVALS ARE EQUALLY SPACED C 11=2, A GEOMETRIC SCALE. WITH CONSTANT GEOMETRIC RATE C 12= ACTUAL CLASS, AFTER FINAL REDUCTION TO STATION AREA. C 13= NUMBER OF CLASSES FOR THE NE* SCALE, CR ARRAY, UP TO 30. C 14= NLMBEF OF STATION C Al= tXTRCNE LOWER LIMIT FOR THE NEW SCALE C A2= EXTREME UPPER LIMIT FOR THu NEw SCALE C A3= SCALE FACTOR FOR DRCPLET CONCENTRATION. CCCUNT(I.J). C 43=1.C REPRESENTS SIMPLE TRANSPOSITION OF DATA( COUNTS ) FRCP C CLD TO NEW CLASSIFICATICN, C A3 LARGER THAM 1.0 MEANS INCREASING IN CQNCENTHATICN FCR C THE NEW CLASSIFICATION. C C DIMENSIONS FOR A1 AND A2 MUST Î3E IN MICRONS. C C

5C7 SLDROUTINE XCLASS( 11,12.13*14,A1.A2,A3 ) 508 OIWENSICN CCQUNT(6,b5), DLLIM(6,b5), ÛULIM(6,55) 509 DIMENSION DIAD(220), fiADO(220), INTL(56), CINT(55) 510 DINENSICN XCQUNt(3C), XLL(3 1). XAVE(30) 511 REAL INTL 512 CCMMUN CCCUNT,DLL1M.DULIM,1NTL,CINT,D1AD,RADD 513 CCMMCN XCCUNT. XLL, XAVE C 514 GC TQ{70C1, 7002), 11 ^ C H 5 15 70C1 DEL = ( A2 - Al)/ 13 516 GC TO 7 03C C 11= 2, GECMETRIC CLASS INTERVALS, WITH 13 CLASSES, IN (Al,A2) 517 70C2 IF(Al.Ea.C.O.OR.A2«EQ,0.0) GO TC 7099 518 DEL = (A2/Al)**(l./FLCAT(Ij)) 519 7030 CCNTINCG C C CALCULATE TWO POINTERS, RESPECTIVELY FOR THE LOWER AND UPPER LIMIT C OF THE OLC CLASS INTERVAL, 12. WHICH WILL CORRESPOND TO THE NEW C CLASS INTERVALS TC RECEIVE CLD CCUNTS. C 520 KJl = IFIX((ALOG10(DLLIM(I4.I2))-ALOG10(A1))/ALCG10(DEL)) + 1 521 KJ2 = IFIX((ALOGlOtOULIM(14,12))-ALGG10(Al))/ALCG10(DEL)) + 1 522 NDIF - KJ2 - KJl + 1 523 DIFCL = DLLIM(I4,I2) - DLLIM(I4.12) 524 GC TO ( 7201, 7202, 7203, 7204 ), NDIF 525 72CI XCCUHKKJl) = XCOUNT(KJl) + CCOUNT < 14, I 2 )* A3 526 RETURN C C DETCRMINC FRACTION GF THE ULO INTERVAL INTERCEPTING TWC C OF THE NEVi INTERVALS. 527 72C2 FDl = (XLL(kJl+l) - DLLIM(I4 » I^J )/OIFCL 528 FC2 ^ 1.-FOI 529 XCCUNT(KJl) = XCOUNT(KJl) + FD1 *CCOUNT{14.I2)*A3 530 XCCUNT(KJl + l )= XCCUNT(KJl+1 ) + FD2*CCOUNT{14 « I2) »A3 53 1 AETUHh C OLD INTERVAL COVERS THREE LF THE INTERVALS C 532 72C3 FDl = (XLL(KJ1 +1) - DLLIM(I 4, I 2) )/DIFCL 533 FD2= lXLL(KJl+a) - XLL(KJ1 +1))/ DIFCL 534 FD 3 = J .-FDl - F02 535 XCCUNT(KJ1)= XCUUNT(KJl) + FU1*CC0UNT(I4.I2)*A3 536 XCCUNT(hJl+l)= XCOUNT(KJ1+1) + FD2*CC0UNT(I4.12) *A3 537 XCGUNT(KJ 1+2j = XC0UNT(KJl+2) + FD3»CCÛUNT(14, I 2)*A3 538 RETURN C CLD INTERVAL COVERS FLUR CF THE NEW INTERVALS. tu C 539 72C4 FDl = ( XLL(KJl+l) - DLLIM{14,L2))/ DIFCL 540 rD2 = ( XLL(KJl+2) - XLL(KJ1+1))/ DIFCL 541 F03 = ( XLL(KJl+3) - XLL(KJl+2))/ DIFCL 542 FD4 = 1. - FOl - FD2 - FD3 543 XCOUNT(KJl) = XCOUNT(KJl) + FD1 ACCOUNT(i4.I 2J•A3 544 XCCUNKKJl + 1)= XCCUNT(K J 1+1 ) + F D2*CCaUNT ( I 4 , 12 ) •A3 £45 XCCUNT{KJl+2)= XCDUNTtKJ1+2) + F03*CCOUNT(I4,I2)*A3 546 XCCUNT(KJl+3)= XCOUNT(KJl+3i + FD4+CCOUNT(I4.I 2)*A3 547 RETURN C PRCTECTILN AND ERROR MESSAGE 548 7099 WRITE(6,f098) Al, A2 549 7098 FORMAKIHC. • *** ERRCR MESSAGE ***',/, 1» LOWER LIMIT. Al= », El 0.2. ' CR, UPPER LIMIT, A2= '. E10.2,/. 2' HAS A ZERO VALUE ',// ) 550 RETURN 551 END 213

XIV. APPENDIX D. DROPLET SIZE DISTRIBUTION BY STATION (EXAMPLES SELECTED AT RANDOM) Oise NC.= 2 / O SPE&C= 6000. RPM / POTtNTIAL= -8.0 KV / STATILU Nù.= 1

CLASS LGWER UPPER CLASS ORUPLET FRACTICN FRACTION CUMULATIVfc. CUMULATIVE NO. LIMIT LIMIT ClA.AVt NUMaER DIAMETER VOLUME CIAMLTER VCLUVF

14 195. 4 2C6. 2 2 00.6 2.549 0.0500 0 0. 02996 0.050C 0 0.0299k 1 S 206 .2 2 17. 0 211.6 6.374 0. 12500 0.0«772 0.17500 U.11770 16 217.0 226. 3 222. 9 12.747 C.25000 0.20511 0.42500 0.32221 1 7 228. 3 238. 9 233.6 10.198 0.20000 0. 18672 0.62500 C.51154 18 236. S 250. 0 i£44. 1 10.198 0.20000 0.21551 0.8250 0 0.72 705 19 250.C 260.4 255.2 3.824 0 .0750 0 0.09233 0.9CCOO 0.21927 2 1 270. £ 261.7 276.6 1 .275 0 .-G25 0 0 0.039 17 0 .92500 0.65854 22 281.7 292. C 286.9 2.549 C .05000 0.06742 0.97500 0.94597 24 302 .e 3 13.0 307.9 1 .275 0.Û2500 0.C5403 1.00000 1 .C C 00 a

STATISTICS PER STATION

ARITHMETl C NEAN CIAKETEK. .660 ARITHMETIC McAN VGLLME» DVMKAN 0.707E 07 MEAN VLLUME CIA.(MUCELE& EVANS}OMEANV . 23a.OCO VARIANCE FGR JIAMETER, VARD=...... 531.32# VARIANCE FOR VOLUME. VARV = ...... 0.524E 13 STANOARC DEVIATICN FOR OIA., DTOD-.... 23,051 STANDARD DEVIATION FOR VOLUME. STDV =. 0.2295 07 SAUTER CIAMETER, SAUT = 240.483 VOLUME VEAN DiA(hERCAN)»CVH=...... 243.114 COEFF OF VARIATION FOR DIA, CVO= 0.0^8 COEFF OF VARIATION FOR VOLJME.CVV=-... 0.324 TOTAL VOLUME PER REFERENCE AREA=...... 0.36052E 09 TOTAL NLMBER OF DROPLETS IN REF AREA=. SO.990 DISC NO.= a / D 5FEED= 0000. RPM / POTCNTIAL= -8.0 KV / STATION N0.= 5

CLASS L.CWER UPPER CLASS URGPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. LIMIT LIMIT CIA.AVE NUMBER DIAMETER VOLUME DIAMETER VOLUME

3 34. 9 42.3 38.5 4.052 0.01961 0.00189 0.01961 0.00139 4 42. 49. I 45.7 10.129 0 .04902 0.00792 0.06663 0.00961 5 49. 1 55. 6 52.5 6.078 0.02941 0.00718 0.09804 0.01699 6 55.8 62.7 59. 4 6.070 C.02^41 Q.01043 0.12745 0.C2 741 7 62. 7 69. 1 65.9 16.207 0.07643 0.03794 0.20388 0.06536 e 69. 1 75. 8 72.3 23.362 0.13725 0.08763 0.34314 0.15299 9 75. e 82. 1 78.9 32.414 0.15686 0.13040 O.SOOOC 0 .28339 10 82. 1 86. 2 85.2 44.569 0.21569 0.22512 0.71569 0.50651 11 ee. 2 94. 7 91.6 26.336 0.12745 0.16 582 0.84314 0 .67433 12 94. 7 100.7 97.7 16.207 0 .0 7843 0.12376 0.92157 0.79803 13 IGC. 7 1C7. I 103.8 12.155 0.05882 0.11107 0,98039 0.90913 18 130.9 137. 0 133.8 2.026 0.00980 0.03971 0.9902 0 0.94385 20 142. 7 148. 4 145.6 2.026 0.00980 0.051 15 1 .00000 1.ooooo

STATISTICS PER STATION

ARITHMETIC MEAN OIANETER. DMEAN= 50.311 ARITHMETIC MEAN VQLLME. DVMcAN 0.3I0E 06 MEAN VOLUME DIA.(NUGELE& EVANS »DMEANV• 63.909 VARIANCE FOR DIAMETER. 302.926 VARIANCE FOR VOLUME. VARV = 0.456E 11 STANDARD DEVIATICN FOR DIA.. DTDO=.«.. 17.405 STANDARD DEVIATICN FOR VOLUME. STDV =. 0.214E 06 SAUTER CIAMETER. SALT = ...... 87.622 VOLUME MEAN 01 A(HERDANI «OVH=. 91.302 CQEFF OF VARIATION FOR DIA, CVO= ..... 0.217 COEFF OF VARIATION FOR VCLUME,CVV=.... 0.689 TOTAL VOLUME PER REFERENCE AREA=...... 0.64004E 08 TOTAL NLMBER OF DRCFLETS IN REF AREA-. 206.636 DISC NG.= 2 • D SPEEC= 9000. F-iPM / PÙTEM I AL- -22.0 KV / STATION NG.=

LASS LOWER UPPER CLASS DROPLET FRACT ION FRACTION CUMULATIVE CUMULAI NO . LIM IT LIMIT CI A.AVE NUMDER DIAMETER VOLUME CIAMETER VOLUM

3 27.2 33. 0 30.0 11.745 C .02459 0.00336 0.02459 0.0033»; 4 33.C 26. 2 35.6 27.405 0.05738 0.0151 <5 C.08197 0.01655 5 38.3 43. 5 40.9 35.236 0.0 7377 0.0256C C.15574 C .04215 6 43.5 48.E 46. 3 74.386 0.15574 0. 07D53 0.31146 0.12060 7 48.6 53.8 51.3 50.895 0 .106 5 6 0 .07330 0.41803 0. 19398 8 53. £ 59. 1 56.3 109.621 0 .22951 0.20836 U .04754 0.40234 9 59. 1 63. 9 61 . 5 82.216 C.17213 0.20348 0.81967 0.6C58Ï 1 0 62.9 7 66. 3 50.895 0.10656 0 .15615 0.92623 0 .7639c 1 1 EA. 7 73. 8 71.4 11.745 0.02459 0.04549 0.95082 0.50946 12 75.8 78. 5 76. 1 7.830 0.01635 0.036 78 0.9672^ 0 .84624 14 83. 4 8B. 1 85.8 3.915 0 .00 820 0 .02627 G.9754 1 0.87251 NJ 15 ee. 1 Ç2. 7 90.4 3.915 0.0082 0 C.03074 0.98361 0.90.??5 H It, 92. 7 57.5 95.2 3.9X5 0 .OOD2C 0.03594 C.99181 U.S39 19 20 111.2 1 15. 7 113.4 3.915 0.0CD2 0 0.06081 1.00000 1.00000

STATISTICS PEK STA7ICN

ARITHMETIC MEA 4 CIAtETER, OMEAN=.... 55.216 ARITHMETIC MEAN VOLLME, OVMEAN .... 0.1C3E 06 MEAN VOLUME CIA.(MLGELE& EVANS)CMEAN 58.14C VARIANCE FCR DIAMETER, VARD=...... 159.743 VARIANCE FOR VOLUME. VARV = ...... 0.789E 10 STANDARD DEVIATILN FCR DIA., DTDD=.. 12.659 STANDARD DEVIATICN FCR VOLUME, STDV O.SESE 05 SALTER CIAMETER, SALT = 61 .232 VOLUME MEAN DIA(HERCAN) ,DVH= 65.136 COEFF CF VARIATION FOR OIA, CVD- ... 0.229 COEFF OF VARIATION FCR VCLUME,CVV-.« 0 .862 TOTAL VOLUME PER REFERENCE AREA=.... 0.49209E 08 TOTAL NLMEER OF CFCFLETS IN REF AREA= 477.632 Oise N0.= 3 • D SPEED= 3000. RPM / POTENTIAL= O.O KV / STATION NO•= 4

CLASS LOWER UPPER CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. LIMIT LIMIT CIA.AVE NUMBER DIAMETER VOLUME DIAMETER VOLUME

2 39.4 49.7 44*6 2.184 0.07692 0.00052 0.07692 0.00052 3 49.7 60.1 54.7 1.092 0.03846 0.00048 O.11538 0.00099 19 194.£ 202.9 198.8 1.092 0.03846 0.02290 0.15385 0.02389 20 202.9 211.0 207.0 1.092 0.03846 0.02582 0.19231 0.04971 21 211.C 219.5 215.5 2.184 0.07692 0.05829 0.26923 0.10801 22 219.5 227.5 223.5 2.184 0.07692 0.06505 0.34615 0.17306 23 227.£ 235.9 231.5 1.092 0.03846 0.03614 0.38462 0.20920 24 235.9 243.8 239.9 2.184 0.07692 0.08041 0.46154 0.28961 25 243.6 251.7 247.8 5.460 0.19231 0.22155 0.65385 0.51116 26 251.7 260. 0 256.1 4.368 0.15385 0.19565 0.80769 O.70682 27 260.0 267.8 263.9 2.184 0.07692 0.10707 0.88462 0.61388 NJ M 28 267. e 276.0 271.7 1.092 0.03846 0.05841 0.92308 0.87230 -J 29 276.0 283.7 279.9 2.184 0.07692 0.12770 1.OOOOO 1.00000

STATISTICS PER STATION

ARITHMETIC MEAN DIAMETER. OMEAN=...... 221.595 ARITHMETIC MEAN VOLLME. DVMEAN =« .... 0.691E 07 MEAN VOLUME OIA.(MUCELE& EVANSIOMEANV. 236.235 VARIANCE FOR DIAMETER* VARD=.4511.875 VARIANCE FOR VOLUME. VARV = ...... O.IOOE 14 STANDARD DEVIATION FOR DIA.• DTDD=.... 67.170 STANDARD DEVIATION FOR VOLUME* STDV =. 0.316E 07 SAUTER CEAMETER, SACT = ...... 247.023 VOLUME MEAN DIAtHEADAN)*DVH=...... 249.S73 COEPF OF VARIATION FOR DIA* CVO= ..... 0.303 COEFF OF VARIATION FW VOLUME.CVV=.... 0.458 TOTAL VOLUME PER REFERENCE AREA=...... 0.19629E 09 TOTAL NUMBER OF DROPLETS IN REF AREA=. 28.389 DISC NC,= 4 / D SPEECH oOOO. KPM / PDT-ZNT1AL= 22.0 KV / STATION N0.= 5

CLASS LOWER UPPER CLASS DROPLET FRACTICN FRACTICK CUMULATIVE CUMULATIVE NO. LIMIT LIMIT CIA.AVE NUMBER DIAMcTEh VOLUME DIAMETER VOLUME

1 1-5. e 27. 7 24.0 6.818 0.03571 0.00044 0.03571 0.00044 2 27. 7 34 .5 31.4 1 3. t. 35 0 .07143 0.00194 0.10714 0 .00237 3 34. 5 42. J 38.5 4.U45 0.02381 G.00 1 15 0 .13095 0. 00357 e 65. 1 75. e 72.3 2.273 0.01190 0.0039b 0.14286 0.00752 9 75. e 52. 1 78 .9 4.545 0.0238 1 C .G I 03 C 0.1666 7 0.01782 1 0 82. 1 68. 2 85.2 9.050 0 .04702 0.02565 0 .21425 0.04367 11 8d. 2 54. 7 91 .6 11.363 C.05952 0. 04029 0 .27361 O .08396 12 94. 7 100. 7 97.7 20.453 0.10714 0.08794 0.38095 0.17190 13 ICC. 7 1C7. 1 103.8 29.543 0.15476 0.15201 0 .53571 0.32391 14 107. 1 113. 0 110.1 40.906 3.2 1425 0.25 122 0.75000 U.57513 15 I 13. C 116. 9 116.0 22.726 0 .1 1905 0.16334 0 .86905 0.73846 16 lie. S 125. 1 122.2 6.did 0.03571 0.05729 0 .90476 0. 79575 17 12£. 1 130. 9 128 .0 11.363 0.05952 C. 10562 0.96429 0.90557 18 130. 5 1 37. 0 133.8 2.273 0 .CI 190 0.02506 0.97619 0.93065 19 137. 0 142. 7 139.9 2.273 0.01190 0.02865 0.98810 0.95930 22 154. 4 160. 1 157.2 2.273 0.01190 0.04070 1.00000 1 .00000

STATISTICS PER STATICN

ARITHMETIC NtAN CIA&ETER, OMEAN-...... 57.298 ARITHMETIC MEAN VCLLME, DVMEAN = 0.S95E 06 MEAN VCLUWE CI A.tMUGELE& EVANS)DMEANV . 104.330 VARIANCE FOR DIAMETER, VARD=.... 855.003 VARIANCE FOR VULUME, VARV = 0.1222 12 STANDARD DEVIATICN FCR OIA.. OTDO=.... 2Ç.240 STANDARD DEVIATION FCR VOLUME. STUV =. Û.349E 06 SALTER CIAMETEH, S*LT = ...... 110.219 VOLUME MEAN D1A(HERCAN)•DVH=...... 112.891 COEFF CF VAFIATICN FCR OIA, CVD= 0.301 COEFF OF VARIAT ILN FOR VOLUME,CVV=... . 0.587 TOTAL VCLUME PFR REFERENCE AREA= 0.11366E 09 TOTAL NLM8ER OF DRCFLETS IN REF AREA=. 150.695 219

XV. APPENDIX E. SUM DISTRIBUTION BY RUN 220

JHUPLHT DISTHIduriCN PC:H RUN CISC NU. 2 / DISC SPEED-3000. rJPM / POTENT I AL= 0.0 KV

CLASS CLASS ORUPLET FRACTION FRACTIUN CUMULATIVE CUMULATIVE NO. AVE. CI A NUMdER NUMtiEf! VCLUME NUMBER VOLUME

1 10.ay 0.0 0 0.00 00 0.0000 0.0000 0.0000 2 12.-^3 0.00 c.ooou 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 o.oooc 0.0000 4 18.20 0.00 0.0000 0.0000 0.0000 0.0000 b ? 1 .59 0 .00 0.00 00 0.0000 0.0000 0.0000 6 25.62 0.00 0.00 00 0.0000 0.0000 0.0000 7 30. 40 0.00 c.oooo 0.0000 0.0000 0.0000 8 36. C 7 3. 1 7 0.0030 0.0001 0.0030 o.ocn1 •J 42,80 7.3 1 0.0083 0.0002 0.0113 0.0003 10 r.C.79 4.21 0.0057 0.0002 0.0170 0.0005 11 60.27 3.5 7 0.GG57 0.0003 0.022/ 0.0007 12 71.5 1 8.97 0.0170 0.0012 0.0397 0.0019 13 14.E5 15.48 0.034U 0.00 34 0.C745 0.0053 14 130.0% 24.65 0.0658 0.0090 0.1403 0.0143 1 J lis.47 1 7.77 0.056T 0.0109 0.1966 0.0252 16 141.76 29.20 0.1097 0.0298 0.3063 0.0550 17 168.20 7.0 1 0.0312 0 .0120 0.3376 0.0670 Id 199.58 34.83 0.184'? 0.0993 0.5219 0.1663 19 236.62 1 4.59 0.09 lO 0.0695 0.6135 0.2357 20 28 1.00 7.39 0.0551 0.0588 0.6685 0.2945 21 333.43 20.40 0.1803 0.2711 0.8488 0.5656 22 39 5.6 4 6.84 0.071b 0.1519 0.9206 0.7176 23 46 9. 45 3.36 0.0418 0.1245 0.9624 0.8420 24 557. 04 2.55 0.0376 0.1580 1.0000 1 .0000 25 60 0.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DRUPLHI SPOT NUMBER IN A RUN ...... 211,299 NUMOF.R .^EAN C1AMETER( ) 178,525 VOLUME MEAN DIAMETER! MUGELE & EVANS 2j6.204 VOLUME 4EAN D1AM£TER( HERDAN 358.579 SAUTER DIAMETER 304.961 fREA VEAN DIAMETER . 206.049 STANDARD DEVIATION OF DIAMETER, 6Y NUMBER...... 107.067 STANCfRJ DEVIATION CP VOLUME CIA(HEROAN) 124.513 COEFFICIENT CF VARIATION OF 0,1 AMLl E R ( NUMOER ) 0.600 COEFF. OF VAH. OF VOLUME MEAN DIAMETER

GECMETRIC NUMBER MEAN DIAMETER (MEDIAN) 149.766 GEOMETRIC VCLUME MEAN DIAMETER(MED I AN) 333.809 GfCM. STANDARD DEVIATION OF NUMBER DIAMETER 1.837 GECMETRIC STC DEV UF VOLUME DIAMETER 1.492 221

DROPLET DISTRIBUTION PER RUN DISC NO. 2 / DISC SPEEO=3000. RPM / POTENTIAL^ -8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO, AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

0.0000 1 1 0.89 0.00 0.0000 0 .0000 0.0000 0.0000 2 12.93 0.00 o.oooo 0 .0000 O.OOOO 3 13.34 0 .00 0.0000 0 .0000 0.0000 0.0000 0.0000 4 18.20 0.00 0.0000 0 .0000 0.0000 5 21.59 0.00 0.0000 0 .0000 0.0000 0.0000 6 25.62 0.00 0.0000 0 .0000 0.0000 0.0000 7 30.40 0.00 0.0000 0 .0000 0.0000 0.0000 3 36.0 r 2.88 0.0024 0 .0000 0.0024 0.0000 y 42. 80 7.34 0.0074 0 .0002 0.0098 0.0002 0.0004 10 50.79 4.22 0.005J 0.0002 0.0149 0.0011 11 60.27 10.63 0.0150 0 .0007 0.0299 12 71.5 1 16.03 0.0269 0 .0018 0.0568 0.0029 13 84.85 9.08 0.0181 0 .0017 0.0749 0.0046 14 10 0.68 2.46 0.0058 0 .0008 0.0807 0.0054 15 119.47 4.47 0.0125 0 .0024 0.0933 0.0078 lb 141.76 18.96 0.0631 0 .0167 0.1564 0 .0245 17 168.20 37.34 0.1475 0 .0550 0.3039 0.0795 0.1346 lu 199.58 22.43 0.1051 0 .0552 0.4089 19 236.82 45.90 0.2552 0 .1886 0.6641 0.3232 20 281.00 14.82 0.0978 0 .1018 0.7620 0.4250 0.5003 21 333.43 6.57 0.0515 0.0754 0.8134 0.7005 22 395.64 10.45 0.0970 0 .2001 0.9105 23 469.45 5.1 0 0.0562 0 .1632 0.9667 0.8637 1.0000 24 557.04 2.55 0.0333 0 .1363 1 .0000 1.0000 25 660.96 0.00 C. 0000 0 .0000 1 .0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 221.243 NUMBER MEAN DIAMETER( ).. 192.505 VOLUME MEAN DIAMETER* MUGELE & EVANS ).. 244.332 VOLUME MEAN DIAM£TER( HERDAN 353.442 SAUTEH DIAMETER - « 303.259 AREA MEAN 219.494 STANDARD DEVIATION OF DIAMETEA, fiY NUMBER...... 105.687 STANDARD DEVIATION OF VOLUME. DIA(HERDAN) 125.775 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)..... 0.549 CQEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.356

GSCMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 162.556 GEOMETRIC VOLUME MEAN DIAMETER(MED I AN) 329.248 GECM. STANCARO DEVIATION OF NUMBER DIAMETER ..... 1.861 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.479 n A r\ O n r> M en (T. < < -7 H M M l\) ro M* pmm »— n". n. r. D C H H C C Ul t CJ o •c CD N 0 Cf- u= rv o Ou c O'i n O n n m m > > 2 H N OJ hj z r 2 2 2. s T. 71 Z Z C > n > en m • T; rn -n •n o o m r (n n -4 -4 •H î> > X. m 7) z; n X z 1—1 X CÀ! OJ i\) ro H o a > o c- 3L ^ C- •C w. CD Cm Ml Q> f- •- o CD N c LT 4> u U ro ro < n n > n r -n m m n (/) o N >o U1 CJJ c^ in eu o o O ro a» o z n c • • • en h— m R r H * • * • • • * * • # # • # # » U z < -4 m n; > Vf) o # $ > lO cr A- O 03 en ro "M fp ro «r < c» *• tr. f- lAi o ro .t' o 1— n Z3 r ? n m CD Uï xCi c o c ^ CJJ vD (r. \ O c Cj , -n > > o o C/1 T» C 2 Pi H -i 1-4 M > m c n: X C < > rv; ro rv OJ r\: ro nj z C a C < m T > Ci c 2 o O a a CD ro h- >c lO •c CJ H* c X X < 2 s X z o o o o s c m c z m m • • • # # # • & o m rr • * • CD "0 n V < H M O 0) œ s ro to o tr. \0 ro •— VO c 3 ro cr cr f\) o •n > > > C > G o (T; m o o o o m r r O ro •fî- u u N (jj 00 s ts> w -N f- cr. a ro rv o o o t/) rr: -4 z z r -H •n •n X; X! % m < c H X H • C o c z a < D m r z t-l m z c I i m O c > -n o > r > m c o o o O o o o o c o o o o O o o o o o o o o o 3 c % s z o c s. X (7) • • z X II c/) rr # # • • • • c > u -4 T m m IT •n 2 m o rp o o O c o o o o o o o o o o o o Cj o Cl o H H > m H > r o o CD u r>j cr ,o X rs o X c f- u N u f\3 o o o o o c o o o o o a -t o Z n m Z o fT, z m o o > N a O \ù >J c 3J T c O! o CD OD o u ro ro o o o o o o o rr, o C X o o •p- a- N O; c> 0 <£ Cu o a c •jj Oi • > % O > V.» çn a ut o o •_> o X n r NJ s c S 3^ t. z —1 to >— K> m ni m m x> m C m H X o c s H z -< < X c m m ni m > z z o o o O o o c o o o o o o O o o o o O o o o o < X T1 o t> t» -t X X 7 7 • » • « • # # • • » z 2 r o C V) a > \ X f*0 (A) t— o o o o o o o o o O o o o o O o o o o r n > T1 z > 2 o •s o "N ro o c o o o o o o o T # •£ c z a o o o o o o o c -1 r a (V CJJ o CP. o s o cr OJ u o o o Ci o o o • m « # X 2 m JS- o o o o 2 X c o Cyl N o GJ c o D »-* o w M# c o o o a • H m • m CE # X o o o o m c o n # m # • X m * • z —t c # X • • o X * • n z • • # > • • n z • • z • • w »— o z c -1 • i> * o o o O o o o O o c O o o O O O o o o • • • o o c z • «- • # # > • # • o o o nj l— s c • # CD a- ai o c O o o o O O O o o o o CE r • « * • o o o OCr \ù ir ro vO ro M* r • # * • * \D LT cc H* o o O O o o o o o m > II c o o en 03 o oi o. U: GJ Cl e N o o o o o o o o X H o o o 0\ o 03 ro »- N »- ro 0) 00 •- N Ja- N vO o o o o C 03 • CJ t— w u Li fo M n c;i e m rv) u Q- O o \0 O ro fV) O O <û Cil o CJ U) 03 o 01 •- >— i— o o o c o o o OOOOOOOOOOOOOOO r, • • • • • • • • • • < c 7^ ÙJ o (y. ••••••••••••••• G 2 < tVJ o fo U vC <Û w o o o o o N ^ M o o o OOOOOOOOOCOOOOO O lù o o tr -t ce N (T- u o o o OJ ^ f- w c- (jj ro r C <0 CD » s u C'i -J h» •-OOOOOOOOOOOOOO c r O LT V o o o o >- If) 01 c- I- H» ui Ciitt'tfiMOOOOOOOOOOO z > o o o s U; 03 •- •- Co c «^•-•-•-uiM^-^-coooooo m H < m 223

DROPLET OISTRIBUTIUN PER RUN DISC NO. 2 / DISC SPfcED=3000. RPM / POTENT 1AL= -22.0 KV

CLAbS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 1 0.89 0.00 0.0000 0 ,0000 0.0000 0,0000 2 1 2.93 0.00 0.00 CO 0 .0000 0.0000 0.0000 3 1 5.34 0.00 0.0000 0 ,0000 0,0000 0,0000 4 18. 20 O.Ol o.cooo 0 .0000 0,0000 0.0000 5 21-59 1.13 0.0003 0 ,0000 0,0003 0.0000 6 . 25.6? 1 .52 0.0005 0 .0000 0,0009 0,0000 7 30.40 7.01 C ,00 30 C .0000 0,0038 0,0000 8 36.C7 7.90 0.0040 0 ,0001 0,0078 0,0001 9 42.80 7.29 0.0043 0 ,0001 0.0121 0.0002 10 50.79 10.61 0.007b 0 ,0002 0.0196 0.0005 11 60. 27 24.63 0.0206 0 .00 10 0.0402 0.0014 o o 12 71.51 # 0.0299 0 ,0019 0,0701 0,0034 13 34. 85 23.92 0.0201 0 ,0026 0,0982 0,0059 14 100.62 7.43 0.0104 0 ,0013 0,1086 0,0073 15 119.47 38.0 7 0.0631 0 ,0115 0.1716 0.0188 16 14 I. 76 42.53 0.0836 0 .0214 0,2553 0.0402 17 168.20 8.79 0.0205 0 .0074 0.2758 0,0476 18 199. 5a 30.70 0.08 50 0 .0432 0.3607 0.0908 19 236.82 56.93 0.1870 0 .1338 0.5477 0.2246 20 28 1.00 57.58 n.2244 0 ,2261 0.7721 0.4507 21 333.43 7.47 0.0345 0 .0490 0,8066 0.4997 22 39 5.64 1 4.95 0.0820 0 .1638 0,8837 0.6636 23 46 9.45 13.98 0.09 10 0 .2560 0.9797 0.9196 24 557.04 2.63 0.0203 0 .0805 1 ,0000 1.0000 25 66 0.96 0.00 o.onno 0 .0000 1 ,0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 395.223 NUMBER MEAN CIAMETER( 182.440 VOLUME MEAN DIAMETER* MUGELE & EVANS 242.573 VOLUME MEAN OIAMETEH( HEROAN 356.223 SAUTER DIAMETER 310.020 AREA MEAN DIAMETER 214.746 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 113.420 STANDARD DEVIATION OF VOLUME DIA(HERDAN). 116.225 COEFFICIENT CF VARIATION OF 0IAMETEP(NUMBER)..... 0.622 CQEFF. OF VAK. OF VOLUME MEAN 01AMETER{HERDAN)... 0.326

GEOMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 146.737 GEOMETRIC VCLUME MEAN DIAMETER(MEDIAN) ...... 334.896 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 2.015 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.448 224

DROPLET DISTRIBUTION PER RUN CISC NO. 2 / DISC SPEEO=3000. RPM / POTENTIAL^ 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.DiA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0 .0000 c.oooo 0.0000 4 1 8.20 0.01 0.0000 0 .0000 o.oooo 0.0000 5 21.59 1.08 0.0004 0.0000 0.0004 0.0000 6 25.62 1.51 0.0006 0.0000 0.00 10 0.0000 7 30.40 8.37 0.0039 0 .0001 0.0049 0.0001 6 36. 07 2.93 0.0016 0.0000 0.0065 0.0001 9 42.80 1.47 0.00 10 0.0000 0.0075 0.0001 10 50. 79 3.14 0.0025 0.0001 0.0100 0.0002 11 60.27 29.74 0.0278 0.0015 0.0378 0.0017 12 71.51 38.09 0.04 22 0.0032 0.080C 0.0050 13 84.25 32.73 0.0430 0.0046 0.1230 0.0096 14 100 .66 18.85 0.0294 0.0045 0.1524 0.0141 15 lis.47 59.63 0.1104 0.0236 0.2628 0.0377 16 141.76 28.72 0.06 31 0.0190 0.3259 0.0567 17 168.20 6.67 0.0174 0.0074 0.3433 0.0641 18 19G.58 25.66 0.0793 0 .0474 0.4226 0.1115 19 236.62 35.24 0.1293 0.1088 0.5519 0.2203 20 28 1.00 39.68 0.1723 0.2046 0.7247 0.4249 21 333.43 30.95 0.1599 0.2666 0.8846 0.6915 22 395.64 12.75 0.0781 0.1835 0.9627 0.8749 23 46 9.45 4.95 0.0360 0.1189 0.9987 0.9939 24 557. 04 0.15 0.0013 0.0061 1.0000 1.0000 25 66 0.Ç6 0.00 O.OOCO 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 382.307 NUMBER MEAN CIAMETER( ) 160.813 VOLUME MEAN OIAMETER( MUGELE & EVANS ). 223.985 VOLUME MEAN OIAMETER( HERDAN 321.373 SALTER DIAMETER 285.438 AREA MEAN DIAMETER ...... 198.575 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 104.704 STANDARD DEVIATION OF VOLUME DIA(HERDAN) 91.453 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)..... 0.620 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.285

GEOMETRIC NUMBER MEAN DIAMETER(MED I AN)..- 137.875 GECMETftIC VOLUME MEAN DIAMETEP{MED I AN) ...... 305.761 GECM. STANCARD DEVIATION OF NUMBER DIAMETER ..... 1.932 GEOMETRIC STD DEV OF VOLUME DIAMETER 1.404 225

DHÛPLET DISTRIBUTION PER RUN CISC NO. 2 / DISC 3PEEO=bOOO. RPM / PUTENTIAL= 0.0 KV

CLASS CLASS DROPLET FHACTlUN FRACTION CUMULATIVE CUMULATIVE NU. AVE.01A NUMBER NUMBER VOLUME NUMBER VDLUMU

0.00 0(1 0.000 0 1 10. 0 .00 0.00 00 0 .0000 0.0000 0 .0000 ii 12.53 0 .00 0.0000 0 .0000 0.0000 0 .0000 3 15.34 0.00 0.0000 0 .0000 0.0000 0 .0000 4 16. 20 0 .01 0.0000 0 .0000 0.0003 0 .0000 5 21.59 1 .09 0.000 3 0.0000 0.0007 0 .0000 6 25.62 1 .24 0.0004 0 .0000 0.0007 0. 0000 7 30.4C 0 .00 0.0000 0 .0000 0.0040 0 .0001 a 36.C7 7.36 0.0033 0 .0001 .0003 y 42.ac a .77 0.00 47 0 .00^2 0.0087 0 .0005 0.0180 0 .0008 10 3C.7S 1 4.60 0.0093 0 0.0387 0 .0026 11 60.27 27 .54 C. 0207 0 .001 7 0.0665 0 .C0t)8 12 fl.51 2 1 .10 0.02 7d 0 .0032 0.1511 0 .0197 w 84.e £ 79 .78 0.0840 0 .0139 0.20 12 0 .031 :3 14 1 00.68 J9 .78 0.0501 0 .01 16 0.2904 0 .060 3 15 11 9.47 59 .74 0.089^ 0 .0290 0.3857 c .1 04 0 16 141.76 53.75 C.09 5 2 0 .0437 0.4613 0 .1528 17 166.20 35.99 0.0757 0 .0 488 0.551 1 0 .2544 lb 199.se 35 .98 0.C89U 0 .0816 0.7567 0 .4975 19 236.82 69 .45 0.2056 0.2630 0.9225 0 .7961 20 281.00 47 .20 0.1658 Û .2987 0.9929 0. 9745 2 1 333.4 3 1 6 .88 0.0703 0 .1784 1 .0000 1 .0000 22 395.64 1 .44 0.0071 0 .0255 1.0000 1 .0000 23 46 9.45 0 .00 0.CO C 0 c .0000 1.0000 1 .0000 24 557.04 0. 00 C. 0000 0 .0000 1.00 00 1 .0000 25 66 C.96 0 .00 0.00 00 0 .0000

STATISTICS PER RUN TOTAL DROPLET bPCT NUMBER IN A RUN 531 .706 NUMBER -IEAN CIAMETFR( 160.453 VOLUME MEAN DIAMETLR( MUGELt & EVANS ).... Id7.4j4 VCiLUMC MEAN CIAMETER( HERDAN ) 252.65% SAUTER DIAMETER * 227.563 AREA MEAN » 170.241 STANDARD CEVIATICN OF DIAMETER, HY NUMBER 79.73t. STANDARJ DEVIATION OF VOLUME DIA(HcRDAN) ...... <36.977 COEFFICIENT CF VARIATION OF DIAMETEP(NUMBER)...•. 0.530 CvJEFF. OF VAF. OF VOLUME MEAN DI AM ETER ( HERD AN ) .. . 0.265

GEOMETRIC NUMBER MEAN DIAMETER(MEUI AN• 129.753 GEOMETRIC VOLUME MEAN DlAMETER(MED I AN) ...... 241.716 CECM. STANCAPU DEVIATION OF NUMdER DIAMETER ..... 1.752 CEOMETRIC STD DEV OF VOLUME DIAMETER ...... 1.377 226

DKUPLET OISTRIWLTICN PER RUN CISC NO. 2 / DISC SPiZtD=6000« RPM / PGTENTIAL= -8.0 KV

CLASS CLASS DROPLET FKACTICN FRACTION CUMULATIVE CUMULATIVE NO , AVE.DIA NUMclER NUMBER VOLUME NUMBER VOLUME

0.0000 0.0000 1 10.89 0 .00 0.0000 0 .0000 0.0000 2 12.93 0.00 0.oooo 0 .0000 0.0000 0.0000 3 15.34 0.00 c.ooou 0 .0000 0.0000 0.0000 0,0000 4 18.20 0.01 o.oooo 0 .0000 b 21.59 1 .93 0.000b 0 .0000 0.0005 0.0000 0.0000 6 25.(2 2.49 c.oooa 0 .0000 0.0013 7 30.40 8.61 0.0031 0 .0001 0.0044 0.000 2 0.0006 a 36.C7 16.41 0.0071 0 .0004 0.0115 9 42.ac 25.55 0.0131 0 .001 1 0.0247 0.0017 0.0054 10 50. 79 50.27 0.0307 0 .0037 0.0553 0.0123 11 60.27 56.6a 0.04 10 0 .0069 0.0964 0,025b 12 71.£ 1 64.37 0.0553 0 .0132 3.1516 0.0642 13 84.€5 1 13.33 0.1155 0 .0387 0.2671 0.1247 14 100.ea 105.94 0.1281 0 .0605 0.3953 lb 119.47 91.81 0.13 1/ 0 .0375 0.5270 0.2122 0.3525 16 141.76 88.11 C. 1500 0 .1403 0.6770 0,52ob 17 16 8.20 65.38 0. 1321 0 .1 740 0.8091 . 0.6541 18 199.58 28.72 0.0689 0 .1277 0.8700 0.9164 19 236.62 35.59 0.10 12 0 .2643 0.9792 0.9822 20 281.OC 5.14 0.0173 0 .06 38 0.9466 1.0000 21 333.43 0.86 0.0034 0 .0178 1.0000 1 .0000 22 39 5.6 4 0.00 0.00 00 0 .0000 1.0000 1.000 0 23 469.45 0.00 • 0.00 00 0 .0000 1.oooc 1.0000 24 557.C4 0.00 0.0000 0 .0000 1.0000 26 660 .96 0 .00 o.oooo 0 .0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMbER IN A RUN 761. NUMBER MEAN CIAM£TER( 109.373 VOLUME MEAN DIAMETER( MUGELE & EVANS 132.880 VOLUME MEAN DIAMETER( HERDAN 182.523 SALTER DIAMETER 139.619 /IREA MEAN CI/METER . 121.329 STANCARl) DEVIATION UF DIAMETER, BY NUMBER 52.5£>4 STANDARD DEVIATION OF VOLUME UI A(HEFDAN) 59.973 COEFFICIENT CF VARIATION OF DÎAMETER(NUMBER)..... 0.400 COEFF. OF VAR. OF VOLUME MEAN D1AMETE F(HERDAN)•.. 0.329

GECMETRIC NUMBER MEAN DIAMETER(MEDI AN• 97.494 GECMETRIC VOLUME MEAN DIAMETER(MEDI AN) ...... 171.675 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ... 1.632 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1 .4'ïl 227

OKOPLCT DISTkiaUTION PEH HUN CISC NO. 2 / DISC SPELO=6000. KPM / POTENTIAL- il.O KV

CLASS CLASS DROPLET FRACTION FR AC TI ON CUMULATIVE CUMULAT NO. AVE.DIA NUMBER NUMBER VOLUME NUMUER VOLUME

1 10.89 0.00 O.OOOO 0 .0000 O.OOOO 0.0000 2 1 2.Ç3 0.00 C.OOOO 0 .0000 0.0000 0.000 0 3 15.34 0 .00 0.0000 0 .0000 0.00 00 0.0000 4 1 8.20 0.01 C.OOOO 0 .0000 0.0000 0.0000 5 2 1 .59 1 .79 0.0006 0 .0000 O.OOOO O.OOOO 6 25.F 2 2.42 0.00 10 0 .0000 0.0017 C.OOOO 7 30.4C 1 1 .26 0.0057 0 .0003 0.0074 0.000 3 o.cooa B 36.07 14.15 0 .0085 0 .0005 0.0159 9 4 2.80 13.29 0.0095 0 .0008 0.0254 0.0016 10 J 0.79 29.28 0.0248 0 .0030 0.0502 0 .0047 11 60.27 4 7.13 0.04 74 0 .0082 0.0976 0.0 128 12 71.51 41.19 0.0491 0 .0119 0.1467 0.0248 13 34.£5 72.04 0.1020 0 .0348 0.2487 0.0596 14 ioo.ee 68.20 0.1145 G .0551 0.3632 0 . 1 146 15 lis.47 69.61 0. I3e 7 0 .0939 0.5020 0.2085 16 141,7b 69.85 0. 1652 0 .1574 0.6671 0.3659 17 168.2C 46.86 0.13 15 0 . 1 765 0.7987 0.542 4 lb 1 Y Ç .5 D 38.73 0.1290 0 .2436 C.9276 0.7859 19 236.82 13.27 0.15 24 0 .1394 0.9801 0.925J 20 281.OC 4.25 0.CI 99 0 .0747 1.0000 1 .0000 21 333.43 0.00 C.OOOO 0 .0000 1.00 00 1.nooo 22 395.64 0.00 0.0000 0 .0000 L.OOCO 1 .ooco 2J 469.45 0.00 C.OOOO 0 .0000 1.0000 1.0000 24 557.04 0 .00 0 .0000 0 .0000 1.00or 1 .000 0 25 66C.96 0.00 0.00 00 0 .0000 1.0000 1 .0000

STATISTICS PER HUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... b43,JbO hUMHER MEAN CIAMEFLRC 110. VOLUME MEAN OIAME;Tt:R( MUGELE & EVANS )...... ljJ.447 VOLUME MEAN DIAMETER! HEROAN 175,870 SAUTER DIAMETER 15tJ.672 AREA WEAN DIAMETER 121.867 STANDARD DEVIATION LH DIAMETER, GY NUMBER...... 51.809 STANDARD DEVIATION OF VOLUME L)I A( HERDAN ) . 53.755 COEFFICIENT CF VARIATION OF DIAMETEF(NUMUER) .. . . . 0.470 COEFF. OF VAP. OF VOLUME MEAN DIAMETER(HERDAN)... 0.30o

CECMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 98.123 CECMETRIC VCLUMil MEAN D I AMET ER ( MEO I AN ) ...... 166.847 CtCM. STANCAFD DEVIATION CF NUMdER DIAMETER ..... 1.653 GECMETRIC STC DEV OF VOLUME DIAMETEF ...... 1.403 22 8

DROPLET DI STKlliUTIGN PE,R PUN CISC NO. 2 / DISC SPE£D=0000. RPM / PCJTt^NT I AL=-22.0 KV

CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULAT VOLUME NO, AVE.DIA NUMBER NUMBER VOLUME NUMBKR

0.0000 0.0000 0.0000 1 1 O.GS 0.00 0.0003 0.0000 0.0000 2 1 2.93 0.00 C.OOOO 0.0000 3 15.34 0 .00 0 .0000 0.0000 0.0000 O.OOCO 0.0000 0.0000 4 1 8.20 0 .01 0.0000 0.0000 0.0002 0.0000 • 5 2 1.59 0.94 0.0002 o.oooo 0.0000 0.0006 o.ooco 6 25.62 1.47 0.0004 7 30.40 1 1 .75 0.0037 0.0002 0.0043 0.0002 e 36.07 41.77 0.0157 0.0010 0.0201 c.con 0 .0043 •i 4 2.80 83.56 0.)374 0.0032 0.0574 0.1064 0.0104 10 50.79 95.99 C.05C9 0.0061 0.1721 0.0212 11 60.27 101 .32 0.0636 0.0108 0.2537 0.0400 12 7 1.El 109.21 0.0816 0.0194 0.3367 0.0684 13 84.€5 93.64 0.0830 0.0278 0.3752 0.0806 14 10 0.68 36.64 0.0385 0.0182 0.1799 15 119.47 112.52 C.1404 0.0933 0.5156 It 141.76 119.21 0.1765 0.1651 0.6921 0.3449 0.7759 0.4552 17 16e.20 4 7.65 0.0837 0.1102 0.8622 0.6171 18 199.56 41 .86 0.0873 0.1619 0.9758 0.9110 19 236.52 45.53 0.1126 0.2940 1.0000 1.0000 20 231.00 8.25 0.0242 0.0390 1 .0000 1.0000 21 333.43 0.00 0.0000 0.0000 1 .0000 22 395.64 0.00 0.00 00 C.OOOO 1.0000 1.0000 23 469.45 0.00 C.OOOO 0.0000 1.0000 1.0000 1.0003 24 557.04 0.00 C.OOOO 0.0000 1.0000 1 .0000 o 25 66 C.96 o o 0.0000 0.0000

STfT ISTICS PER RUN TUTAL DROPLdT SPOT NUMBER IN A RUN 951 .34f. NUMBER MEAN CIAMETEK( 100.637 VOLUME MEAN DIAMcTLR( MUGELE & EVANS j.«...... 12S.25C VGLCiME MEAN CIAMETERi HERDAN )... 186 .726 SALTER DIAMETER 162.460 AREA MEAN ClAMETER • 115.268 STANDARD DEVIATION UF DIAMETER. BY NUMBER 56.440 ETANCARO DEVIATION OF VOLUME DIA(HERDAN)...... 5a.371 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)....• 0.561 COEFF. OF VAF. OF VOLUME MEAN DI AMETER

GEOMETRIC NLNBER ^EAN DIAMETLK(MEDIAN)...... U6.686 GEOMETRIC VOLUME MEAN DIAMETER(MED I AN) 175.822 GECM. STANCARD DEVIATION OF NUMBER DIAMETER 1.728 CECMETRIC STC DEV OF VOLUME DIAMETER 1.448 229

OHUPLET DISTRIBUTION PEH RUN CISC NO. 2 • DISC SPE(:0=6000. PPM / POTENT IAL= 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.CIA NUMBER NUMBER VCLJME NUMBER VOLUME

1 10.89 0 .00 0.0000 0.0000 o.oooo o.ooco 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.cooo O.OGC0 4 18.20 0.01 0.00 00 0.cooo 0.0000 0.0000 5 21 .59 6.37 0.0009 0.0000 0.0010 0,0000 6 25.62 12.01 0. OC 21 0 .000 1 0.0031 0.0001 7 30.40 4.04 0.00 10 0 .0000 0.0040 0.0001 3 3 é. C 7 7.92 0.0020 0.0001 0.0060 0.0002 9 42.80 39.84 0.01 18 0.0008 0.0178 0.0010 10 5C.7

STATISTICS PER HUN TOTAL DROPLET SPOT NUMBER IN A RUN 1290.054 SUM3EP MEAN CIAMEfERf ) 112.255 VOLUME MEAN OIAMETEH( MUGELE & EVANS ) 142.458 VOLUME MEAN CIAMETER( HEHDAN 205,4faG SALTER DIAMETER 177.773 /RLA MEAN DIAMETER . . 127.621 STANDARD DEVIATION OF DIAMETER, BY NUMBER 60.735 STANDARD DEVIATION OF VOLUME DIA(HEROAN) 67.3V0 COEFFICIENT CF VARIATION OF CIAMETEP(NUMBER 0.541 CUEFF. OF VAC. OF VOLUME MEAN DIAMETER(HERDAN) ... 0.^28

GEOMETRIC NLNBER MEAN DI AMETER (MEDIAN) 97.813 GCCMETRIC VOLUME MEAN DIAMETEH

DRûPLtîT DISTRIBUTION FEW RUN CISC NO. 2 / DISC SPEEO=yOOO. RPM / POTENTIAL^ 0.0 KV

CUMULAT CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE NO. AVE.CIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.39 0.00 C .0000 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 O.COCO 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0 .0000 0.0000 0.0000 4 18.20 0.01 0. QOOO 0.0000 O.OUOÛ 5 21.59 1 .20 0.00 02 0. 0 0 Q 0 O.OU02 0.0000 6 25.62 3.75 0.0007 0.0000 0.0009 0.0000 7 30.40 70.62 0.0157 0.0010 0.0166 0.0010 6 36.0 7 (38 .63 0.0181 0.00 16 0.0348 0.0C26 0.0059 9 42.ec 83.75 0.0263 0.0033 O.OblO 0.0121 10 5C.79 93.99 0.0350 0 .0062 0.0960 0.0273 11 60.27 139.30 0.06 15 0.0152 0.1575 0.0473 12 71.51 109.33 0.0573 0.0200 0.2148 0.0996 13 84.6 5 171.34 0.1065 0.0523 0.3213 14 100.66 149.86 C.1105 0.0764 0.4318 0.1760 0.343 7 15 119.47 196.89 0.1723 0.1677 0.6041 lb 141.76 20 1.75 0.2095 0 .2871 0.8136 0.6309 0.967 3 17 168.20 141.48 0. 1743 0.33O4 0.98P0 18 199.58 3.24 0.0120 0.0327 1.0000 1 .0000 19 236.€2 0.00 0.00 CO 0.0000 1.0000 1.0000 20 281.00 0.00 C.OOOO 0.0000 1 .0000 1 .0000 1.0000 21 333.4 3 0.00 0.00 00 0 .0000 1.0000 1 .0000 22 395.(4 0.00 C.OOOO 0.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557. C4 0.00 0.0000 0 .0000 1 .0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 1440.138 NJMflFR MEAN CIAMETER( 94,7^7 VLLUME MEAN DIAMETER! MUGELE 6 EVANS ) 111.5*2 VOLUME MEAN CIAMETER( HERDAN 138.877 SAUTER DIAMETER 128.674 AREA MEAN DIAMETER 103.9^6 STANDARD DEVIATION OP DIAMETER» BY NUMdcR... 42.727 ETANCAR3 DEVIATION OF VOLUME DI A(HERDAN) 32.119 COEFFICIENT CF VARIATION OF DI AMETE F ( NUMOER ) .. . . . 0.451 CUEFF. OF VAR. OF VOLUME MEAN D1AMETER(HERDAN)... 0.231

CECMETRIC NUMBER MEAN DIAMETERCMEDIAN)...... 84.333 GEOMETRIC VOLUME MEAN DIAMETERiMEDIAN) ...... 134.340 CSCM. STANDARD DEVIATION CF NUMBER CIAMETER 1.659 CECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.316 231

DRUPLET DISTRIUUTICN FER kUN CISC NO. 2 / DISC Si^EED=9000. RPM / PUTtNTiAL^ -8.0 K V

CLASS CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULATIVE NC, AVE.DIA NUMBER NUMBER VLLUME NUMBER VOLUME o o o

• 0.0000 1 10.8S O.OOOC 0.0000 0.0000 2 12.93 0.00 0.00 00 0.0000 O.OOOC O.OOOC 3 15.34 0.00 C.OOOO o.oooo 0.0000 0 .0000 4 16.20 0.03 0.0000 0.0000 O.OCOO 0.0000 5 2 1.59 3.52 C.00C8 0.0000 0.0008 0.0000 6 25.e 2 4.48 0.00 12 0.0001 0.0021 0.0001 7 30.40 13.79 0.0045 0,0003 C.0066 0 .0004 B J6.C7 24.47 0.G09O 0.0009 0.0162 0.0013 9 42.60 39.57 0.0183 0.0025 0.C345 0.0038 10 50.79 63.29 0.0348 0.0066 0.0693 0.0104 0.0309 11 60.27 116.77 0.0762 0.0204 0.1454 0.074S 12 71.5 1 149.33 0.1156 0.0437 0.26 10 13 64.£ 5 172.ly 0.1581 0.0841 0.4191 0 .1386 14 100.68 119.03 C.1297 0.0971 0.5488 0.2557 0.4068 15 lis.47 1 10-85 0. 1433 0.15 11 0.6921 16 1+1.76 99.89 0.1532 0.2275 0.8453 0.6342 17 166.2 0 oO .04 0.1093 0.2284 C.954C 0 .8626 18 199.58 19.56 0.04 23 0 .1243 0.9969 0 .9070 19 236.82 1.23 0.0031 0.0130 1.0000 1 .0000 20 281.00 0 .00 0.0000 0 .0000 1.0000 1.0000 21 353.43 0.00 C.OOOO O.OOOO 1.0000 1.0000 22 395.64 0.00 C .0000 0 .0000 1.0000 1 .000 0 23 469.45 0.00 0.0000 0 .0000 1 .0000 1 .0000 24 5b7.C4 0.00 C.OOOO 0.0000 1.0000 1.0000 25 660 .56 0.00 0.0000 0 .0000 1.0000 1.0000

STATISTICS PER RUN TCiTAL DROPLET SPOT NUMBER IN A 99 8.040 NUW8EK MEAN CIAMETER( 92.591 VOLUME •MEAN DIAMETER( MUGELE 107.770 VULUNE MEAN CIAMETER( HERDAN 138.3tl SAUTER 124.412 fREA MEAN DIAMETER . . 100.374 STANDARD DEVIATION OF DIAMETER , DY NUMfcER... # # # # # 38.773 STANDARD DEVIATION OF 40.478 COEFFICIENT CF VARIATION OF 01AMETER(NUMBER J •• • • • 0 .41^ COEFF. OF VAP . OF VOLUME MEAN DIAMETERiHERDAN)... 0.293

GECMETRIC NUMBER MEAN 01AMETEP(MEDIfN)...... 84.705 CECMETRIC VOLUME MEAN 01AMETEK(MED I^N> ...... 131.763 CcCM. STANC4KD DEVIATION OF NUMBER DIAMETER ..... 1.539 CECMETRIC STC OEV OF VOLUME DIAMETER ...... 1.385 232

DROPLET DISTRIBLTICN PER RUN CISC Nb. 2 / DISC SPEED=900û. KPM / PaTF.NTlAL= 8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULAT NC. AVE.CIA NUMUER NUMBER VCLUME NUMBER VOLUME

0.0000 1 10.89 0.00 0.0000 C.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 O.OOGO 0.0000 3 IE.34 0.00 c.oaoo 0.0000 0.0000 4 16.20 0.03 0.0000 0.0000 O.OCOO O.OCOO 5 2 1.59 4.69 C.0006 0.0000 0.0006 0.0000 0 .0000 6 25.€2 6.32 C.0009 0.0000 0.00 15 0.0003 7 30.40 29.09 0.0050 0.0002 0.0065 0.0010 a 36. C7 58.09 0.0118 0.0008 0.0133 0.0033 9 42.80 106.53 0.0257 0.0C23 0.C44C 0.0082 10 50. 79 133.87 0.0384 0.0048 0.0324 0.0162 11 60.27 132.94 0.0452 0.0080 0.1276 0.0311 12 71.5 1 147.66 0.0596 0.0149 0.1372 13 84.65 196.14 0.C939 0.0331 0.2811 0.0642 14 100.66 163.01 C.0926 0.0460 0.3737 0.1102 0.2043 15 lis.47 201.03 0.1355 0 .0947 0 .5092 0.338 3 16 14 1.76 169.59 0.1356 0.1334 0.6440 0.5789 17 168.20 183.06 0.1737 0.2406 C.E185 0.3159 10 19 Ç .5 8 107.01 0.12C5 0.2350 0.9390 19 236.£2 33.1 6 0. 044 3 0.1217 0.96 33 0.9355 1 .0000 20 281.OC 10.52 0.0167 C.0645 1 .0000 1.0000 2 1 333.4 3 0.00 C.OOOO 0.0000 1.0000 1.0000 22 395.64 0.00 C.OOOO 0.0000 l.OCOO 2J 469.45 0.00 0.0000 0 .3000 l.OCOO 1.OCCO 1.0000 24 55 7. C4 0.00 C.OOOO o.oooo 1.0000 25 660.96 0.00 0.0000 0.0000 1 .0000 1.0000

STATISTICS PER RUN TUTAL DROPLËl SPOT NUMBER IN A RUN 1682.741 NUMdER MEAN ClAME-TEKl 105.329 VCLUME MEAN DIAMETER{ MUGELE & EVANS 129.035 VOLUME MEAN DIAMETER! HERDAN 173.d91 SALTER DIAMETER 154.981 /REA MEAN DI/METER . 117.825 STANDARD DEVIATION OF DIAMETER. BY NUMBER... 52.321 STANDARD DEVIATICN CF VOLUME 52.005 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)•.... C.501 COEFF . JF VAR. OF VOLUME MEAN DIAMETEF(HERDAN)... 0.299

GEOMETRIC NUMBER MEAN DIAMETER(MEOiAN)...... 92.277 GECMETRIC VCLUME MEAN DIAMETER(MED I AN) ...... 165.182 GECM. STANCAFD,DEVIATION OF NUMBER DIAMETER ..... 1.698 GECMETRIC STC DEV OF VOLUME DIAMETER 1.401 233

DHUPLCT OlSTHIdUTICN PER KUN CISC NO. 2 / DISC SPE;EO=9000. KPM / PC f tN T I AL=-2 2. 0 KV

CLASS CLASS DWUPLET FRACTION FRACTIUN CUVULATIVE CUMULATIVE NO. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME. O o C 1 0.00 c.cooo 0.0000 O.OOOO 0.000 0 2 12.93 0.00 . 0.00 CO C .0000 0.0000 o.occo 5 15.34 0.00 C.0000 0.0000 0.0000 0.0000 4 18.20 0.55 0.0001 0.000 0 0.300 1 O.OCOJ 5 21.59 6.45 C.OOll 0 .0000 0.0012 0.0000 6 25.62 65.74 0.0136 C.0007 0.0143 0.0003 7 30 .40 141.9ti 0.0343 0.0026 0.0496 0.0033 8 36.C 7 324.56 0.0944 0.0098 0.1440 0.0 131 9 42.EC 309.99 0.1070 0.0156 0.2510 Û.0287 10 SC.79 221.28 0.0906 0.0180 0.3416 C.0473 11 60.27 200.86 0.0976 0.0282 0.4392 0.0756 12 71.5 1 52.31 C.03Û2 0.0123 C.4693 0.0676 13 #4.65 39.03 0.0267 0.0153 0.496U 0.1032 14 1 DC ..ee 78.1 0 0.06 34 0.0512 0.5594 0.1543 15 lis.47 99.33 0.0957 0. 1087 0.6551 0.2631 16 141.76 101.10 0.1155 0.1849 0.7706 0.4480 1 1 168.20 143.46 C. 1945 0.4384 0.9652 0.8864 18 195.50 20.13 0.0324 0.1028 0.9076 0.9891 ISY 236.62 1.27 0.0024 0.0109 I .0000 1.0000 20 281.OC 0.00 0.0000 0.COOO 1.0000 1 .0000 21 333.43 C .00 0.0000 a .0000 1.0000 1.0000 22 395.64 0.00 O.OOOO 0.0000 1 .0000 1.0000 23 4ÔS.45 0 .00 0.0000 0.0000 1.ccco 1.000 0 24 557.04 0.00 C.0000 0.0000 1.0000 1.0000 25 660.56 0.00 0.0000 0.0000 1.0000 1 .0000

STATISTICS PER RUN TUTAL DROPLET SPOT NUMOER IN A RUN 1606.157 NUMBER MEAN CIAMETERf ).. 66.674 VOLUME MEAN CIANETERf MUGELE 6 EVANS )

CECMETRIC NLNBEtt MEAN DI AM ET ER ( MED I AN ) 57.617 GLCWETRIC VOLUME MEAN DIAMETER(MEDIAN) 139.334 CECW. STANCAKD DEVIATION GF NUMBER DIAMETER 1.760 GEOMETRIC SIC DEV OF VOLUME DIAMETER 1.445 234

DROPLET OISTHldLTICN PER HUN CISC NO. 2 / DISC SP£fct;=9000. RPM / PCTENTIAL= id2»0 KV

CUMULAT CLASS CLASS DROPLET FRACTICN FRACTION CUMULAT! VE VOLUME NC* AVE.CIA NUMBER NUMBER VCLUME NUMBER

Û.OOOO 0.0000 1 10.89 0 .00 0.0000 0 .0000 0.0000 2 12.93 0.61 C.COOC 0.0000 0.0000 0.0000 3 15.34 1 0.40 0.0008 O.OOOO 0. 0009 O.OOOO 4 18.20 14.65 0.00 14 0.0000 0.0023 0.0002 5 21.59 4 1.92 0.0048 0.0001 0.0071 0 .0008 6 25,62 117.15 0.0158 0 .0006 0.0229 0.0022 7 30.40 165.43 0.0265 0.0014 0.0494 0.0736 0.0041 8 36.C7 127.13 0.0242 0.0019 0.0059 9 42.80 71 .95 0.0163 0 .0018 0.089% 0.1046 0 .0061 10 50.79 54.86 0.0147 0.0022 0.0131 11 60.27 73.62 0.0234 0.0050 0.1280 0.1778 0.0282 12 71.£ 1 131.86 0.04S8 0 .0150 0.1012 13 34.EE 383.49 0. 1717 0.0731 0.3495 0.5150 0.2004 14 100.68 311 .46 0.1655 0.C991 0.3200 15 lis.47 225.08 0.14 19 0 .1197 0.6569 0.7653 0.4488 16 141.76 144.93 0.1384 0.1287 0.5827 17 166.20 90.21 0.3801 0.1339 0.8453 0.9503 0.6297 18 i9s.se 99.63 0.104 9 0.2470 0.9811 19 236.£2 36.56 0.0457 0.1514 0.9960 20 281.00 2.73 0.0040 0.0189 I.3000 1.0000 21 333.43 0.00 0.0000 O.OOOO 1.0000 1.0000 Z^ 395.64 0 .00 0.0000 0.0000 1.0ÛC0 1.0000 1.0000 23 465.45 0.00 o.cooo 0.OCOO l.OCOO 1,0000 24 557.C4 0.00 0.0000 0 .0000 1.0000 1.0000 25 66 0.96 0 .00 0.00 00 0 .0000 1.0000

STATISTICS PER RUN TOTAL DKOPLET SPOT NUMBER IN A RUN ...... 2103.707 NUMBER MEAN CIAMETER( 90.083 VOLUME MEAN OIAMETER( MUGELE & EVANS 115,Ù32 VOLUME MEAN DIAMETER* HERDAN 163.417 SALTER DIAME1ER 142.725 AREA MEAN CIAMETEH . 103.344 STANDARD DEVIATION OF DIAMETEP. BY NUMBER...... 50.6b9 STANDARD DEVIATION OF VCLUME DIA(HERDAN)• 53.306 COEFFICIENT LP VARIATION OF CIAMETEP

GECMETRIC NUMBER MEAN DIAMETEP(MEDIAN),...... 7b.330 GECMETRIC VCLUME MEAN DIAMETER(MEDIAN) ...... 153.717 GECM. STANCAPD DEVIATION CF NUMBER CIAMETER 1.684 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.443 235

DROPLET DISTRIBUTION PER RUN DISC NO. 3 / DISC SPEEO=3000, RPM / POTENT IAL= 0.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.85 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.01 0.0000 0.0000 0.0000 0.0000 5 2 1.59 1.69 0.0010 0.0Ô00 0.0010 0.0000 6 25.62 1.93 0.0014 0.0000 0.0024 0.0000 7 30.40 2.41 0.0021 0.0000 0.0045 0.0000 8 36.C7 4.98 0.0050 0.0001 0.0095 0.0001 9 42.80 7.40 0.0089 0.0002 0.0184 0.0003 10 50.79 5.12 0.0073 0.0002 0.0257 0.0005 11 60.27 2.39 0.0040 0.0002 0.0297 0.0007 12 71.51 4.31 0.00 86 0.0005 0.0383 0.0011 13 84.es 12.35 0.0294 0.0023 0.0677 0.0035 14 100.68 1 7.79 0.0502 0.0056 0.1179 0.0091 15 119.47 6.07 0.0203 0.0032 0.1382 0.0123 16 141.76 8.35 0.0331 0.0074 0.1713 0.0197 17 168.20 12.61 0.0594 0.0186 0.2307 0.0382 18 199.58 10.17 0.0569 0.0250 0.2876 0.0633 19 236.82 1 7.70 0.1174 0.0727 0.4050 0.1360 20 281.00 18.91 0.1488 0.1299 0.5538 0.2658 21 333.43 21.70 0.2026 0.2489 0.7565 0.5147 22 395.64 16.47 0,1825 0.3156 0.9390 0.8303 23 469.45 3.03 0.0398 0.0970 0.9788 0.9273 24 557.04 1.36 0.0212 0.0727 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 176.772 NUMBER MEAN OIAMETER( ) 201.986 VOLUME MEAN DIAMETERS MUGELE & EVANS ...... 263.292 VOLUME MEAN OIAMETER( HERDAN )...... 357.955 SAUTER DIAMETER ...... 325.794 AREA MEAN DIAMETER 236.891 STANDARD DEVIATION OF DIAMETER. BY NUMBER.••..... 124.121 STANDARD DEVIATION OF VOLUME DIA(HERDAN)...... 94.828 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)....• 0.615 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN). 0.265

GEOMETRIC NUMBER MEAN DIAMETERtMEDIAN)...... 157.836 GEOMETRIC VOLUME MEAN OIAMETER(MEOIAN) ...... 343.678 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 2.167 GEOMETRIC STD DEV OF VOLUME DIAMETER ...... 1.353 236

DROPLET DISTRIBUTION PER RUN DISC NO. 3 / DISC SPEED=3000. RPM / PGTENTIAL= -8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.OIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 O.OOOO 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 16.20 0.01 0.0000 0.0000 0.0000 0.0000 5 21.59 1.80 0.0008 O.OOOO 0.0008 0.0000 6 25.62 2.84 0.0015 0.0000 0.0023 0.0000 7 30.40 36.54 0.0232 0.0002 0.0255 0.0002 8 36.07 25.74 0.0193 0.0003 0.0448 0.0005 9 42.80 14.87 0.0133 0.0002 0.0581 0.0007 10 50.79 8.73 0.0092 0.0002 0.0673 0.0010 11 60.27 5.24 0.0066 0.0002 0.0739 0.0012 12 71.51 4.48 0.0067 0.0003 0.0806 0.0015 13 34.65 20.38 0.0360 0.0026 0.1166 0.0041 14 100.68 6.14 0.0129 0.0013 0.1295 0.0054 15 119.47 4.68 0.0117 0.0017 0.1412 0.0071 16 141.76 5.38 0.0159 0.0032 0.1570 0.0103 17 168.20 14.32 0.0502 0.0142 0.2072 0.0245 18 199.56 19.43 0.0808 0.0322 0.2881 0.0567 19 236.82 16.63 0.0821 0.0460 0.3701 0.1026 20 281.00 23.50 0.1376 0.1086 0.5077 0.2113 21 333.43 25.86 0.1797 0.1996 0.6874 0.4109 22 395.64 24.27 0.2001 0.3130 0.8875 0.7239 23 469.45 8.27 0.0809 0.1783 0.9684 0.9022 24 557.04 2.72 0.0316 0.0978 1.0000 1.0000 25 66 0.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 271.821 NUMBER MEAN OIAMETERC 176.536 VOLUME MEAN DIAMETER* MUGELE 6 EVANS )••••..•••• 260.292 VOLUME MEAN OIAMETERC HEROAN 379.889 SALTER DIAMETER 346.605 AREA MEAN DIAMETER . 225.754 STANDARD DEVIATION OF DIAMETER. BY NUMBER...... 140.971 STANDARD DEVIATION OF VOLUME OIA(HEROAN)...... 97.382 COEFFICIENT OF VARIATION OF 01AMETER(NUMBERI..... 0.799 COEFF. OF VAR. OF VOLUME MEAN 01AMETERCHERDAN)... 0.256

GEOMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 116.621 GEOMETRIC VOLUME MEAN 01AMETERiMEOlANJ ...... 365.445 GECM. STANDARD DEVIATION OF NUMBER DIAMETER .... 2.671 GEOMETRIC STO DEV OF VOLUME DIAMETER ...... 1.345 237

DROPLET DISTRIBUTION PER RUN CISC NO. 3 / DISC SPEED=3000. RAM / POTENTIAL= 8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.OIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 1 0.89 0.00 0.0000 0.0000 0.0000 0.0000 2 1 2.S3 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.06 0.0000 0.0000 0.0000 0.0000 5 21.59 7.99 0.0040 0.0000 0.0040 0.0000 6 25.62 9,29 0.0055 0.0000 0.0094 0.0001 7 30.40 17.23 0.0120 0.0001 0.0214 0.0002 8 36.07 27.25 0.0225 0.0003 0.0439 0.0005 9 42.80 25.83 0.0253 0.0005 0.0693 0.001 0 10 50.79 19.44 0.0226 0.0006 0.0919 0.0016 11 60.27 6.11 0.0112 0.0004 0.1031 0.0021 12 71.51 6.50 0.0107 0.0006 0.1137 0.0027 13 84.85 16.00 0.0350 0.0027 0.1487 0.0054 14 100.68 10.22 0.0236 0.0026 0.1722 0.0080 15 119.47 13.76 0.03 76 0.0058 0.2099 0.0139 16 141.76 16.77 0.0544 0.0119 0.2643 0.0258 17 168.20 14.56 0.0561 0.0173 0.3204 0.0430 18 199.58 12.38 0.0566 0.0245 0.3770 0.0675 19 236.82 10.53 0.0571 0.0349 0.4341 0.1024 20 281.00 11.13 0.0716 0.0615 0.5057 0.1639 21 333.43 31.91 0.2437 0.2948 0.7494 0.4587 22 395.64 9.81 0.0889 0.1514 0.8383 0.6101 23 469.45 14.85 0.1596 0.3828 0.9979 0.9930 24 55 7.04 0.16 0.0021 0.0070 1.0000 1.0000 25 66 0.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN « 285.777 hUMBER MEAN OIAMET£R( 152.800 VOLUME MEAN DIAMETER* MUGELE 6 EVANS 241.124 VOLUME MEAN DIAMETER( HERDAN )...... 378.194 SAUTER DIAMETER ...... 340.973 AREA MEAN DIAMETER ...... 202.936 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 133.782 STANDARD DEVIATION OF VOLUME 01A(HEROAN)...... 92.998 COEFFICIENT CF VARIATION OF 01AMET£R(NUMBER)..... 0.876 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDANJ... 0.246

CECMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 100.918 GEOMETRIC VOLUME MEAN DIAMETER(MED 1 AN) ...... 363.206 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 2.565 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.367 238

DROPLET DISTRIBUTION PER RUN CISC NO. 3 / DISC SPEED=3000. RPM / POTENTIAL=-22«0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.CIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 1 0.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.79 0.0002 0.0000 0.0002 0.0000 4 18.20 1.93 0.0006 0.0000 0.0007 0.0000 5 21.59 2.41 0.0008 0.0000 0.0016 0.0000 6 25.62 2.52 0.0010 0.0000 0.0026 0.0000 7 30.40 0.96 0.0005 0.0000 0.0030 0.0000 8 36.07 1.65 0.0009 0.0000 0.0040 0.0000 9 42.80 5.64 0.0038 0.0001 0.0077 0.0002 10 50.79 11.29 0.0090 0.0004 0.0167 0.0005 11 60.27 34.68 0.0328 0.0019 0.0495 0.0024 12 71.51 40.28 0.0452 0.0037 0.0947 0.0061 13 84.65 20.10 0.0268 0.0031 0.1215 0.0092 14 100.68 25.43 0.0402 0.0065 0.1616 0.0158 15 11 9.47 30.89 0.0579 0.0133 0.2195 0.0290 16 141.76 30.07 0.0669 0.0215 0.2864 0.0506 17 168.20 46.73 0.1233 0.0559 0.4097 0.1065 18 199.58 29.98 0.0939 0.0600 0.5036 0.1665 19 236.82 12.51 0.0465 0.0418 0.5500 0.2082 20 281.00 33.42 0.1473 0.1866 0.6974 0.3948 21 333.43 41.26 0.2158 0.3847 0.9132 0.7795 22 395.64 13.60 0.0844 0.2118 0.9975 0.9913 23 469.45 0.33 0.0025 0.0087 1.0000 1.0000 24 55 7.04 0.00 0.0000 0.0000 1.0000 1.0000 25 66 0.96 0.00 O.OOOO 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 386.474 NUMBER MEAN OIAMETERC 164.944 VOLUME MEAN DIAMETER* MUGELE & EVANS 217.362 VOLUME MEAN DIAM£TER( HEROAN ...... 305.807 SAUTER DIAMETER 274.708 AREA MEAN DIAMETER ...... 193.504 STANDARD DEVIATION OF DIAMETER. BY NUMBER...... 101.309 STANDARD DEVIATION OF VOLUME DIA(HERDAN)...... 78.132 COEFFICIENT OF VARIATION OF DlAMETERfNUMBER)..... 0.614 COEFF. OF VAF. OF VOLUME MEAN DIAMETERCHERDAN)..• 0.255

GEOMETRIC NUMBER MEAN 01AMETERfMEDlAN)•...••••••« 134.263 GEOMETRIC VOLUME MEAN DIAMETER(MEDIAN) ...... 292.742 C-EGM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.959 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.380 239

DROPLET DISTRIBUTION PER RUN DISC NO. 3 / DISC SPEEO=3000. RPM / PCTENTIAL= 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 1 0.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.00 00 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.02 0.0000 0.0000 0.0000 0.0000 5 21.59 2.93 0.0008 0.0000 0.0008 0.0000 6 25.62 3.44 0.0011 0.0000 0.0019 0.0000 7 30.40 3.95 0.0015 0.0000 0.0034 0.0000 8 36.07 3.44 0.0016 0.0000 0.0050 0.0001 9 42.80 2.21 0.0012 0.0000 0.0062 0.0001 10 50.79 4.67 0.0030 0.0001 0.0092 0.0003 11 60.27 13.66 0.0104 0.0007 0.0195 0.0010 12 71.51 32.03 0.0288 0.0028 0.0484 0.0038 13 84.€5 61.08 0.0652 0.0089 0.1136 0.0127 14 100.68 81.50 0.1033 0.0198 0.2169 0.0325 15 11 9.47 54.61 0.0821 0.0222 0.2991 0.0546 16 141.76 29.79 0.0532 0.0202 0.3522 0.0748 17 168.20 58.42 0.1237 0.0662 0.4760 0.1410 18 199.58 41.91 0.1053 0.0793 0.5813 0.2204 19 236.82 34.19 0.1019 0.1081 0.6832 0.3285 20 231.00 33.65 0.1191 0.1778 0.8023 0.5063 21 333.43 28.12 0.1181 0.2482 0.9203 0.7545 22 395.64 14.38 0.0716 0.2121 0.9920 0.9665 23 469.45 1.36 0.0080 0.0335 1.0000 1.0000 24 55 7.04 0.00 0.0000 0.0000 1.0000 1.0000 25 66 0.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 505.358 NUMBER MEAN CIAMETER( i«••«•••••••••••••••••«•••• 157.166 VOLUME MEAN D1AMETER( MUGELE 6 EVANS 202.452 VOLUME MEAN DIAMETER* HERDAN 293.417 SAUTER DIAMETER ...... 255.177 AREA MEAN DIAMETER 180.471 STANDARD DEVIATION OF DIAMETER. BY hUMBER...... 88.793 STANDARD DEVIATION OF VOLUME D1A(HEROAN)••••••..• 90.618 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER!..... 0.565 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.309

GEOMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 134.518 GEOMETRIC VOLUME MEAN DIAMETER(MEDlAN) ...... 276.378 GECM. STANCARD DEVIATION OF NUMBER DIAMETER ..... 1.769 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.449 240

DROPLET DISTRIBUTION PER RUN CISC NO. 3 y DISC SPEED=6000. RPM / PCTENTIAL= 0.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.OIA NUMBER NUMBER VOLUME NUMBER VCLUME

1 10.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.13 0.0000 0.0000 0.0000 0.0000 5 21.59 18.30 0.0041 0.0001 0.0042 0.0001 6 25.62 21.36 0.0057 0.0001 0.0099 0.0002 7 30.40 33.10 0.0106 0.0003 0.0205 0.0005 8 36.07 37.49 0.0142 0.0006 0.0347 0.0010 9 42.80 36.98 0.0166 0.0009 0.0513 0.0019 10 50.79 54.32 0.0290 0.0023 0.0803 0.0042 11 60.27 59.38 0.0376 0.0041 0.1178 0.0083 12 71.£1 59.72 0.0448 0.0069 0.1627 0.0153 13 84.85 109.22 0.0973 0.0212 0.2599 0.0365 14 100.68 80.98 0.0856 0.0263 0.3455 0.0627 15 119.47 64.47 0.0809 0.0349 0.4264 0.0976 16 141.76 45.86 0.0683 0.0415 0.4946 0.1391 17 168.20 36.95 0.0652 0.0559 0.5599 0.1950 18 199.58 54.58 0.1144 0.1378 0.6743 0.3328 19 236.82 77.59 0. 1929 0.3273 0.8672 0.6601 20 281.00 37.22 0.1098 0.2623 0.9769 0.9224 Z1 333.43 6.59 0.0231 0.0776 1.0000 1.0000 22 395.64 0.00 0.0000 0.0000 1.0000 1.0000 23 469.45 0.00 0.0000 d.oooo 1.0000 1.0000 24 557.C4 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 O.OO 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 834.243 hUMBER MEAN DIAMETER* }... 114.184 VOLUME MEAN DIAMETER* MUGELE 6 EVANS 155.613 VOLUME MEAN DIAMETER* HERDAN 229.417 SAUTER DIAMETER ...... 202.829 AREA MEAN DIAMETER ...... 136.405 STANDARD DEVIATION OF DIAMETER. BY NUMBER.. 74.667 STANCARD DEVIATION OF VOLUME DIA(HERDAN)...... 62.778 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER). 0.654 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.274

GEOMETRIC NUMBER MEAN 01AMETER(MEDÎ AN 91.623 CECMETRIC VCLUME MEAN DIAMETERiMEDIAN) ...... 218.232 GEOM. STANCARD DEVIATION OF NUMBER DIAMETER ..... 1.981 GEOMETRIC STD DEV OF VOLUME DIAMETER 1.413 241

DROPLET DISTRIBUTION PER RUN CISC NO. 3 / DISC SPEED=6000. RPM / POTENTIAL= -8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.01A NUMBER NUMBER VOLUME NUMBER VOLUME

1 i 0.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.01 0.0000 0.0000 0.0000 0.0000 S 21.59 1.66 0.0003 0.0000 0.0003 0.0000 6 25.€2 3.51 0.0006 0.0000 0.0009 0.0000 7 30.40 23.91 0.0051 0.0001 0.0060 0.0001 8 36.07 30.45 0.0077 0.0002 0.0137 0.0004 9 42.80 43.02 0.0129 0.0006 0.0266 0.0009 10 50.79 75,64 0.0270 0.0017 0.0536 0.0026 11 60.27 132.29 0.0560 0=0049 0.1095 0.0075 12 71.51 155.03 0.0778 0.0096 0.1874 0.0171 13 34.65 82.50 0.0491 0.0085 0.2365 0.0256 14 100.68 67.89 0.0480 0.0117 0.2845 0.0373 15 11S.47 68.41 0.0574 0.0197 0.3418 0.0571 16 141.76 133.69 0.1330 0.0644 0.4748 0.1214 17 168.20 125.23 0.1478 0.1008 0.6227 0.2222 18 199.58 52.01 0.0729 0.0699 0.6955 0.2921 19 236.82 57.36 0.0954 0.1288 0.7909 0.4209 20 231.00 29.43 0.0580 0.1104 0.8489 0.5313 21 333.43 45.50 0.1065 0.2852 0.9554 0.8165 22 395.64 12.44 0.0345 0.1303 0.9900 0.9467 23 46 9.45 3.05 C.OlOO 0.0533 1.0000 1.0000 24 55 7.04 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 1143.014 NUMBER MEAN DIAMETER* 124.647 VOLUME MEAN DIAMETER* MUGELE & EVANS ...... 172.877 VOLUME MEAN DIAMETER* HERDAN )... 278.540 SALTER DIAMETER 232.959 4REA MEAN DIAMETER • ...... 149.039 STANDARD DEVIATION OF DIAMETER. BY KUMQER...... 81.742 STANDARD DEVIATION OF VOLUME 01A(HERDAN)...... 98.249 COEFFICIENT CF VARIATION OF 01AMETER(NUMBER)..... 0.656 COEFF. OF VAK. OF VOLUME MEAN 01AMETER(HERDANJ. 0.353

GEOMETRIC NUMBER MEAN DIAMETER*MED1 AN)...... 102.630 GEOMETRIC VOLUME MEAN 01AMETER(ME01 AN) ...... 257.978 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.864 GEOMETRIC STO DEV OF VOLUME DIAMETER ...... 1.521 242

DROPLET DISTRIBUTION PER RUN DISC NO. 3 / DISC SPE£D=6000. RPM / POTENTIAL= 8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULAT NO. ÀVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 1 0*69 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.15 0.0000 0.0000 0.0000 0.0000 5 21.59 20.25 0.0060 0.0001 0.0061 0.0001 6 25.62 23.44 0.0063 0.0001 0.0144 0.0002 7 30.40 13.59 0.0057 0.0001 0.0201 0.0003 8 36.C7 18.91 0.0094 0.0003 0.0295 0.0005 9 42.60 20.66 0.0124 0.0005 0.0419 0.0010 10 50.79 20.03 0.0141 0.0008 0.0559 0.0016 11 60.27 6.87 0.0057 0.0004 0.0616 0.0022 12 71.51 18.38 0.0162 0.0020 0.0798 0.0042 13 84.€5 35.82 0. 04 20 0.0064 0.1218 0.0105 14 100.68 46.86 0.0652 0.0139 0.1670 0.0244 15 119.47 81 .66 0.1351 0.0406 0.3221 0.0650 16 141.76 56.71 0.1111 0.0470 0.4332 0.1120 17 168.20 43.31 0.1007 0.0599 0.5339 0.1719 18 199.58 30.33 0.0836 0.0701 0.6175 0.2420 19 236.62 19.13 0. 06 26 0.0739 0.6601 0.3159 20 281.00 35.70 0.1366 0.2303 0.6187 0.5462 21 333.43 32.59 0.1501 0.3512 0.9686 0.6974 22 395.64 5.70 0.0312 0.1026 1.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.04 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 I.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 530.526 hUMBER MEAN CIAMETER( )...... 136.422 VOLUME MEAN OIAMETER( MUGELE 6 EVANS 186.371 VOLUME MEAN OIAMETER( HERDAN ). 277.668 SALTER DIAMETER ...... 243.044 /REA MEAN DIAMETER ...... 163.330 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 89.695 STANDARD DEVIATION OF VOLUME OIA(HERDAN).... 80.926 COEFFICIENT CF VARIATION OF DIAMETER(NUMBERi.«... 0.659 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.291

GEOMETRIC NUMBER MEAN DlAMETER(MEDiAN)...... 106.445 GEOMETRIC VOLUME MEAN OIAMETER(MEDIAN) 262.616 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 2.132 GECMETRIC STD DEV OF VOLUME DIAMETER ...... 1.435 243

DROPLET DISTRIBUTION PER RUN CISC NO. 3 / DISC SPEED=6000. RPM / POTENTIAL=-22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 1 0.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.81 0.0001 0.0000 0.0001 o.oooo 4 18.20 1 .96 0.0003 0.0000 0.0004 0.0000 5 21.59 1.12 0.00 02 0.0000 0.0005 0.0000 6 25.62 0.88 0.0002 0.0000 0.0007 0.0000 7 30=40 8,75 0.0020 0.0001 0.0027 OoOOOi 8 36.07 48.30 0.0132 0.0006 0.0160 0.0006 9 42.80 125.81 0.0409 0.0024 0.0569 0.0030 10 50.79 155.3 8 0.0600 0.0050 0.1169 0.0080 11 60.27 71.33 0.0327 0.0038 0.1495 0.0118 12 71.51 12.40 0.0067 0.0011 0.1562 0.0129 13 84.£5 30.45 0.0196 0.0045 0.1759 0.0174 14 100.68 225.44 0.1724 0.0560 0.3483 0.0734 15 119.47 179.99 0.1634 0.0747 0.5117 0.1482 16 141.76 80.35 0.0865 0.0557 0.5982 0.2039 17 168.20 45.88 0.0586 0.0532 0.6569 0.2570 18 199.58 43.69 0.0663 0.0846 0.7231 0.3416 19 236.62 56.83 0.1022 0.1638 0.8254 0.5254 20 281.00 69.64 0.1467 0.3762 0.9741 0.9016 21 333.43 8.63 0.0219 0.0779 0.9959 0.9795 2Z 395.64 1 .36 0.0041 0.0205 1.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.C4 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 1168.997 hUMBER MEAN DIAMETER! j... 112.592 VOLUME MEAN DIAMETER* MUGELE & EVANS 151.947 VOLUME MEAN DIAMETER* HERDAN ...... 232.678 SALTER DIAMETER ...... 199.267 AREA MEAN DIAMETER ...... 132.785 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 70.421 STANDARD DEVIATION OF VOLUME DIA(HERDAN) 73.758 COEFFICIENT CF VARIATION OF 01AMETERINUMBER)..... 0.625 COEFF. OF VAR. OF VOLUME MEAN 01AMETER*HERDANJ... 0.317

CECMETRIC NUMBER MEAN DIAMETER*MEDIAN)...... 93.713 GEOMETRIC VOLUME MEAN DIAMETER* MEDI AN) 217.985 CECM. STANCARD DEVIATION OF NUMBER DIAMETER 1.839 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.478 244

DROPLET DISTRIBUTION PER RUN DISC NO. 3 / DISC SPEED=6000. RPM / POTENTIAL= 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.OIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 6.17 0.0010 0.0000 0.0010 o.oooo 4 18.20 19.87 0.0029 0.0000 0.0039 0.0000 5 21.59 15.22 0.0026 0.0000 0.0065 0.0001 6 25.62 9.00 0.00 18 o.oooo 0.0084 0.0001 7 30,40 12.06 0.0029 0.0001 0.0113 0.0002 8 36.C7 26.36 0.00 76 0.0003 0.0189 0.0004 9 42.80 56.08 0.0192 0.0009 0.0382 0.0013 10 50.79 113.85 0.0463 0.0030 0.0845 0.0043 11 60.27 165.42 0.0798 0.0073 0.1643 0.0116 12 71.51 127.96 0.0733 0.0095 0.2376 0.0211 13 84.€5 83.31 0.0566 0.0103 0.2942 0.0314 14 100.68 214.69 0.1731 0.0443 0o4673 0.0757 15 lis.47 99.06 0.0948 0.0341 0.5621 0.1098 16 141.76 40.44 0.0459 0.0233 0.6080 0.1331 17 166.20 32.57 0.0439 0.0313 0.6518 0.1644 18 195.58 20.18 0.0323 0.0324 0.6841 0.1968 19 236.62 20.70 0.0393 0.0556 0.7233 0.2524 20 281.00 43.04 0.0969 0.1930 0.8202 0.4455 21 333. 43 53.67 0.1433 0.4021 0.9635 0.8475 22 395.64 9.91 0.03 14 0.1240 0.9949 0.9716 23 469.45 1.36 0.0051 0.0284 1.0000 1.0000 24 557.04 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A 1172.948 hUMBER MEAN 01AMETER( 106.464 VOLUME MEAN DIAMETER* MUGELE & EVANS )..., 161.492 VOLUME MEAN DIAMETER* HERDAN 289.662 SAUTER DIAMETER ...... 237.597 AREA MEAN DIAMETER . 133.241 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... €0.151 STANDARD DEVIATION OF VOLUME DIA(HERDAN)...... 92.612 COEFFICIENT CF VARIATION OF DIAMETERCNUMBERJ 0.753 COEFF. OF VAR. OF VOLUME MEAN DIAMETERCHEROAN)... 0.320

GECMETRIC NUMBER MEAN OIAMETER(MEO1ANJ• 85.456 GEOMETRIC VOLUME MEAN DIAMETER(MEDIAN) ...... 266.444 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.914 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.549 245

DROPLET DISTRIBUTION PER RUN CISC hO. 3 / DISC SPEED=9000. RPM / POTENTIAL= 0.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.OIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.0 0 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.03 0.00 00 0.0000 0.0000 0.0000 5 2 1.59 4.24 0.00 04 0.0000 0.0004 0.0000 6 25.62 9,20 0.0009 0.0000 0.0013 0.0000 7 30.40 57.82 0.0069 0.0003 0.0082 0.0003 8 36.C7 81.18 0.0115 0.0007 0.0197 0.0010 9 42.80 117.82 0.0198 0.0017 0.0395 0.0028 10 50.79 149.40 0.0298 0.0036 0.0694 0.0064 11 60.27 208.19 0.0493 0.0085 0.1187 0.0149 12 71.£ 1 201.01 0.0565 0.0137 0.1752 0.0285 13 84.65 265.37 0.0885 0.0301 0.2637 0.0586 14 100.68 298.12 0.1160 0.0565 0.3817 0.1152 15 11 9.47 225.22 0.1058 0.0713 0.4874 0.1865 16 141.76 151.88 0.0846 0.0804 0.5720 0.2669 17 168.20 335.62 0.2219 0.2967 0.7939 0.5636 18 199.56 197.17 0.1547 0.2912 0.9486 0.8548 19 236.82 46.31 0.0431 0.1143 0.9917 0.9691 20 281.00 7.49 0.00 83 0.0309 1.0000 1.0000 21 333.43 0.00 0.0000 0.0000 1.0000 1.0000 22 395.64 0.00 0.0000 0.0000 1.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.C4 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 2356.055 NUMBER MEAN CIAMETER( ) 107.982 VOLUME MEAN 01AMETER( MU6ELE Ù EVANS 131.641 VOLUME MEAN DIAMETER* HERDAN )• 173.720 SAUTER DIAMETER ...... 156.974 AREA MEAN DIAMETER ...... 120.639 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... • 53.806 STANDARD DEVIATION OF VOLUME DIA(HERDAK)...... 46.929 COEFFICIENT CF VARIATION OF DIAMETER

GEOMETRIC NUMBER MEAN DIAMETER(MEDI AN). 94.441 CECMETRIC VOLUME MEAN OIAMETER(MEOIAN) ...... 166.236 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.708 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.371 246

DROPLET DISTRIBUTION PER RUN CISC NO. 3 / DISC SPEED=9000. RPM / P0TENT1AL= -8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULAT NO. AVE.CIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.00 0.00 00 0.0000 0.0000 0.0000 2 12.9^ 0.14 0.0000 0.0000 0.0000 0.0000 3 15.34 2.47 0.0002 O.OOOO 0.0002 0.0000 4 18.20 3.25 0.0003 0.0000 0.0005 0.0000 5 21.59 9.03 0.0011 0.0000 0.0016 0.0000 6 25.62 13.56 0.0019 0.0001 0.0035 0.0001 7 30.40 36.25 0.0061 0.0003 0.0096 0.0004 8 36.07 39.65 0.00 79 0.0006 0.0175 0.0010 9 42.80 68.89 0.0163 0.0016 0.0338 0.0026 10 50.79 66.27 0.0186 0.0026 0.0524 0.0052 11 60.27 164.86 0.0549 0.0109 0.1073 0.0162 12 71.51 165.17 0.0652 0.0183 0.1725 0.0344 13 84.85 249.39 0.1168 0.0461 0.2893 0.0805 14 100.68 180.54 0. 1004 0.0557 0.3897 0.1362 15 119.47 133.37 0.0880 0.0688 0.4777 0.2050 16 141.76 255.91 0.2003 0.2205 0.6780 0.4255 17 168.20 234.33 0.2176 0.3373 0.8956 0.7628 18 199.56 85.20 0.0939 0.2049 0.9895 0.9677 19 236.82 8.03 0.0105 0.0323 1.0000 1.0000 20 281.00 0.00 0.0000 0.0000 1.0000 1.0000 21 333.43 0.00 0.0000 0.0000 1.0000 1.0000 22 39S.64 0.00 0.0000 0.0000 1.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.04 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 O.OOOO 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 1716.311 NUMBER MEAN CIAMETERf 105.520 VOLUME MEAN DIAMETER* MUGELE & EVANS 124.363 VOLUME MEAN DIAMETER* HERDAN 156.468 SAUTER DIAMETER ... 143.824 AREA MEAN DIAMETER . 115.727 STANDARD DEVIATION OF DIAMETER. BY NUMBER...... 47.535 STANDARD DEVIATION OF VOLUME DIA(HEPDAN) 38.544 COEFFICIENT CF VARIATION OF DIAMETERCNUMBER)..... 0.450 COEFF. OF VAR. OF VOLUME MEAN DIAMETER

GEOMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 93.921 GEOMETRIC VOLUME MEAN DIAMETERCMEDIAN) ...... 150.815 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.663 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.334 247

DROPLET DISTRIBUTION PER RUN CISC NO. 3 / DISC SPEEO=9000. RPM / POTENTIAL= 8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.OIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.00 0.0000 0.0000 0.0000 0.0000 2 12.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.85 0.0001 0.0000 0.0001 0.0000 5 21.59 15.13 0.0018 0.0000 0.0019 0.0000 6 25.62 12.94 0.0018 0.0001 0.0037 0.0001 7 30.40 38.53 0.0064 0.0003 0.0100 0.0004 8 36.07 54.15 0.0106 0.0007 0.0207 0.0010 9 42.80 82.83 0.0193 0.0017 0.0399 0.0027 10 50.79 77.28 0.0213 0.0026 0.0613 0.0053 11 60.27 125.00 0.0410 0.0071 0.1023 0.0124 12 71.51 143.00 0.0556 0.0135 0.1579 0.0259 13 84.65 194.87 0.0899 0.0307 0.2478 0.0566 14 100.68 158.82 0.0870 0.0418 0.3348 0.0984 15 119.47 212.45 0.1380 0.0934 0.4728 0.1918 16 141.76 165.72 0.1278 0.1218 0.6006 0.3136 17 168.20 250.32 0.2290 0.3073 0.8296 0.6209 18 199.58 108.58 0.1179 0.2227 0.9475 0.8435 19 236.82 32.95 0.04 24 0.1129 0.9899 0.9564 20 281.00 4.15 0.0063 0.0237 0.9962 0.9802 21 333.43 2.07 0.0038 0.0198 1.0000 1.0000 22 395.64 0.00 0.0000 0.0000 1.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.04 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 1679.645 hUMBER MEAN DIAMETER* 109.465 VOLUME MEAN DIAMETER* MUGELE & EVANS ...... 132.090 VOLUME NIE4N DIAMETER* HERDAN ) 173.013 SAUTER DIAMETER ...... 156.026 AREA MEAN DIAMETER ...... 121.626 STANDARD DEVIATION OF DIAMETER. BY NUMBER...... 53.028 STANDARD DEVIATION OF VOLUME DIA(HERDANJ...•••.•• 50.712 COEFFICIENT CF VARIATION OF DIAMETERCNUMBER)..... 0.484 COEFF. OF VAR. OF VOLUME MEAN 01AMETER(HERDAN)... 0.293

GEOMETRIC NUMBER MEAN DI AMETER(MEDI AN 95.794 GEOMETRIC VOLUME MEAN DIAMETER(MEDIAN) ...... 165.069 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.723 GEOMETRIC SID DEV OF VOLUME DIAMETER ...... 1.376 248

DROPLET DISTRIBUTION PER RUN DISC NO. 3 / DISC SPEEO=9000. ftPM / POTENTIAL=-22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.CIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 8.77 0.0004 0.0000 0.0004 0.0000 2 12.93 10.25 0.0005 0.0000 0.0009 0.0000 3 15.34 5.08 0.0003 0.0000 0.0012 0.0000 4 16.20 34.38 0.00 26 0.0001 0.0038 0.0001 5 2 1.59 97.07 0.0066 0.0002 0.0124 0.0003 6 25.€2 147.16 0.0154 0.0006 0.0277 0.0009 7 30.40 306.96 0.0361 0.0022 0.0656 0.0031 8 36.C7 261.61 0.0385 0.0031 0.1043 0.0062 9 42.80 314.60 0.0550 0.0062 0.1593 0.0124 10 50.79 145.13 0.0301 0.0046 0.1894 0.0172 11 60.27 100.36 0.0247 0.0055 0.2140 0.0227 12 71.51 316.41 0.0923 0.0291 0.3064 0.0516 13 84.€5 320.77 0.1110 0.0493 0.4174 0.1012 14 100.66 262.37 0.1078 0.0674 0.5252 0.1665 15 lis.47 255.36 0.1245 0.1096 0.6497 0.2781 16 141.76 186.40 0.1078 0.1336 0.7575 0.4118 17 166.20 161.36 0.1107 0»1932 0.8682 0.6050 18 199.56 90.58 0.0738 0.1812 0.9420 0.7662 19 236.82 50.56 0.0469 0.1690 0.9908 0.9552 20 281.00 8.01 0.0092 0.0447 l.OOOO 1.0000 21 333.43 0.00 0.0000 0.0000 1.0000 1.0000 22 395.64 0.00 0.0000 0.0000 1.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.04 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 3063.406 NUMBER MEAN DIAMETER* 79.469 VOLUME MEAN DIAMETER* MUGELE S EVANS ) 106.770 VOLUME MEAN DIAMETER* HEROAN 167.404 SAUTER DIAMETER ...... 143.363 AREA MEAN DIAMETER . 94.609 STANDARD DEVIATION OF DIAMETER, BY NUMBER*. 51.663 STANDARD DEVIATION OF VOLUME DIA(HEROAN)••••••«.• 56.226 COEFFICIENT CF VARIATION OF 01AMETERCNUMBER) 0.650 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.336

CECMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 64.452 GEOMETRIC VCLUME MEAN DIAMETER(MEDIAN) ...... 156.517 GECM. STANDARD DEVIATION OF NUMBER DIAMETER .... 1.935 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.477 2 4.9

DROPLET DISTRIBUTION PER RUN DISC NO. 3 / DISC SPEED=9000« RPM / POTENTIAL= 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVe.DlA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 12.41 0.0007 0.0000 0.0007 0.0000 2 12.93 15.91 0.00 11 0.0000 0.0018 0.0000 3 15.34 52.71 0.0044 0.0001 0.0062 0.0001 4 18.20 45.48 0.0045 0.0001 0.0107 0.0001 5 21.59 76.70 0.0089 0.0002 0.0196 0.0004 6 25.62 76.09 0.01 05 0.0004 0.0301 0.0008 7 30.40 64.15 0.0105 0.0005 0.0407 0.0013 8 36.C7 50.41 0.0098 0.0007 0.0505 0.0020 9 42.80 35.89 0.0083 0.0008 0.0588 0.0028 10 50.79 45.87 0.0126 0.0018 0.0713 0.0046 11 60.27 164.82 0.0536 0.0106 0.1249 0.0152 12 71.51 255.90 0. 09 88 0.0276 0.2237 0.0428 13 84.85 209.21 0.0958 0.0377 0.3195 0.0804 14 100.68 323.42 0.1757 0.0973 0.4953 0.1777 15 119.47 147.29 0.0950 0.0740 0.5902 0.2517 16 141.76 125.64 0.0961 0.1055 0.6663 0.3572 17 168.20 137.74 0.1250 0.1932 0.8114 0.5503 18 19S.5e 138.92 0.1496 0.3254 0.9610 0.8758 19 236.82 27.42 0.0350 0.1073 0.9961 0.9831 20 281.00 2.58 0.00 39 0.0169 1.0000 1.0000 21 333.43 0.00 0.0000 0.0000 1.0000 1.0000 22 395.64 0.00 0.0000 0.0000 1.0000 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.04 0.00 0.00 00 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 2008.550 hUMBER MEAN CIAMETERC 92.248 VOLUME MEAN DIAMETER* MUGELE & EVANS ...... 119.047 VOLUME MEAN DIAMETER* HERDAN ) 167.182 SAUTER DIAMETER ...... 148.077 /REA MEAN DIAMETER . 106.818 STANDARD DEVIATION OF DIAMETER, BY NUMBER.. S3.869 STANDARD DEVIATION OF VOLUME DIA(HERDAN)...... 49.515 COEFFICIENT CF VARIATION OF 01AMETER(NUMBER)..... 0.584 COEFF. OF VAR. OF VOLUME MEAN OIAMETER(HEROAN)... 0.296

GEOMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 74.757 GEOMETRIC VOLUME MEAN DIAMETER(MED1 AN) ...... 158.525 GECM. STANCARO DEVIATION OF NUMBER DIAMETER ..... 2.033 CECMETRIC STO DEV OF VOLUME DIAMETER ...... 1.414 250

DROPLET DISTRIBUTION PER RUN CISC NO. 4 / DISC SPEEO=3000. RPM / PCTENTIAL= 0.0 KV

CLASS CLASS DRUPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.OIA NUMBER NUMBER VCLUME NUMBER VOLUME

1 1 0.89 167.34 0.0261 0.0000 0.0261 0.0000 2 12.93 199.55 0.0369 0 .0001 0.0631 0.0001 3 15.34 299.67 0.0658 0 .0003 0.1289 0.0004 4 18.20 289.69 0.0755 0.0005 0.2044 0.0008 5 2 1.59 387.85 0.1200 0.00 10 0.3244 0.0019 6 25.62 350.14 0.1285 0.0015 0.4529 0.0034 7 30.40 211.96 0.0923 0.0016 0.5452 0.0050 e 36.C 7 98.08 0.05 07 0 .0012 0.5959 0.0062 9 42.80 37.56 0.0230 0.0008 0.6189 0.0069 10 50.79 14.05 0.0102 0.0005 0.6291 0.0074 11 60.27 12.58 G.Ol09 0.0007 0.6400 0.0081 12 71.51 2.71 0.00 28 0.0003 0.6428 0.0084 13 84.85 3.75 0.00 46 0.0006 0.6473 0.0090 14 100.68 1.78 0.00 26 0.0005 0.6499 0.0095 15 119.47 4.67 0.0080 0.0021 0.6579 0.0115 16 141.76 6.27 0.0127 0 .0047 0.6706 0.0162 17 166.20 12.26 0. 0295 0.0152 0.7001 0.0314 18 199.58 0 .00 0.0000 0 .0000 0.7001 0.0314 19 236.62 1.63 0.0055 0.0057 0.7057 0.0371 20 28 1.00 7.83 0.0315 0.0453 0.7372 0.0824 21 333.43 15.84 0.0757 0.1532 0.8129 0.2356 22 395.64 15.44 0.0375 0.2494 0.9004 0.4850 23 46S.45 7.80 0.0524 0.2104 0.9528 0.6954 24 557.04 3.86 0.0308 0.1738 0.9636 0.8692 25 66C.S6 1.74 0.0104 0.1307 1.0000 0.9999

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A HUN 2154.041 NUMBER MEAN CIAMETER( ) 32.409 VOLUME MEAN DIAMETERt MUGELE t EVANS ).... 121.129 VOLUME MEAN 01AMETER( HEKDAN ).. 449.688 SAUTER DIAMETER 373.515 AREA MEAN 69.029 STANDARD DEVIATION OF DIAMETER, BY NUMBER 60.962 STANDARD DEVIATION OF VOLUME 125.456 COEFFICIENT CF VARIATION OF 01AMETEP(NUMBER 1.881 COEFF. OF VAR, OF VOLUME MEAN 01AMETER(HERDAN)... 0.279

CECMETRIC NUMBER MEAN DIAMETEW(MED1AN)...... 22.360 CECMETRIC VOLUME MEAN DIAMETER(MEDIAN) 426.304 CECM. STANCARD DEVIATION OF NUMBER DIAMETER 1.855 CECMETRIC SIC DcV OF VOLUME DIAMETER ...... 1.461 251

DKUHLET DISTRIUUTICN PER RUN CISC NO. 4 / DISC SPEED=3000. RPM / PCTENTIAL= -8.0 KV

CLASS CLASS DROPLET FF.ACTIGN FRACTILN CUMULATIVE CUMULATIVE NO. AVE.CI A NUMBER NUMBER VGLUME NUMBER VOLUME

1 1 0.89 0.00 C.GO CO 0.0000 0.0000 0.0000 2 12.93 0 .00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0*0000 0.0000 0.0000 0.0000 4 18.20 0. 00 o.oooo 0.0000 0.0000 0.0000 5 2 1.59 0.00 0.0000 0 .0000 o.ocoo 0.0000 6 25.6 2 0.05 c.oooo 0.0000 0.0000 0.0000 7 30-40 4.01 0.0043 0.0001 0.0044 0.0001 d 36.C 7 6.08 0.00 78 0 .0002 0.0122 0.0002 42.80 9.47 0.0144 0.0004 0.0266 0.0006 10 50.79 6.09 0.01 10 0 .0004 0.0376 0.0010 11 60.27 6.07 0.0130 0.0007 0.0506 0.0018 12 71,E 1 12.78 0.03 25 0 .0025 0.0831 0.0043 13 84.Ê5 6.45 0.01 'ji4 0 .0021 0. 1025 0.0064 14 100.68 0.00 0.0000 0.0000 0.1025 0.0064 15 119.47 8.48 0.0360 0 .0078 0.1385 0.0142 16 141.76 8.57 0.04 32 0 .0132 0.1818 0.0274 17 16É.20 7.91 0.0473 0.0203 0.2290 0.0477 18 199.58 6.90 0.0489 0.0296 0.2780 0.0772 19 236.62 14.91 0.1255 0.1067 0.4035 0.1839 20 28 1.0 0 41.70 0.4166 0.4988 0.8200 0.6827 21 333.43 13.47 0.1597 0.2692 0.9797 0.9518 22 395.64 1.44 0.0203 0 .0482 1.0000 1.0000 23 46 9.45 0 .00 C.OOOO 0.0000 1.0000 1.0000 24 557.C4 0.00 0.0000 0.0000 1.0000 1.0000 2b 66 C.S6 0.00 C.OOCO C.OOOO 1.0000 1.0000

STATISTICS PER RUN TUTAL DROPLET SPUT NUMUER IN A RUN 154.375 NUMBER MEAN CIAMETER< 182.212 VOLUME MEAN D.IAMETER( MUGELE & EVANS ) 228.927 VOLUME MEAN •IAMETER( HERDAN 286.763 SALTER DIAMETER 271.919 fREA MEAN DIAMETER 210.222 STANDARD DEVIATION UF DIAMETER, BY NUMBER.. 105.186 STANDARD DEVIATION OF VOLUME DIA(HERDAN) 52.404 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER 0.577 COEFF. OF VAR. OF VOLUME MEAN DIAMETER

GEOMETRIC NUMdER MEAN DIAMETER(MEUI AN J 143.630 GtCMETfilC VOLUME MEAN DIAMETER(MEDI AN) 280.730 GECM. STANCARD DEVIATION OF NUMBER DIAMETER 2.144 GEOMETRIC STC OEV OF VOLUME DIAMETER 1.252 252

DROPLET DISTRIaUTiUN PER HUN CISC NO. 4 / DISC SPEED=3000. UPM / POTENTIAL^ 6.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 39.43 0.0063 0.0000 0.0063 0.0000 2 12.S3 48.18 0.0092 0 .0000 0.0155 0.0000 J 15.34 106.34 0.0240 0.0001 0.0395 0.0002 4 18.20 142.88 0.0383 0.0003 0.0777 0.0005 5 21.59 ldO.19 0.C572 0.0007 0.1350 0.0012 6 25.62 366.29 0.1456 0.0025 0.2806 0.0037 7 30.40 344.31 0. 15 40 0.0037 0.4346 0.0074 8 36.07 79.48 0.0422 0.0014 0.4768 0.0089 9 42.80 14.67 0.00 92 0.0004 0.4860 0.0093 10 50.79 8.91 0.0067 0.0004 0.4927 0.0098 11 60.27 2.63 0.0023 0.0002 0.4950 0.0100 12 71.51 1.1 7 0.00 12 0 .0002 0.4962 0.0102 13 84.85 1.20 0.001b 0.0003 0.4977 0.0104 14 100.68 14.85 0.0220 0.0058 0.5157 0.0163 lb 119.47 8.69 0.0153 0.0057 0.5350 0.0220 16 141.7C 52.58 0.1057 0.0576 0.6447 0.0796 17 168.20 13.48 0.03 34 0.0247 0.6780 0.1043 la 199.58 4.74 0.0139 0 .0145 0.6919 0.1188 19 236.£2 8.19 0.0285 0.0418 0.7205 0.1606 20 281.0 0 23.39 0.0967 0.1997 0.8172 0.3603 21 333.43 21.86 0.1072 0.3118 0.9244 0.6721 22 395.64 11.10 0.06 40 0.2646 0.9890 0.9367 23 465.45 1.59 0.01 10 C.0633 l.OOOC 1.0000 o o o 24 557.04 » c.oooo 0.0000 1.0000 1.0000 2b 660.S6 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RON TOTAL DROPLET SPOT NUMBER IN A RUN 1516.149 NUMBER MEAN CIAMETER( ) 44.831 VOLUME MEAN OIAMETER( MUCELE t, EVANS ...... 119.622 VOLUME MEAN DIAMETER* HERDAN )..... 321.208 SALTER DIAMETER 269.477 AREA MEAN CIAMETER 79.757 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 65.987 ETANCARD DEVIATION OF VOLUME DIA(HEHDAN). 86.944 COEFFICIENT OF VARIATION OF DIAMETEfi(NUMBER)..... 1.472 COEFF. UF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.271

CECMETRIC NUMBER MEAN DIAMETER (MEOI AN) 29.773 GdCMETRIC VCLUME MEAN 01AMETER(MED IAN) 303.871 GECM. STANDARD DEVIATION OF NUMBER DIAMETER 2.054 CECMETRIC STC DEV OF VOLUME CIAMETEt 1.471 UJ l-l> 1- UJ o o o o O o* o 00 4" CO N 0!*)0C\|rvJooo «-4 * N .•n CM 00 n £. 3 > o o o o o o o o o o o o o o o o o o o o ^ W —4 • • U o N in m m m o O 4- n CM -4 CM CM o (M u< N *-1 N 33 o •O •H CM n * UJ CM •—1 ro CM > ••M o n (M N UT •A- CD N ipcoocDin0 oo u> o o o * # • • < 3 z • • • • • • * * # # • * # • « • # Z. 3 o o o o o o o o o o OOOOOOOOOOOW.-tM.-i K 3 Z # • z # • * z U m < * • Z UJ • a o • a 3 t- • ai a * • ai Z • et a Q UJ o o o o o vo •*) n n CM N. o o o 2 UJ • • h CL Z o o o o o o o o o o rv) f\J —4 n c\j o to —( a o — S. X # lU 'Z K- 3 o o o o o o o o o o o Z 3 s UJ o o o OJ iX) CM \0 <- o o < Z et < u U o o o o o o o o o o o o o o o o CM ro (M o o o (/} a c U * # • • « Q w z N • • • • • • » • • • • iX Z et > o o o o o o o o o o o o o o o !X K «l u a z S u. OOOOOOOo < UJ Ol oJ NN u. o Q. > I H S C Q X H* Ci UJ OJ < 01 UJ UJ LU ro H» z < Z i-i s S m 5 m uï —• < SI* 3 • a Q: o RN ? •7> <* •n cj» UT 53 30 n ro o o m a m r'j ") N- o a z 4 es Q O •-4 UJ c o -H n o m T) o CM — iv) o I/) CM m 'ju eu vo 3 o Q cr X 3 m CM o o W '£. o z UJ o t- 3D o o o o o o CMOOO'^^OO J < u Z O a o u S o o o o o o o o o o o o o o o o OOCMCM-^OOO UJ 3 lu < J— H" K m < 3 • • • • • • • « • ••••••• % IL UJ UJ UJ U. tu to II z Z o o o o o o o o o o o o o o 'Z 3 O z s Z a Z O u. o o OOOOOOUO 3 UJ _l < < 3 Q UJ s r a Z UJ M z J •JJ > Q z Q Q a • 1- a k. 3 > Ui V) U 0: o *4 M vO o n CC '% u. IL k» J Z Z h- -J _l UJ o a> n CM 0» IJJ U o O < 3 < < < U. X u a. CD • H- H- > UJ UJ • Q t UJ -Jj z > •f) Q 2 o o o D •ît w Q û 3 Z < < Ml > a z UJ Q 01 —4 *-l ai h* K UJ Z Q f) a Q 2 < < U. a J Q N (/) t-t • 1-1 t- CJ q. M u a z u X FO O CM OJ^N'^iO^ON^JocOCMOnO'in -e -0 UJ w > > a (/) a CO N -•M LO >u u 03r».CVJUJ(Uv0'^'*-CVJinuJO-T\0-* o u» z z < 3 • Z J» UJ if) J W o C\J m 00 —4 tn cvjoo«H^oa>»^cou^«x)^rn(no^No a < Q Z Z U > ""4 rvj M ^in'^Nno,^«t\oa\ro(Or)o.oir)vû u UJ UJ Z UJ u. 0 N- OJ > o CM ro H uJ < UJ UJ u u U (J u w ;f^ON!0a>O'^CM"0

ORUPLET OtSTRI tSUTIGN PER RUN CISC NO. 4 / DISC SPEED=3000. RPW / POTENTIAL^ 22.0 KV

CLASS CLASS ORUPLET FKACTICN FRACTION CUMULATIVE CUMULATIVE NC. AVE.DIA NUMbER NUMBER VLLUME NUMBER VOLUME

I 1 o.es 0.00 c.oooo 0.0000 0.0000 0.0000 2 12.S3 0.27 0.00 00 0 .0000 0.0000 0.0000 3 15.34 4.63 0,00 10 0 .0000 0.00 10 0.0000 4 18.20 4.95 0.00 13 c.oooo 0.0023 0.0000 5 2 1.59 0.00 0.0000 0 .0000 0.0023 c.oooo 6 25.62 0.00 c.oooo 0.0000 0.0023 c.oooo 7 30.40 6.45 C.0027 0 .0000 0.0050 0.0000 Ô J6.0 7 34.95 0.0176 0 .0003 0.0226 0.0004 9 42. ac e 7.79 0.05 24 0.0014 0.0750 0.0017 10 5Cé79 64.46 0.04 57 0 .0017 0.1207 0.0034 11 60.27 50.93 0.0428 0.0022 0.1635 0.0056 12 71.51 40.95 0.0409 0.0029 0.2044 0.0085 13 d4.E5 43.98 0.0521 0.0053 0.2565 0.0138 14 100.68 6.41 0.0090 0 .0013 0.2654 0.0151 15 lis.47 10.38 0.0173 0.0035 0.2827 0.0186 16 141.76 18.87 0.0373 0.0106 0.3201 0.0291 17 168.20 22.01 0.0517 0.0206 0.3717 0.0497 16 199.58 14.70 o.o4oy 0 .0230 0.4126 0.0727 19 236.£2 25.13 0.0830 0.0656 0.4956 0.1363 20 28 1.00 44.13 0.1730 0.1924 0 .6686 0.3307 21 333.43 3 1.06 0.1445 0.2262 0.8131 0.5569 22 395.64 27.62 0.1524 0.3361 0.9656 0.8931 23 469.45 5.26 0.0344 0.1069 1.0000 1.0000 24 557.04 0.00 C.OOOO 0.0000 1.0000 1.0000 25 66C.Ç6 0.00 C.OOOO 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 544.935 NUMBER MEAN CIAMET£R( ) 131.546 VOLUME MEAN DIAMETER( MUGELE & EVANS ). 210.470 VOLUME MEAN CIAMETERt HEROAN ) 339.265 SAUTER DIAMETER 304.306 AREA MEAN CIAMETER 175.178 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 115.791 STANCARJ CEVIATIUN OF VOLUME DIA(HERDAN)...... 33.354 COEFFICIENT CF VARIATION OF OIAMETER(NUMBER 0.880 COEFF. OF VAR. OF VOLUME MEAN 01AMET£R(HEROAN )... 0.246

CECMETRIC NUMBER MEAN OIAMETER(MEOIAN)...... 92.066 GEC.METRIC VCLUME MEAN 01AMETER ( MEO 1 AN ) 325.680 GECM. STANDARD DEVIATION OF NUMBER CIAMETER 2.298 GEOMETRIC STC DEV OF VOLUME DIAMETER ...... 1.374 di >

t- UJ o o o o o c o m n r». o OJ N N ro 0^ O o o o o < z o o o o o o o o m tn 0» n ro vO O o o 3 o o o o o o o o O o o o Q N ro n irt m ro N a* n tn fo vO tn _l o o o o o ra sr CVJ oo N o o o o o va 4- N N 00 4- CM -o 3 U o o o o o o o o o o o o o o o n •0 m CO o o > CVJ n uo D o o o o o M vO CM CM r» 00 o tn CVI (?> av Z U • • • « • • • • • # • # • n n t • • * « • • t • * 3 > o o o o o o o o o o o o o o O o o V o O f4 CM oo VÛ tD m o CO (\J o o 4- CO •H o N n N n tn N vO CM • UJ CM CVJ CVJ o > o o o o o o r—t ao m o o o o o h' % o o o Q o o CVf CVa o n 0* tn N 3J T—4 r—* m ru 00 o o o o II < UJ o o o Q o o o n 03 o G 4- N N n (\l o uT o o o o o • • • t • • • _l _l CD o o Q o o O r—* o o o o O •H w n Ul •o CO o o o o o • • « < # • • # t • 3 S # • • • # • S • * • * • • 3 o o o o o o o o o o o O O O o o o o o C pH •- 3 • • Z • # • z U # -N < • • £. •JU • X Q • « CC • *- • UJ Q: • • UJ • D Z # o a dJ • X • ca UJ # • t- t c o c o o o o n 05 ro 7^ ro CO o N ro N # # * # a w Z \0 o o o o • UJ z X • • tu • c o o o o c? o o CVJ ro C\J LO N N ro o • # • • X h* 3 c o o o o o o o • tu Z 3 • z t o o o o o o o o o o CNJ vO 00 v3> CVJ o o * • « • UJ V _J o o o o o o o o o o o o o o o o •o o o z < Z a: < • d o oa N M o o o o • 10 • • # 3 o w lU z Z M N U • # t • f # * X > c o # # « • # • cr tx t- «l •a Q a c o o o o o o o o o o o o o o o o o o o • # Z X o o o < t UJ ol UJ l-l H# UJ o a z > • * • > I h" X O Q Q: K- a 3 UJ * # • CO UJ < UJ UJ UJ UJ m K c: • # * <1 Z •H z Z a Z m 3 LJ o o —4 » cj # # w < CJ z < X o o o o c n "0 OJ AJ o N. o 3% o o o # # CN a o UJ o o o o o o CM o N •o U) s (7% o < LL o a u: 3 o CO n o uo m o o o o # tu Z • # UJ A z UJ tu Z Q h* o o o o o o o CVJ CVJ CVJ CVJ cvi ro o CVJ (D # ce o U s o o o o o \0 00 o o o o z _l < • • K ill < h" o o o o o o o o o o i-W o o o o o o * Q • # H # LU UJ Z u. UJ •JJ UJ UJ ••0 < 3 t # # • # « # • • # # # » • * # » • 'X in iX « t # z • O a: • • Z 3 o % Z S o II z o o o o o o o o o o o o o o o o o o o o » • Z — Q u. o o o rî Z) cc 3 OJ < U < «t 3 a tu GC UJ • Z I • * M O z UJ w z J UJ m * * a > u z O Q o • H- a t- X s 3 M > UJ 3 a cc t" UJ /) m z o o o o o o o U. X U z Z H o o N CM o o » -f 4- C\J o o o o a z # _l _i LU o o >0 vO CVJ (M X u .u • o •3 < •3 < < < X m o vO •0 N o <" o o o o o o LU t- t- * l-l > CL u a a # • • • • • UJ UJ 3 U 'fi o 7} h» 111 UJ * CC z Z IX z z > z o o o o o o X •o m V n o D •ît 30 w n 0» o o o o a. cc 3 n n fj ro rvj (M n tn U) u o UJ z z UJ u o < U. UJ > n Q Q o C\J n c. S < < H- > O CE UJ Q UJ H en < X u K H- UJ z Q t/1 Q u UJ z < < u. » A 3 Q in •3* "1 o 3^ ru o N o *-4 •n 33 (S- vU r>j o (— u r— •a. u X 2. U U O o V f) •a- li) û f- UJ iU < 3 U <. o m CM tn vu o ro N C\J U) tu o N CM in CO o z: > U (/) * t « • • • # e • • «l _J Ol o IVJ tn tu U) o .0 CM o o r—* o u» r4 lU tf vu tn IV k- a < o O z z > ro » o t/> a UJ ai UJ Z UJ u. U u < u V f\J "J n -n -T^ m o N CO o •-t -d- vO 0» n ® 'f) uO o < T) » o 0 a: s ? T 3 < n D 3 w H >1 z C\i CM m Q U G: a: u CC X m (S 0» X UJ UJ CC z s. 4 1-1 * H t— H u • _i lu X 2: tu '_) a u. U. Ol UJ UJ < c 3 3 t- < z u. m < u t- Z U. z z z z w _] z PU ro 'J) a N CO T o m, (\j n ^ s z J 3 tu < < tu UJ u u u • w V a 3 O D < Ci h- H o 3 UJ UJ IU LJ —• "H ivj CVJ IVJ I-VJ C\i CM h- àC ;> > 0» «t (/) vV V Vi» V 256

DROPLET DISTRIHUTIUN PfcR RUN CiisC NO. 4 / DISC SPEED=6000. RPM / POTENTIAL: -8.0 KV

CLASS CLASS DHOPLtT FRACTiCN FRACTION CUMULATIVE CUMULATIVE NC. AVE.CIA NUMdER NUMBER VOLUME NUMBER VOLUME

1 1C.85 0 .00 o.oooo 0 .0000 0.0000 0.0000 2 1 2 .S3 0 .00 0.0000 0 .0000 O.OCCC 0.0000 2 15.34 0 .00 0.0000 0 .0000 O.OOOO 0.0000 4 18.20 0.06 0.0000 0 .0000 0.0000 0.0000 5 21.59 8 .28 0.0027 0.0000 0.0027 0.0000 6 25.62 9.78 0.0037 0 .0001 0.0064 0.0001 7 3 0.40 14.42 0.006b 0 .0001 0.0129 0.0002 6 36.07 14.38 0.0077 0 .0002 0.02C7 0.0005 9 42.80 18.15 0.0116 0.0005 0.0322 0.0009 10 50.79 28.55 0.3216 0 .0013 0.0538 0.0022 11 60.27 24.86 0.0223 0.00 19 0.0762 0.0041 12 71.5 1 21.18 0.0226 0.0027 0.0987 0.0068 13 64.65 16 .83 0.0213 0.0035 0.1200 0.0103 14 100.68 23.04 0.0346 0 .0081 0.1545 0.0184 15 lis.47 34.82 0.0620 0.0204 0.2165 0.0388 16 14 1.76 50.87 0.1074 0 .0498 0.2239 0.0885 17 168.20 87.66 0.2196 0.1433 0.5435 0.2318 Id 199.58 34.24 0.10 18 0 .0935 0.6453 0.3253 19 236.62 45.0 7 0.1590 0.2056 0.8043 0.5310 20 231.00 26.06 0.1091 0.1986 0.9134 0.7296 21 333.43 10.76 0.0534 0.1370 0.9668 0.8666 22 395.64 4.07 0.0240 0.0866 0.9908 0.9533 23 469.45 1.32 C.C092 0.0467 1.0000 1.0000 24 557.04 0.00 0.0000 0.0000 1.0000 1.0000 25 66C.96 0.00 C.0000 0.0000 1.0000 1.0000

STAT ISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 474.410 NUMBER MEAN CIAMETER( )...... 141.521 VOLUME MEAN DIAMETER( MUGELE & EVANS ) 162.985 VOLUME MEAN OIAMET£R( HERDAN 260.192 SALTER DIAMETER 227.881 AREA- MEAN DIAMETER . 164.100 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 83.150 STANDARD DEVIATION UF VOLUME 0I A(HERDAN. 88.397 COEFFICIENT OF VARIATION OF DIAMETEF(NUMBER) 0.588 CUEFF. OF VAK. OF VOLUME MEAN DIAMETER(HERDAN>... 0.340

GEOMETRIC NUMBER MEAN DIAMETER(MEDIAN)...... 114.583 GECMETRIC VOLUME MEAN DIAMETER(MEDI AN) 244.708 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 2.023 GEOMETRIC STD UEV OF VOLUME DIAMETER 1.436 257

DROPLET DISTRIBUTION Pt;"R RUN CISC NO. 4 / DISC SPEED=6000. kPM / PCTENTIAL- 8.0 KV

CLASS CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULATIVE NO. AVE.CIA NUMBER NUMBER VOLUME NUMBER VOLUME

0.0000 1 10.89 0.00 0.0000 C .0000 0.0000 c.oooo z 12.93 0 .00 0 .0000 0 .0000 0.0000 0.0000 3 15. 34 C.OO 0.0000 0 .0000 0.0000 4 18. 20 0.02 c.oooo 0 .0000 0.0000 0.0000 K 2 1. 59 2.55 0.00 06 0 .0000 0 .0006 0.0000 6 25.62 3.09 C.0009 0 .0000 0.0015 0.0000 7 30. 40 120.67 0.04 15 0 .0011 0.0430 0.0011 8 36. C 7 156.21 0.0637 0 .0023 0.1067 0.0035 g 42. ec 94.02 0.0455 0 .0024 0.1521 0.0058 0.0094 10 50. 79 86 .05 0 .0494 0 .0036 0.20 15 11 60. 27 65.39 0.0445 0 .0046 0.2461 0.0140 0.0184 12 71. 5 1 37.62 0.0304 0 .0044 0.2765 13 84. 85 27.93 0.0268 0 .0055 0.3032 0.0239 14 100. 68 16.41 0.0187 0 .0054 0.3219 0.0292 0.0497 15 119. 47 37.60 0.0508 0 .0205 0.3727 16 141. 76 43.Of 0.C690 0 .0393 0.44 17 0.0890 17 i6e. 20 42.80 0.0814 0 .0652 0.5230 0.1541 18 1 J9.58 %^.49 0.1297 0 .1462 0.6527 0.3004 0.5932 19 236. 82 6U.90 0.1844 0 .2928 0.8371 20 281. 00 39.44 G.1252 0 .2799 0.9623 0.8731 21 333. 4J 8.28 0.0312 c .0982 0.9935 0.9713 22 3J£. 64 1 .45 0.0065 0 .0287 1.0000 1.0000 23 409. 45 0.00 0.0000 0 .0000 1.0000 1.0000 24 55 7. G4 0.00 0.0000 0 (0000 1.0000 1.0000 25 66 C .56 0.00 C.OOOO 0 .0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 909.005 NUMBER MEAN CIAMETER( I 97.351 VOLUME MEAN DIAMETER* MUGELt & EVANS 150.862 VOLUME MEAN DIAMETER* HERDAN 242.256 SALTER DIAMETER 214.998 fREA MEAN DIAMETER 126.468 STANDARD DEVIATION OF DIAMETER, BY NUMBER. £0.771 STANDARD DEVIATION OF VOLUME DIA(HEROAN) 64.407 COEFFICIENT CF VARIATION OF DIAMETEP{NUMBER)..... 0.830 COEFF. OF VAR. OF VOLUME MEAN D1AMETER(HERDAN )... 0,266

GEOMETRIC NUMBER MEAN 0IAMETEK(MEOI AN)• 71.610 GEOMETRIC VOLUME MEAN D IAMET ER (MED IAN ) ...... 231.-369 CcCM. STANCfPD DEVIATION CF NUMBER CIAMETER ..... 2.141 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.397 258

DHCPLET DISTRIBUTION Ptfi HUN CISC NC. 4 / DISC SPeED=6000. KPM / POTENTIAL=-22•0 KV

CLASS CLASS DROPLET FRACl ICN FRACTION CUMULATIVE CUMULATIVE NC. AVE.DI4 NUMBER NUMBER VCLUME NUMBER VCLUME

1 10.89 0.00 C.OOOO 0.0000 0.0000 0.0000 2 12.S3 1.19 0.0001 c .0000 0.0001 0.0000 3 15.34 20.31 0.0026 0 .0000 0.0028 O.OOOO 4 16.20 23 .66 0.0026 0 .0000 0.0064 0.0000 5 21.59 38.09 0.006V 0 .0001 0.0133 0.0001 b 25.€2 49.01 0.0107 0.0002 0.0240 0.0003 7 30.40 115.45 0.0296 0 .0006 0.0536 0.0009 0 36.07 132.39 C.0402 0 .0011 0.0939 0.0020 9 42.80 95.71 0.0345 0 .0014 0.1284 0.0033 10 50.79 116.00 0.0497 0 .0028 0.178C 0*0061 11 60.27 144.62 0.073b 0 .0058 0.2515 0.0119 0.0181 12 71.51 94.47 0.0569 0 .0063 0.3084 13 34. £5 27.70 0.ai9U 0 .0031 0.3282 0.0212 14 100.68 3.80 0.0032 0 .0007 0.3314 0.0219 15 119.47 4.19 0.0042 0 .0013 0.3357 0.0232 16 141.76 21.18 0.0253 0 .0110 0.3610 0.0342 0.0896 17 168.20 64.10 0.09C9 0.0554 0.4518 0.1798 18 149.58 62.42 0. 1050 0 .0902 0.5568 19 236.82 50.50 0.1008 0 .1219 0.6576 0.3017 20 281.00 90.19 0.2136 0.3637 0.8712 0.6655 21 333.4 3 36.52 0.1026 0 .2461 0.9738 0.9115 22 395.64 7.86 0.0262 0 .0885 1.0000 1*0000 23 469.45 0 .00 0.0000 0 .0000 1.0000 1.0000 24 557.C4 0 .00 0. 00 C Cî 0 .0000 1.0000 1.0000 1.0000 25 66C.96 0.00 o.oooo 0.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 1199.942 NUMBER MEAN CIAMETER( 90.890 VOLUME MEAN DIAMETER{ MUGELE 6 EVANS 166.047 VCLUME MEAN CIAM£TER( HERDAN 278.559 SALTER DIAMETER 249.037 AREA WEAN CI/METER . 135.690 STANDARD DEVIATION OF DIAMETER» BY NUMBER*...... 92.950 STANDARD DEVIATION OF VCLUME OIA(HERDAN)...... 68.294 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)....• 0.940 CùEFF. OF VAF. OF VOLUME MEAN DIAM£TER(HERDAN)..• 0*245

CCCMETRIC NUNDER MEAN DIAMETER(MEDI AN 67.462 GECMETRIC VCLUME MEAN DIAMETER(MEDI AN ) ..* .*«... 267.342 GEGM* STANDARD DEVIATION GF NUMBER DIAMETER . ... 2.337 CECMETRIC STC DEV OF VCLUNE DIAMETER ...... *.* 1*378 259

DRDPLD--T Dl STRIdU T ICN FEH KJN CISC NO. 4 / DISC SPCED=6COO. KPM / POTENTIAL= 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.ay O.OO C.COOO 0.0000 0.0000 0.0000 2 12.53 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0. 0000 0.0000 0.0000 0.0000 4 lê.20 0.02 c.oooo 0.0000 0.0000 0.0000 5 2 1.55 3. IB o.ocoa 0.0000 0.0008 0.0000 6 25.62 3.95 0.0011 0.0000 0.0019 0.0000 7 30.40 28.33 0.0095 0 .0003 0.0114 0.0004 a 36.07 48.86 0.0155 0.0009 0.0309 0.0013 y 42.80 130.46 0.0617 0.0041 0.0926 0.0054 10 50.79 238.06 0. 13 36 0.0126 0.2262 0.0180 11 O0.27 87.70 0.0584 0.0077 0.2846 0.0257 12 71.5 1 26.86 0.02 12 0.0040 0.3C5e 0.0297 13 d4.e5 22.16 0.0208 0 .0055 0.3266 0.0351 14 IOC.66 72.95 C.0812 0.0300 0.4077 0.0652 15 119.47 64.58 0.0852 0.0444 0.4930 0.1096 16 14 1.76 30.15 0.0472 0.0346 C .5401 0.1442 1/ 166.20 60.33 0.1121 0.1150 0 .6523 0.2600 16 195.SE 6 7.70 0. 1493 0.2171 0.8016 0.4770 19 236.82 32.43 0.C849 0.1737 0.8864 0.6507 20 281 .00 30.56 0.0949 0.2734 C.9813 0.9241 21 333.4 3 5.07 0.0187 0 .0759 1 .0000 1.0000 22 395.6 4 0.00 0.0000 0.0000 1.0000 1.0000 2 3 469.45 0.00 O.OOCO 0 .0000 1.0000 1.0000 24 557.C4 0 .00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 O.OOOO 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A KUN 953.324 NUMBER MEAN L1AMETER( 94.937 VOLUME MEAN DIAMETERt MUGELE 6 EVANS ) 137.461 VOLUME WEAN CIAMETEK{ HERDAN ) 221.362 SALTER DIAMETER 190.333 AREA VEAK DIAMETER 116.904 STANCARJ DEVIATION OF DIAMETER, BY NUMBER.. 63.253 STANCARI3 DEVIATION OF VOLUME DIA(HEADAN) €6.698 COEFFICIENT CF VARIATION UF DIAMETER(NUMBER)..... 0.719 COEFF. JF VAF. UF VOLUME MEAN DIAMETER(HERDAN)... 0.301

GECMETHIC NUfflER MEAN DIAMETEH(MEDIAN)...... 76.405 CECMETRIC VOLUME MEAN DIAMETER{MEDI AN) «... 208.429 GECM. STANDARD DEVIATION OF NUMBER DIAMETER 1.888 GEOMETRIC STC DEV OF VOLUME DIAMETER 1.464 260

DROPLET DISTRIHUTICW FER RUN CISC NC. 4 / DISC bPEEL)=9000« RPM / PCTENTIAL= 0.0 KV

CUMULAT CLASS CLASS DRCPLET FRACT ION FRACTION CUMULAT IVE NC. AVE.CI A NUMBER NUMULR VCLUME NUMBER VOLUME

0.0000 1 I0.89 0 .00 0.0000 0.0000 C.0000 0.0000 2 12.S3 0.15 0.0000 0 .0000 0.0000 3 15.34 2.52 C.0002 0.0000 0.0002 0.0000 0.0000 4 18.20 3.59 C.Û003 c.cooo 0.0004 b 2 1.59 85.26 0. 0072 0.0002 0.0076 0.0002 0.0006 6 25.62 99 .68 Q.OlOO 0.0004 0.0176 7 30.40 96.81 0.01lb 0.0006 0.0291 0.0012 a 36. C7 204.58 0. 0288 0.0022 0.0579 0.0035 9 42.80 335.52 0.0561 0.0061 0.1141 0.0096 0.0212 10 50.79 380.35 0.07 55 0.0116 0.1896 0.0379 11 60. 27 327.67 0.0772 0.0167 0.2668 12 71.5 1 281.39 0.0786 0 .0240 0.3454 0.0619 13 84.£5 265.87 0.0882 0.0379 0.4336 0.0998 0.1634 14 ioo.ee 267.51 0.1053 0.0636 0.5388 0.2694 15 119.47 266.67 0.1245 0.1060 0.6633 0.3937 16 141.76 167.25 0.1037 0.1243 0.7671 0.5660 17 168.20 173.39 0.1140 0.1923 0.6811 18 199.58 71.99 0.0562 0.1334 0.9372 0.7194 0.8233 19 236.62 33.58 0.03 11 0.1039 0.9683 0.9284 20 28 1.00 20.32 0.0223 0.1051 0.9906 0.9674 21 333.43 4.52 O.OOSj 0.0390 0.9965 I.0000 22 395.64 2.26 0.0035 0.0326 l.COOC 1.0000 23 469.45 0.00 O.OOCO 0.0000 1.0000 1.0000 24 557.C4 0.00 C.0000 0.0000 1.0000 1.0000 25 660 .Ç6 0 .00 0.00 00 0 .0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 3110.877 NUMBER MEAN CIAMETER( 62.248 VOLUME MEAN DIAMETER( MUGELE Ù EVANS ) 111.262 VOLUME d&fh CIAMETERt HLROAN 182.602 SALTER DIAMETER ...... 147.963 AREA MEAN DIAMETER 96.549 STANDARD CEVIATICN OF DIAMETER, BY NUMBER 50.575 STANCAHÛ DEVIATION OF VCLUME CI A(HERDAN)...... • 78.306 COEFFICIENT CF VARIATION OF 01AMETER(NUMBER)••... 0.615 COEFF. OF VAF. OF VOLUME MEAN CI AMETER {HERDAM... 0.429

CSCMETRIC NUNBER MEAN DIAMETER(MEUIAN)...... 69.426 GECMETRIC VCLUME MEAN 01AMETER (MEDl/>N ) ...... 165.719 GECM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.788 GECMETHIC STC DEV OF VOLUME DIAMETER ...... 1.579 261

DROPLET DISTRIUUTiCN FLA RON CISC NO. 4 / DISC SPEED=9000. F-iPM / PLTENT I AL= -8.0 KV

CLASS CLASS DRUPLtT FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

.0000 1 1G.8? 0.00 C.0000 0.0000 0.0000 0 0.OCOO 2 12.93 0 .00 0.00 OU 0 .0000 0.0000 .0000 Ô 15.34 7.25 0.00 05 0.0000 0 .0005 0 4 18.20 18.21 0.0015 0.0000 0.0020 0.0000 ,0003 b 21.59 91.88 0.0089 0.0003 0.01Û9 0 o 25.(2 102.76 0.0118 0.0005 0.0227 c .0008 7 30 .40 204.32 0.0279 0.0016 0.0507 0.0024 ,0C58 8 36.C 7 260.50 0.0422 0 .0034 0.0929 0 y 42.80 281.80 0.0542 0.0062 0.1471 0.0120 .0224 10 50 .79 285.70 0.065 2 0 .0105 0.2124 0 .0369 11 60.27 236.65 0.06 41 0 .0145 0.2765 0 .0677 12 71.51 3 01.96 0.0971 0.030d 0.3735 0 .1115 13 84.£6 256.31 0.09 78 0.0437 0.4713 0 .1*528 14 100.68 179.91 0.08 14 0.0513 0.5527 0 lb 119.47 186 .39 C.1001 0.0886 0.6528 0.2515 .3628 16 141.76 139.81 0.0891 0.1112 0.7419 0 .5492 17 168.20 140.25 0. 1060 0.1864 0.8460 0 1& 199.58 100.61 0 .0903 0.2234 0.9362 0 •7726 VJ 236,£2 49.99 0.0b32 0 .1854 0.9914 0.9580 .0000 20 281.00 6.77 0.0086 0.0420 1.0000 1 .0000 21 333 .43 0.00 0.0000 0 .0000 1.0000 1 22 395.64 0.00 0.0000 0 .0000 1.0000 1.0000 .0000 23 46S.45 0.00 C .0000 0.0000 1.0000 1 24 557.C4 0.00 0.00 00 0 .0000 l.OOOC 1.0000 .0000 25 66 C.S6 0.00 0.00 00 0.0000 1.0000 1

STATISTICS PER RUN IQTAL ÛR0PLE1 SPOT NUMBER IN A 2851 .055 NUMBER MEAN CIAMETER( 78.026 VOLUME MEAN DIAMETER< MUGELc & 107,837 VOLUME MEAN DIAMETERC HERDAN ) 170 .968 •626 SALTER 144 AREA MEAN CIAMETER . . 93.183 ETANCARO DEVIATION OF DIAMETER, 50.949 STANCARJ DEVIATION OF VOLUME DIA(HERDAN).... 57.012 COEFFICIENT OF VARIATION OF C1AMETEP(NUMBER) 0 .653 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0• 333

CECMETRIC NUMBER MEAN DIAMETER(M£U1 AN 64.4Û5 GdOMtTRIC VOLUME MEAN 01AMETER(MEOI AN) •••••••••• 159»3J5 GECM. STANCARD DEVIATION OF NUMBER CIAMETER 1.852 GEOMETRIC STC DEV OF VOLUME DIAMETER 1.500 262

DROPLET DI S Tf-îi dtl lUN PLk RUN CISC NO. 4 / DISC SPEED=9Q00. i^PM / PCT£.NT]AL= 8.0 KV

CLASS CLASS DRUPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NG. AVE.CIA NUMUER NUMBER VCLUME NUMBER VGLUME

1 10.89 0.0Ù 0.0000 0 .0000 0.0000 0.0000 2 12.93 0.00 0.COCO 0 .0000 C.COCO c.oooo 3 15.34 11 .«7 0.0009 0 .0000 0.0009 0.0000 4 1 e.20 30.OU 0.00 26 0 .0001 0.0035 0.0001 b 2 1.59 186.84 O.Ols-S 0 .0006 0.0231 0.0007 6 25.62 2C9.10 0.0259 0 .0011 0.0490 0.0018 7 30.40 138.46 0.0278 0 .0017 0.0768 0.0034 0.0069 0 36.07 235.16 0.04 11 0 .0035 0.1179 9 42.80 241.80 0.0501 0 .0059 0.1680 0.0128 10 50.79 238.0 3 0.0566 G .0098 0.2265 0.0226 11 60.27 239.29 0. C698 c .0 164 0.2964 0.0389 12 71.5 1 269.01 C.C932 c .0308 0.3896 0.0697 13 84.£5 260 .06 0.1069 0 .0497 0.4964 0.1194 14 100.ee 237.84 0.1160 0 .0759 0.6124 0.1953 15 119.47 14 0.06 0.0810 0 .0747 0.6935 0.2700 16 141.76 95.13 0.06 53 0 .0848 0.7586 0.3548 17 166.20 78.64 0. 06 41 0 .1171 0.8228 0.4718 16 195.58 122.55 0.1185 0 .3047 0.9413 0.7766 1J 236.£2 44.79 0.05 14 0 .1861 0.9927 0.9626 20 281.00 5.38 0.0073 0 .0374 1.0000 1.0000 21 333.43 0.00 0.00CO 0 .0000 1.0000 1.0000 22 395.64 0.00 c.oooo 0 .0000 1.0000 1.0000 23 4o 9. 4 5 0.00 c.oooo 0.0000 1.0000 1.0000 24 557.C4 0.00 C.OOCJ 0 .0000 1.0000 1.0000 25 660.96 0.00 C.000 0 0 .0000 1.0000 I .0000

STATISTICS PER HUN TOTAL DROPLET SPOT NUMBER IN A RUN 28J4.022 NUMBER 'MEAN CIAMtTER( 72.854 VOLUME MEAN CIAMETER( WUGELE € EVANS ) 104.Ob3 VOLUME MEAN DIAMETEfU HERDAN 172.027 SALTER DIAMETER - 143.649 *REA MEAN DIAMETER 88.620 STANCARJ DEVIATION OF DIAMETER. DY NUMBER bO.465 STANCAH) DEVIATION OF VOLUME UIA(HERDAN) 58.307 COEFFICIENT CF VARIATICN OF DIAMETER(NUMBER)•.... 0.693 CUEFF. OF VAR. OF VJLUML MEAN DIAMETEH(HERDAN)... 0.339

CECMETKIC NUMBER MEAN DI AMETEH ( MEDI AN 56.908 GuCMETRIC VCLUME MEAN 01AMETEK(MEDI AN) .••••*.... 159.588 GECM. STANCARD DEVIATION LF NUMBER CIAMETEfi ..... 1.912 CcCMETRIC STC DEV OF VOLUME DIAMETER 1.523 263

DKOPUKT OlSTHIHUTlON PLK RUN CISC NU. 4 / DISC SP5ED=gOOn. UPM / PC TENTI AL-=-id?. 0 KV

CLASS CLASS DKÙPLFJT FRACTILN FRACTION CUMULATIVE CUMULATIVE NO AVE.CI/* NUMUER NUMULK VCLUME NUMBER VCLUMt

1 1 0. e 9 4.10 c.00 02 0 .0000 0.0002 0.0000 2 1 2. 93 7.71 0.0004 0 .0000 c.0005 0.0000 3 15 .34 66.46 c.OJJM 0 .0001 0 .0043 0 .0001 .0002 4 16.2 0 114.46 0.007/ 0 .0002 0.0120 0 .0555 0 5 2 1. 59 544.5Ù 0.0435 0 .0014 0 .0016 0.0041 0 25.tP. 5d0.90 0.0550 0 .0025 0.1105 7 30. 4C 320.57 0.03o0 J .0023 0. 1 465 0 .0064 G .0099 d "5 6.C7 289.12 G .03 So 0 .0035 û.1851 0.0177 9 4 2.80 3ue.65 0.0615 0 .0078 0.24to 10 50. 7 9 268 .53 0.0504 0 .0090 0 .2970 0 .026 7 .3659 0 .0440 11 00 .27 3C9.10 0.0669 0 .0173 0 .4510 0.0741 12 7 1,S 1 321.70 c. C851 0 .0301 0 .5451 0. 1210 13 U4. e 5 300.19 0.0942 Û .0469 0 .0521 0 .6195 0.1731 14 o o be 199.76 0.0744 0 .6689 0.2218 15 119. 4 ? 1 1I .74 0 .0494 0 .0407 0 lo 14 1.76 159.60 0.C-837 0 .1162 0.7525 0 .3380 c 0 .5305 17 106. 20 15a.25 c .C9t.'4 0.1925 .8509 0.8195 la 199. 5d 14 2.19 0. 10 49 0 .2890 0 .9559 .9941 0.9680 19 236. d2 4 3.72 0. 0333 Û .1484 0 .0000 20 2bl. 00 5.65 0.00 59 0 .0720 1. 0000 1 .0000 21 333.43 0.00 0.OC'O!) a ,0000 1.0000 1 22 395. e 4 0.00 c .ÛU00 0 .0000 I .0000 1.0000 .0000 2 3 46 9 .45 0.00 0.00 00 c .0000 I .0000 1 .0000 24 55 7. C4 0.00 0.0001 0 .0000 1.0000 1 2b 66C. çe 0.00 c.0000 0 .0000 1.0000 1.0000

STATISTICS PER RUN lUTAL DROPLcl SPOT NUMBER IN A RUN 4336.914 NUMDER MLA.N LIAMCTEK( 02.364 VOLUME MEAN DIAM£TER{ MUCcLH & EVANS » 96.574 VCLUMC MEAN DlAM£Tt£H( HERDAN 170.014 SALTER IJIAWflTER 141.916 MEAN OifMETER 79.721 STAND/iR.) LÎFVIATICN UK DIAMETER, 3 Y 49.666 ETANOAR) OEVIATIGN Of- VOLUME JIA(HERUAN).55.391 COEFFICIENT CF VARIAIICN (F UIAMETEH(NUMDERJ..... 0.796 CiJcFF. OF VAP. OF VOLUME MEAN DI AMfc TfR( HEROAN ) •. . 0.326

GECMETRIC NUNBER MEAN JIAMuTLR{MEO1 AN 43.134 GECMETRIC VCLUME MEAN UIAMETER(WEDI AN) 158.243 GECM. STANC/SRD DEVIATION CF NUMBER UIAWETER ..... 2.C09 GELMETRIC STC OEV OF VOLUME DIAMETER ...... 1.51a 264

OKUI'LtlT Û I SlKlUUTllJhi t'f.H KUN DISC NO. 4 / l)ISC SPlit:D=y 00 0. KPM / POTENTIAL^ ^2.0 K V

CLASS CLASS DPUPLCT FHACTICN FKACTILN CUMULATIVE CUMULATIVE NC. AVE.OIA NUMWER NUMBER VCLUME NUMUER VOLUME

0.0000 1 10.8% J.00 0.0000 0.0000 0.0000 . 0.0000 2 12.93 O.OO C.0000 0.0000 0.0000 0.0000 5 15.34 5.26 C.0003 0 .0000 0.0003 0.000 1 4 16.20 28.49 O.OO21 0.000 I 0.0024 0.0003 5 2 1.59 61.89 0.0053 0.0002 0.0077 6 25.€2 98.89 0.0101 0 .0005 0.0179 0.0008 7 30.40 1 14.02 0.0139 0 .0010 0.0318 0.0018 a 36.C7 150.04 0.0217 0.0022 0. 0534 0.0040 0.0121 v 42.80 329.74 0.056b 0 .ooai 0.1099 10 50.79 465.11 0.0943 0 .0190 0.2044 0.0311 0.0559 11 60.27 362.88 C.0875 c .0241' 0.2920 12 71.5 1 258.74 0.0740 0 .0296 0.3660 0.0854 13 84.65 338.94 0.1151 0.0647 0.4811 0.1501 0.2510 14 100.68 316.54 0.1275 0.1009 0.6086 0.4207 15 119.4 7 3 18.68 0.1524 0 .1697 0 .76 10 16 141.76 1 85.76 C.1054 0.1653 0.8664 0.5860 0.7130 17 166^20 85.45 0.0575 0 .1270 0.9239 la 199.58 54.58 0.0436 0.1355 0.9675 0.8485 19 236.£2 28.93 0.0275 0.1202 c.9949 0.9687 .0000 1 .0000 20 28 1.0 0 4.52 0.3051 0 .0313 1 1 .0000 21 333.43 0.00 C.OOCÛ 0.0000 1 .0000 22 395.64 0.00 O.OOOO 0 .0000 1. 00 00 1.0000 23 469.46 0.00 O.COOO 0.0000 1 .0000 1 .0000 .0000 1.0000 24 557.C 4 0.00 C.OOOO 0.0000 1 25 66 C.96 0.00 C.OOOC) . 0 .0000 1 .0000 1 .0000

STATISTICS PER RUN TUTAL URCPLET SPOT NUMBER IN A RUN 3208.457 hUMBFH MEAN CIAMETERt 77.083 VOLUME MEAN GIAMETER( MUGELE & EVANS 99.864 VOLUME 4EAN DIAMETEH( HERDAN 150.065 salter diameter 126.286 AREA MEAN DIAMETER 88.893 STANCARO DEVIATION UF DIAMETER* BY hUMEER•••••••• 42.858 STANOARJ DEVIATION OF VOLUME DIA(HEROAN)•••••«••• 56.767 COEFFICIENT CF VARIATION OF D1AMETER(NUMBER)•••. o 0.550 COEFF. OF VAR. OF VOLUME MEAN DIAM£TER(HERDANJ••• 0.378

CeCWETRIC NLMBER MEAN 01 AMETER(MEO I AN)•••••••• j-* » 67.473 GEOMETRIC VCLUME MEAN 01AMETER(MEDI AN) ...... 138.652 CECM. STANCARD DEVIATION CF NUMBER CIAMETER ..••« 1.719 CECMETRIC STD DEV OF VOLUME DIAMETER ...... 1.514 265

XVI. APPENDIX F. RADIAL DISTRIBUTION BY RUN 266

DRUPLET UISTRI OOTI Or>l PFH KUN CISC N(J. 2 / DISC . UPM / POTENTIAL^ 0.0 KV

CUMULAT CLASS CLAS3 D.'ÎOPLET FRAClION FRACTION CUMULATIVE VOLUME NO. AVE.01 A N'JMOER NUMBER VOLUME NUMBER

0.0000 0.0000 1 1 0.89 0.00 0.00 0 0 0.0000 1 2.S3 0.00 0.00 00 0 .0000 O.OOOC 0.0000 0.0000 o 15.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.0 0 0.00 OU 0.0000 O.OOOC 0.0000 b 21.59 0.00 0.00 00 0.0000 O.OOGO 0.0000 0.0000 0.0000 <•> 25.62 0.00 0.0000 0.0000 7 30.40 0.00 a.000 0 0.0000 0.00Û0 0.0001 a 36.07 1 .49 0.00 38 0.0001 0.0038 y 42.80 3.45 C.Ol05 0.0002 0.0143 0.0 003 0.0005 10 30. 7y 1.91 C.0CC9 0.0002 0.0212 0.0006 11 60.27 0.74 Go 00 J2 0.0001 0.0244 0.0016 12 71.5 1 3.50 0.0178 0.0010 0.0421 0.0026 13 84.85 2.15 0.0129 0.0010 0.0551 0.0049 14 100.£8 2.90 0.0207 0.0023 0.0758 0.0089 15 119.47 3.0 1 0.0255 0.0040 0.1013 0.0238 16 141.76 6.73 0.06 7 7 0.0149 0.1691 0.0319 17 168.20 2.2 0 0. 0263 0.0081 0.1953 0.1137 18 199.58 13.25 0.1879 0.0818 0.3832 0.1792 19 236.62 6.3 5 0.1068 0.0655 0.4900 0.2361 20 28 1.no 3.30 0.0659 0.0569 0.5559 il 333.43 1 0.2 0 0.241 '.5 0.2935 0.7975 0.5296 0.6941 22 395.64 3.42 0.096? 0.1645 0.3936 0.8289 23 46 9.4 5 1.68 0.0559 0.1340 0.9496 1 .0000 24 53 7.C4 1.27 0.0504 0.1711 1.0000 1 .0000 2 5 66 0.S6 0.00 0.00 00 0.0000 1 .0000

STATISTICS RUN TOTAL Di^CiPLET SPOT NUMtiER IN A RUN ...... 67.541 NUMdtR MEAN OIAMETERC 208.432 VCLUMF MEAN UIAMETER( MUGELE & EVANS )...... 267.005 VLLUME MEAN DIAMETLR{ HEKUAN 373.734 SAUTER iJlAMEIER 330.364 AKLA MEAN DIAMETER 240.241 STANCAHO DEVIATICIM OF DIAMETER, GY NUMBER... 120.356 STANDARi) DEVIATION OF VOLUME DIA(HERDAN)...... 116.392 COEFFICIENT CF VARIATION OF 0iAMCTER(NUMBER)..... 0.577 COEFF. OF VAN. OF VOLUME MEAN UiAMETER(HERDAN)... 0.311

GLGMETRIC NbfBER MEAN OI AMET EH( MED I AN » 170.953 CECMETRIC VOLUME MEAN 01AMETER(MED I AN> ...... 353.608 CECM. STANDARD DEVIATION CF NUMBER DIAMETER *... 1.984 GcCMETRIC STD DEV OF VOLUME OIAMETEF 1.418 267

DKOPLt r DISTtîI JJTlCtJ FLH FUN Lise NO. / DISC SPfcl£0=3000. f

CLASS CLASS DROPLTT FRACTION FRACTION CUMULATIVE CUMULATIVE IJO. AVE.01 A IslUMdEH NUMBL'f'i VCLU.ML NUMBER VOLUME

0 .0000 0.0000 0.0000 CD 1 o 0.00 c.oooo 12.93 0.00 0.00 00 0 .0000 0.0000 0.000 0 3 1 5.34 O.UO 0 .000(1 0 . 0000 0.0000 0.0000 0.3000 0.0000 •i- 18.20 0.00 0.00 0J 0.0000 5 2 1. 59 0.00 o.occo 0.0000 0.0000 0.0000 0.0000 O 25.62 0.00 O.OOC •) 0 .0000 0.00 00 o O O 0.000 0 7 3 C. 41"! 0 .0000 D.0000 0.0000 0.0000 Ô 36. C 7 0.6b 0.00 14 0.0000 0.0014 0.0001 9 42.80 1 .b2 0.004] 0 .0001 0.0055 0.0002 10 5 0.79 0. 9 9 0.00 30 V .00 0 1 0.0085 0,0144 0.0004 11 6 0.27 1 .60 0.0059 0.0002 0.0277 0.0012 12 71.51 3.14 0.0133 c.0008 0.0022 13 8 4.85 2.37 0.0119 0 .00 10 0.0 396 .0004 0.043b 0.0026 14 100.6d 0.65 0.00 39 0 0.0040 lb 119.47 1.18 0.00 8 3 Û .0)13 0.05 18 0.0944 0.0137 16 141.76 5.0 9 0.04 26 0.0097 0.0508 17 168.20 1 1 .60 0.1154 0 .0371 0.2098 0.096 5 IB • 199.58 d.50 O.IOIJ 0 .0457 0.3108 0.2704 19 236.62 19.47 0.2727 0.1739 0.5835 0.7002 0.3752 20 231.00 7.02 0.1167 0.1046 0. 7650 0.4571 21 333.43 3.29 0.0643 0.0819 0.8872 0.6745 2 2 395.64 5,22 0.12 2 2 0.21 74 0.8519 23 469.45 2.55 0.0718 0. 1773 0.9580 1 .0000 24 55 7.0 4 1 .27 0.0420 0 .1481 1.0000 1 .OCOO 2 J tit> 0.96 0.00 O.OOC'Q 0.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMOER IN A RUN 76.340 NUMBER MEAN CIAM£TER( }. 221.493 VC LUMF MEAN OlAMETERC MUGELE f' EVANS 268.940 VULUME MEAN DIAMETEK( HERDAN 366 .8.31 SAUTcR JIAMElnR 321.471 /REA MEAN DIAMETER 246. 193 STANDAK") CE V I AT I ON UF DIAMETER, BY NUMBER...... 108.191 STANDARD DEVIATION UF VOLUME 01A(HLROAN)...... 121.437 COEFFICIENT LP VARIATION OF D1AMETER(NUMBtR).»•.. 0 .480 COEFF. OF VAR. OF VOLUME MEAN DI AMETER(HEROAN)..• 0.331

G£CMETRIC NUNOER MEAN DI AMETET. ( MEO I AN • 193.120 GEOMETRIC VOLUME MEAN DI AMET E ( MED I AN ) ...... 344.976 GEOM. STANDARD DEVIATION OF NUMBER DIAMETER ...« 1.768 GEOMETRIC STC DEV OF VOLUME DIAMETER 1.438 c. n r> n n ir> (/) z -» s > in < < fU ro ."U Al N r-j H» H* n n r PI r c c -1 H T > c r c c v ro o C c N LT 4> ro Ci c c -p- b n n n m m > > n C. r r 2 -1 On "n c le tv z s. z 3 Â, T1 •n z Z > H c a > o > ir. m • rr, m Tl n o O m s s m r CO n H -4 H > > Zî rn rn z (A 71 CO 73 ZI n 73 m o o en u U ro r\3 H* z H M a Ht CJ u > V z 3L À Tl c ï> c e Oi O: oj w CT O cr N cr LTi Lkl U t'ù rc < O • A h O n T m z w m ITI rri C o (aj z o SÛ m Cfi vn tt KÛ O o Q fo O o (n M a fO O m r z o > > > > ro U) n < z < H- m iTI o & z Z r^ sTt o 4> 3 m G*. î\j •si m (n 10 > -t n c > vP (P n 71 r ? m n 'n —< u X U c C « T] > > s rn o o P-4 t» o 2 n. -4 H m X K-i > tr- m C n 7) c < •1 H > > Z X- f— z o c o < r T O # c X- > n m S z .Tl C O 3 -N w rv ro "X) N U f- CTi en r\3 H- c o o o o o o o 2 c CO c < ï S. X z Z # rri m H H • • # # • # # • (X r n -n < # M H n O H- Tl n "w O o m C c (X ru •- w 1— U1 o ro »— o o o o n r r "n > > > C > o n m 3 Z o c — N; ro OJ CL 4^ a a vC. c H- e -4 z z r —1 n T X C a f- o o o o T) r. 'j) rn < M H •c -H c * 2i Tl r n o c £ C < C # Sr> o; r z •— .7! Z o e X s • n m C c > > r • Ti o 1—. I> rr c X o o o o O o O o o Ô d O o O D C O O o o o o o n o z 71 II t/1 s n 3£ S c c 2 C; • # # c > u m "n m m :n •n a: m # # w m o o H rv O o o O c o C C O V o o o c> o o o o H H # # z n X > m H > r Z o o w a ro en ro ro rc ro w O c O c o o o o o c o G H c o z m m z c m # # z n o o u N e r~ ro CD rv a. CM CL- cr. K H- o o c o o C c fn #-4 o cc c r. x, Q Tî * # a> o Ce »- vC "N -s c \D o *-* a Lu L_' o u •J »— o o o r» * c n) > z o > t-i # « • r « m C # # c -4 n c X c o i; H X < # a • < z Tl m m # $ • Z 2 r Pî « > o o o o o o o oooooooooo o o o c o o c o < n o "k •b H n %J 7 # # # 7 • ••••••• ########« ••••••••• n t> N Xi Z Z o r • # m • o o w oi 1— o oooooooooo o c» o o o o o c- r m > ro # n z C> c li: ry -s <5 C" i\; o o Cl o G C.1 Ci o ooooooooo c -i Z s • c z a # e • o o CJJ >£j o fio (il •- 1/1 Ui (jj û) •- o o o ooooooooo s •C rr. é X z m # # e # o o >- e œ vo O" •c'c:--p'f\;>-ro-sro»-» -) « m CD XI « • • ooooooooo ni C O X! Z -1 C m m # • # # # D o XI # • # # m 2 > # • » • * n z • z c -4 z # # « # # • o o O O o O o o Q o O o o o o o o o o o o o • • * # c z # « # • • 2 c > « • # # # o o o œ o CJ •— o O o O o o o o o o o o o o o CD r r • « é # # # o o o tn ro C rj o Ci a rv h- c o o o o c o o o o rr. >• 1' • • « # o o o W w o\ o m e -g N o Cj c* »— 4> Oi o o Oi 1- r. o tr N tn T A o o o o o o C o o o o o o o o o c o o o o < c % • • • • • • 0 % • # # • • # • • • • # # # • • • t • • # e Cu oc o z < %c tu en N H* Oj a vû o e o o o N e*) fO Q o o o o o o o o o o c o o o o o o r c o o œ ro w U u o Cl u o o c o •s o o OJ c o o o o o o o c o o o o o *• ro rvj o c r w OJ tr. w Oi \D o a c- eu o o o e N E OJ vo œ ro •Nj ro o o o o o o o o o o o o o c ru z > \D c 0 o cr Cî OJ N o OJ *-* o o c o o o o o o m H < m 269

DHUPLfcIT DISTRIBUTION PEH K'UN CISC NO. 2 / DISC SPeED=3000. RPM / POTENTIAL=-22.0 KV

CLA33 CLASS UHIJPLLT FfMCT ICN FftACTIUN CUVULATIVL CUMULATIVE NO. AVE.CIA NUMRER NUMBER VCLUMC NUMBER VOLUME

I 10.ay 0.00 0.0000 0 .oooc- 0.0000 0.OOCO 2 1 2.93 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.00 00 0 .0000 0. ocoo 0.oooo 4 1 8.20 0.00 0.0000 0.0000 0.0000 0.0000 b ? 1 .59 0.1 7 0.0001 0.0000 0. 0001 0.0000 t) 25.62 0.22 0.0002 0.0000 0.0003 0.0000 7 3 0.40 1 .03 0.0011 0 .0000 0.00 15 0.0000 6 16.C 7 1 .30 C.CO 17 0.00 00 0.0032 0.0000 V 42.80 1 .38 0.0022 0.0000 0.0054 0.0001 10 5C.79 1.93 0.0036 0.00 01 0.0089 0.0002 11 30.27 4.03 0.00 89 C .0003 0.0178 0.0005 12 71.51 4.80 C.J125 0.0007 0.0303 0.0012 c o o 13 84.55 4.54 0.0141 0.0444 0.0023 14 10 0.66 1.81 0.Ù067 0.0007 0.0511 0.0030 15 119.47 9.89 0.0432 0.0066 0.0942 0.0096 16 141.76 1 0.92 0.056 5 0.0122 0.1507 0.0218 17 166.20 2.71 0.0167 0.0051 0. 1674 0.0269 16 199 . 5 e 11.62 0.0847 0.036? 0.2521 0.0630 ly 236.82 22.79 0.19X1 0.1136 C. 4492 0.1816 cC 281.00 24.90 0.2555 0.2164 0.7046 0.3980 21 333.43 3.34 0.0407 0.0485 0, 74 54 0.4465 22 395.64 7.47 0.10 80 0.1813 0.C534 0.62/7 23 40y.45 6.99 0.1193 0.2832 0.9732 0.9110 24 557.C4 1 .32 0.0268 0 .0890 1 .0000 1.0000 25 66 0.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN lUTAL DROPLET SPOT NUMBER IN A RUN 123.169 NUMBER MEAN CIAMETER( ) 222.323 VOLUME MEAN DIAM£TtR( MUGELE t EVANS ) 274.556 VOLUME MF AN DIAMETERI HERDAN 370.149 SALTER DIAMETER 330.104 AREA MEAN DIAMETER 250.603 STANDARD DEVIATION OF DIAMETER, BY NUMHFR 116.122 STANDARD DEVIATION OF VOLUME DJA(HERDAN) 111.695 COEFFICIENT CF VARIATION OF UIAMETER(NUMBEW) 0.522 COEFF. OF VAK. OF VOLUME MEAN DIAMETER(HEROAN)... 0.302

GEOMETRIC NUVBER MEAN D I AMET ER( MEO I AN 186.040 GEOMETRIC VOLUME MEAN DIAMETER(MEDIAN) « 351.378 GECM. STANDARD DEVIATION OF NUMUEk DIAMETER ..... 1.885 GEOMETRIC STC DEV OF VOLUME DIAMETER 1.401 270

DROPLET DISTRlbUTIUI'J PFEU RUN CISC NO. 2 / DISC SPEED=3000. RPM / POTENTIAL^ 22.0 KV

CLASS class droplft fract il N fraction cumulative cumulat NC. ave.01 a number number volume numqer volume

0.0000 0.0000 1 1 C. 39 0.00 0.0000 0.0000 0.0000 0.0000 Û.0C00 2 12.S3 0.00 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 0.0000

. 0.0000 0.0000 0.0000 o 4 18.20 o o 0.0000 0.0002 0.0000 ù 21.59 0.16 0.00 02 0.0000 0.0000 0.0004 0.0000 6 25.62 0.23 0.0003 0.0000 0.0020 0.0000 7 30.40 1 .27 0.00 16 0.0000 0.0027 c.oooo a 36.0 7 0.44 C.00 0 1 0.0000 9 42.80 0.22 0.00 04 0.0000 0.0031 0.0055 0.0001 ic 50.79 1.11 0.00 24 0.0001 0.0205 0.0008 11 60.27 5.82 0.0150 0.0007 I? 71.51 6.95 0.0212 0.0013 0.0417 0.0021 0.0624 0.0040 13 34.85 5.71 0.0207 0 .0010 0.0829 0.0066 14 100.58 4.77 0,02 05 0.0026 0.1599 0.0202 15 119.47 15.11 0.0770 0.0136 0.2055 0.0315 16 141.76 7.54 0.0456 0.0 114 0.2217 0.0372 17 166.20 2.27 0.016 3 0.0057 0.0 401 0.3028 0.0773 18 19S.58 9.52 0.08 1 I I y 236.82 12.85 0.12<8 0.09U3 0.4326 0.1676 0.6373 0.3680 20 281.00 1 7.07 0.2047 0.2004 0.2809 0.8411 0.6489 21 333.43 14.33 0.20 38 22 395.64 6.37 0.1076 0.2088 0.9487 0.8577 0.99 82 0.9930 23 46 9.4 5 2.4 7 0.0495 0.1353 .0000 1.0000 24 55 7.C4 0.08 0.00 18 0.0070 i 2b 66 0.9 6 0.00 0.0100 0.0000 1.0000 1.0000

st at ist ics per run 114.290 TOTAL drcflet spot number in a 205.093 NUMBE«: mean diameter! 254.652 VOLUME, mean diamfterc mugele & 334.140 VOLUME: mean diametcr( herdan } SALTER DIAMEIER 305.41b 4REA MEAN DIAMETER . 232.721 STANDARD UEVIATIUN OF DIAMETER. BY NUMHF.R...... - 110.467 STANDARD DEVIATION OF VOLUME OIA(HEROAN)...... 85.876 COEFFICIENT CF VARIATION OF DIAMETEF(NUMDER)... 0.539 COEFF. OF VAR. OF VOLUME MEAN 01 AMETER(HERDAN).. 0.267

GECMtTRIC NUV3ËR MEAN DIÀMETER(MED I AN• 172.210 GfcCMETRIC VOLUME MEAN DIAMETER(MED 1 AN) ...... 321.386 GECM. STANCARD DEVIATION CF NUMBER CIAMETER ..... 1.887 GEOMETRIC STC DEV OF VOLUME DIAMETER 1.344 271

DKOPLET DISTRIBUTION f'FX WUN CISC Mje 2 / DISC yPLLD=600 3. KPM / POTENTIAL- 0.0 KV

CLAbS CLASS ORUPLET FRACTION rkACTICN CUMULATIVE CUMULATIVE NO. AVE.CI A NJMUEK NU^rtt:f< VCLUMIf NUMBER VOLUME

0.0000 1 10. ay 0.0 0 0. 30 00 0 .0000 0.0000 o.ocoo 0.0000 2 12.S3 0.00 0.00 00 0 .0000 o.cooo 0.000 0 3 15.34 0.00 C .0000 0 .0000 4 18.20 0.00 o.oooo 0 .0000 C. 0 V 00 0.0000 0.0000 5 21 .59 0.53 0.0002 0.0000 0.0002 (. 25.f 2 0.6 0 0.00 03 0 .0000 0.00C5 0.0000 0.0000 7 30.40 0 .00 0.00 00 0 .0000 0.0005 0.0001 6 3 6. C 7 3.70 0.00 27 0 .0001 0.0033 0.0002 "U 4 2.80 4.57 0.00 40 c .000 1 0.0073 0.0004 10 50.7V b .34 0.0065 0.0002 0.0128 0.02 38 O.OCl1 11 60.27 0.9? 0.01 10 0 .0007 0.0021 12 fl.51 6.96 0.0102 0.0009 0.0340 0.0055 13 84.£5 15. 71 0.0273 0.00 34 0.06 13 14 10 0.6 p. 9.34 0.01 SI2 0.0 034 0.0805 0.0089 0.0207 15 iiy.4f 19.3b 0.047 3 0.0118 0.1278 0.0437 16 141.76 22.72 0.06 59 0.0231 0.1937 0.0747 17 16e.2Cl 13.21 0.06 2 7 • c.0309 0.2563 0.3638 0.1494 IH 19S.58 26.34 0.1075 0 .0747 19 236.£2 5 3.9 0 0.26 11 0.2555 0.6249 0.4049 0.7524 ^C 2% 1.00 4j.88 0.2522 0.3475 0.8771 21 3 33.4 3 16.31 0.1112 0.2158 0.9883 0.9661 22 395.64 1 .44 0.01 17 c .0319 1.0000 1.0000 .0000 tL 3 4b <5.4 5 0 .00 0.00 Où 0 .0000 1.00 00 1 24 5S7.C4 o.oo 0.0000 0 .0000 1.0000 1.0000 .0000 2 b 660. 9o 0.00 0.00 00 0 .0000 1.0000 1

STAT 1ST ICS PER HUN TUTAL DKCPLET SPOT NUMBER IN A RUN 2b7.8b3 hUMUCR MEAN CIAMZTER( 189.624 VOLUME MEAN DIAMIITERÎ MUGELE & EVAhS )...... * 221.382 VOLUME MEAN OIAMETCR( HEKOAN 268.256 SALTER DIAMETER 251.821 AîEA MEAN DIAMETER 237.740 STANDARD CFVIATICN OF DIAMETFR, BY NUMUER... 85.010 STANDARD DEVIATION OF VOLUME DIA(HERDAN)...... 57.733 COEFFICIENT CF VARIATICN OF DIAMETEP(NUMDER). ..•. 0.446 CoEFF. OF VAR« UF VOLUME MEAN DI AMETE'R( HERDAN).. . 0.215

GECMETRIC NUKUER MEAN DI AMET l"U( MT'D I AN ) • 165,687 GEOMETRIC VOLUME MEAN ûIAMETEh(MEDI AN) ...... 200.980 GECM. STANCAPD OcVIATICN CF NUMBER DIAMETER .... 1.771 CECMETRIC STU DE V OF VOLUME OIAMETEP «...«e.»*... 1.282 272

DROPLET DISTRIJUTILN PER RUN CISC NO. 2 / DISC SPf::ED-6GOO. r / POTENT IAL= -8.0 KV

CLASS CLASS DROPLLT FRACTION F PAC TION CUMULATIVE CUMULAT WO. AVE.CI A NJMUER NUMHF.R VOLUME NUMBER VOLUME

1 1 o.ag o.or 0.00 DO 0 .0000 0.0000 0.0000 2 1 2.93 0.00 0.0000 0.0000 0.0000 0.0000 o 15.34 0.00 O.OOO'"» 0 .0000 0.00 0 0 0.0000 4 18.20 0.00 0.OOC Ù 0.0000 0.0000 0.0000 I) 21 .59 0.68 0.0003 0.0000 0.0003 0.0000 6 26.62 3.86 0.00 013 0.0000 0.0008 o.oooc 7 30.40 2.5b 0.0016 0.0001 0.0023 0.0001 y 16.C7 3.9 7 0.0029 0.0001 0.0053 0.0002 •J 4 2.60 6.83 0.0060 0 .0004 0.0113 0.0006 10 bC.79 12.61 0.0132 0.0012 0.0245 0.0018 11 60.2 7 15.60 0.0193 0 .0025 0.0438 0.0043 12 7 1.51 1 9.54 0.02 87 0 .0052 0.0726 0.0094 13 04.65 59.87 0.06 96 0.0176 0.1422 0.0271 14 100.68 44.91 0.0930 0 .0332 0.2352 0.0602 13 119.47 45.94 0. 1129. 0.0567 0.3481 0.1169 16 141.76 57.06 0.1664 r. 1176 0.5144 0.2345 17 16 8.20 49.75 C.1721 0.1713 0.6866 0.4059 16 19 9.58 25.45 0.1045 0.1464 0.7910 0.5523 ly 236.6 2 35.59 0.1734 0.3421 0.9644 0.8944 2 J 26 1.00 5.14 0.0297 0.0 025 0.9941 0.9769 ?i 33 3.4 3 0.86 0.0059 0.0231 l.GOOO 1 .0000 22 395.64 '1.0 0 0.00 to 0.0000 1.0000 1.0000 23 469.4u 0.00 0.0000 0.0000 1.0000 1.0000 24 557.04 0.00 C. C 0 0 0 0.0000 1. 0 0 C 0 1 .0000 23 66 0.96 0.00 o.ooo;:' 0.0000 1.0000 1.000 0

STATISTICS PER RUN TOTAL OROPLcT SPOT NUMBER IN A RUN 367.210 hJMDER MEAN D1AH£TER( 132.391 VOLUME MEAN DIAMLTER( MUuELC Ù EVANS > 155.460 VLLUMG MEAN UIAMETER( HERDAN ) 198.829 salter ibo.076 AREA MEAN 144.554 STANDARD DEVIATION OF DIAMFTFR, 8Y NUMHFR... 58.118 STANCARO OEV lATION UF VOLUME 0 I A(HERDAN).« 55.600 COEFFICIENT CF VARIATION OF 01AMETÊR(NUMBER) 0.439 C:3EFF. OF VAR. fJF VOLUME MEAN DI AM E TER( HEHDAN ). .. 0.280

CcLMETRIC NLfOER MFAN ÛI AMET f" l7( MfrXi I AN 119.114 glcmethic VlJLUME MEAN Û i AME tch.( MED i AN ) 190.100 GSCM. STANDARD DEVIATION OF NUMiiFH DIAMETER ..... 1.618 CdCMETRIC STC OEV OF VOLUME DIAMETEP 1.368 273

DKUPLET ûlijTtilUUTl LM PEI! KUN CISC NO. 2 / DISC SPEtL)= 6ÙOO. KPM / POTENTIAL^ 8.0 KV

CLASS CLASS DUUPLET FRACTION PPACTI&N CUMULATIVE CUMULATIVE ,gG. AVE.CI A NJMJEIi NUMBKR VOLUME NUMQEtV VOLUME

• 1 10.89 0.0 J O.OOÛO 0.0000 0.0000 0.000 0 2 12.^3 U.OO 0.00 00 0.00 or o.ococ 0.000 0 3 15.34 0.00 Û.OUOO 0.0000 0.0000 0.0000 4 0 .00 û .00 0 J 0.0000 0.00 00 0.000 0 6 2 1.59 0.44 0.00 03 0.0000 0.0CC3 0.0000 i: 35.62 0,6 0 0.00 04 o.onoo 0.0007 0.0000 7 3 0.40 2.98 0.00 25 C.COOl 0.0032 0.0001 46.07 3.54 0.U035 0.0J 02 0.0067 0.0003 42.80 3.4 3 0.0041 0.0003 0.0108 0.0005 10 •JO - 79 7.35 0.0099 C.0009 0.02 0/ 0.0015 11 60.27 12.20 0.02 03 0.0027 0.04 10 0.0042 12 71.51 1 1 .83 0.0234 0.0044 0.0644 0.0086 13 Ci4. e5 25.6 3 0.C60 1 0.0160 0.1245 0.0246 14 100.68 2d.40 0.0791 0.02^6 0.2 036 0.0542 15 1 1 Ç.47 38.12 0.125V 0 « 060 4 0.3294 0.1206 10 14 1.76 46.27 0. Id 13 0.1346 0.5107 0.2552 1 7 168.20 ?7,20 0.1730 0.1608 0.6837 0.4360 1>> l<'S.5d 36.02 0.196 7 0.2924 0.8624 0.7284 19 236.62 12.91 C.08 45 0.1752 0.9670 0.9036 20 281.00 4.25 0 ,03 30 0.0964 1.00 00 1.0000 21 333.43 0.00 0.00 00 0 .0000 1.00 00 1.0000 22 39 5.6 4 0.00 0.0000 0.00OO 1.0000 1.0000 23 46 Ç. 4 5 0.03 0.00CO C.OOCO 1.0000 1.000 0 24 55 7.C 4 0.00 C.GOOO 0.0000 1.0000 1.0000 25 66C.Ç6 0.00 0.00 00 0.0000 1.0000 1 .0000

STATISTICS PER RUN TOTAL OnOPLLl SPOT NUMoCK IN A R UN 270.683 NUMBER MEAN CIAMFTLR( ) 133.551 VOLUMF 1EAN DIAWETERt MUGELE & EVANS ) 153.346 VOLUME 4EAN OIAMETERC HEKDAN 189.245 SALTER OIAMETKR 173.898 AWEA MEAN DIA^ETEN . 144.180 STANCAkJ OEVIATILN JF DIAMETER, UY 54.431 STANDARD DcVIATIÛ.x OF VOLUME d I A ( HE RD AN ). . 49.898 COEFFICIENT CF VARIATION OF 0IAMLTEP(NUMBER 0.406 CJEFF. OF VAR. OF VOLUME MEAN 01AMETEP(HEROAN)... 0.264

CECMETRIC NUMHLK MEAN DIAMETER(MEOI AN) 121.246 G-:C;^ETRIC VOLUME MEAN 01AMETEK( MED I AN) 182.038 GEOM. STANCAKJ DEVIATION OF NUMi3EK DIAMETER 1.S97 GEOMETRIC STD DEV OF VOLUME DIAMETER 1.336 274

DkUPLCT Dl3T«IBUTiLN PER RUN CISC NU. 2 / DISC SPCLU^cOOO. hJPM / PC TCN TI AL-=-22.0 KV

CLASS CLASS DROPLET FRACT ICN FRACTICN CUMULATIVE CUMULAT NO. AVE.DIA NUMBER NUMBER VCLUME NUMBER VCLUME

1 1 0.8Ç 0.00 C.ÛOOO 0.0000 0.0000 0.0000 2 12.93 0.00 c.oooo 0.0000 0.0000 O.OOOO 3 15.34 0.00 c.ooco 0.0000 o.oooo 0.0000 4 18.20 0.00 C.Û0 00 0.0000 o.oouo O.OCOC 5 2 1.59 0.30 0.C0C7 c.oooo 0.0008 0.0000 6 25.62 0.41 0.00 10 0.0000 0.0018 0.0000 7 30.40 1 .99 0.0049 O.OOCO 0.0066 0.0000 a 36.C7 7.44 0.0182 0.0002 0.0249 0.0003 9 42.80 14.61 0.03 58 0.0007 0.0607 0.0009 10 'ÔC. 79 16.87 0.0414 0 .0013 0.1021 0.0023 11 60.27 21 .44 0.0526 0.0020 0.1546 0.0051 12 71.51 34.15 0 .0837 C.C0 76 0.2384 0.0127 13 64.tE 30.41 0.0746 G .01 13 0.C129 0.0239 14 100.62 1 7.06 C.04ia 0.0106 0.3548 0.0345 13 119.47 56.34 0. 1381 0.0582 0.4929 0.0927 16 141.76 76.77 0.1682 0.1325 0.6811 0.2252 17 168.20 35.96 0.0882 0.1037 C.7692 0.3288 Id 199.58 40.50 0.C993 C.1951 0.8685 0.5239 19 236.€2 45.3 9 0.1113 0.3652 0.9798 0.8891 20 231.OC 8,25 0.0202 0.1109 1.COOO 1.0000 kl 333.43 0.00 O.GCOC o.ococ 1 .0000 1.0000 22 395.64 C.Û0 O.OOCO 0.0000 1,0000 1.0000 23 469.45 0 ,00 0.00 00 O.OOCO 1 .0000 1.0000 24 557.04 0.00 O.OOCO 0.0000 1.0000 1.0000 2b 66C.S6 0.00 c.oooo 0 .0000 1.0000 1.0000

STATISTICS P'=R RUN TOTAL OPCFLBT SPUT NUMÙER IN A f'UN 407.922 hUMd&R MEAN CIAMETER( ) ...... 134.033 VLLUME MEAN DIAMf.Tt.HC MUGELE & VANS 159.275 \LLUME MEAN CIAMETEHC HEKDAN 202.566 CAUTER DIAMETER 185.450 AREA MEAN DIANETEH 147.720 STANDARD DEVIATILiN OF OIAMETEK, BY 62.176 STANDARD DEVIATICN UF VOLUME CI A(HEPDAN ) 51.334 COEFFICIENT CF VAHIATICN OF DIAMETER

CcCMETRIC NblvOCR MEAN DI AMhTbH< MEOI AN) 116.471 C5CMÊTRIC VCIUMF MEAN DIAMETER

DROPLET OISTRIHUTICN FEK PUN CISC NO * 2 / DISC .3P£tLD=600 0 • RPM / PCTENT1AL= 22*0 KV

CLASS CLASS ORCPLET PKACTICN FRACTICN CUMULATIVE CUMULATIVE NO. AVE.CIA NUMUER NUMBER VCLUME NUMBER VCLUME

O.OOOO 0.0000 1 1 G .as 0.00 0.0000 0 .0000 0.0000 0.0000 2 12.93 0.00 c ,0000 0 .0000 0.0000 3 15.34 0.00 0. 00 C 0 G .0000 0.0000 0.0000 4 18.20 0.00 0.0000 0.0000 0.0000 c .0000 5 2 1 .59 1 .48 0.0027 0.0000 0.0027 0. 0000 e 25.62 2.50 0 « 00 46 0 .0000 0.0073 0.0088 0.0000 7 3 €.4 0 0.80 0.0015 0.0000 .0001 3 36,07 2 .20 0. 0040 0.0000 0.0128 0 0.0287 c .0003 •3 •'» 2. a C e .1)4 0.01 58 0 .0002 0.0557 0.0010 10 5C.7S 14. 72 0.02 70 0.0007 0.1128 0 .0034 11 60.27 31 .13 0.0571 0 .0024 .0109 12 7 1.51 be .80 0 .10 79 0. 0075 0.2207 0 .0186 13 34.£5 36 .29 0 • 0666 0 .00 78 0.2873 c 0.0293 14 iac.68 JO.00 0 .0550 0 .0107 0.3423 0.4189 0.0542 li 119.47 41. 71 0. 0765 0 .0249 0 16 141.76 84 .7t5 0. 1555 0.0845 0.5744 • 1387 .2755 17 168.20 82.16 c. isca 0.1368 0.7252 0 0.6375 0.4459 18 19 5 .56 61 .23 0.1125 0.1704 .6953 19 2.i6.e2 53.66 c .0985 0 .2493 0.9361 0 20 28 1.00 28.22 0. 05 18 0.2190 0.9879 0.9143 1.0000 1 .0000 2 1 333.43 0.61 0 .0121 0 .0857 1 .0000 22 39 5.6 4 0 .00 0 .0000 0 .0000 1.0000 1 .00 00 1 .0000 2 3 469.45 0 .00 c .0000 0.0000 .0000 24 55 7.0 4 0 .00 0 .0000 0 .0000 1 .ooco 1 1.0000 1 .0000 25 66 0.56 c .00 c .0000 0 .0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMtJER IN A RUN 544.939 hUPWER MEAN CIAMETER( 145.675

VOLUME i-IEAN CIAMtT.ER( MUGGLE & EVANS 173.000 VtLLUMF 4EAN CIAM5TkR( HERDAN 223.611 SAUTER DIAMEÏER 203.083 AREA MEAN D 160.712 STANDARD DEVIATION OF DIAMETER, QY NUMBER...... 67.938 STANCARJ DEVIATION OF VOLUME U I A( HERO AN )..•«••».•. 61.089 COEFFICIENT CF VARIATION OF DIAMETEF(NUMBER)..... 0.466 CQEFF. UF VAF. CF VOLUME MEAN 01AMETER(HERDAN)... 0.273

CECMETRIC NLMBER MEAN DIAMETER(MEDIAN)...... 128.825 CECMETRIC VCLUME MEAN OIAMETER(MED I AN) 214.176 CECM. STANCAFD DEVIATION CF NUMBER DIAMETER ...•. 1.684 CECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.361 276

DROPLET DISTRIBUTION PER RUN CISC NC. 2 / DISC SPEED=9000. RPM / PCTENTIAL= 0.0 KV

CLASS CLASS DROPLET FHACTICN FRACTION CUMULATIVE CUMULATIVE volume nu. AVE.CI4 NUMBER NUMBER VOLUME number o O

f .0000 o.ocoo c.0000 1 10.39 0 0 .0000 0 0 .0000 2 12.S3 0 .00 0 .0000 0 .0000 0.0000 .0000 3 15.34 0.00 c.0300 0 .ooco 0.0000 0 .0000 4 1 e.20 0 .00 c .0000 0 .0000 o.ocoo 0 C.0008 0 ,0000 5 21.59 0.61 0 .0006 0 .0000 6 25.62 2 .13 0.0026 c .0000 0.0034 0 .0000 0.0562 .0009 7 30.40 42.59 0.0528 0 .0008 0 0.1089 0.0023 8 36.C7 4 2• 46 0.0526 0.0014 9 42.80 45 .6 3 0 .0566 0.0025 0.1654 0.0048 0.22S2 0.0095 10 50.7S 51 .42 0,0637 0 .0047 0.3115 0.0198 11 60.27 66.43 0.08 24 0.01 02 0.35S3 0.0297 12 71.51 36.49 0.0477 0 .0099 0.4338 0.0555 13 84.05 60.08 0.0745 0.0258 0.5218 0.1064 14 100.66 70.98 0.0880 0.0510 0.6500 0.230 4 15 119.47 103.39 0.1262 0 ,1240 0.82U8 0.5194 16 141.76 144.26 0.1789 0,2890 0.y8S8 0.9539 17 166.20 129 .82 0 .lb 10 0.4345 .0000 1 .0000 18 19S.58 8.24 0.01 02 0.0461 1 1.0000 1 .0000 19 236.62 0.00 c,0000 0.0000 1.0000 1 .0000 20 28 1.CO 0.00 0.0000 0.0000 1.0000 1 .0000 21 333.43 0.00 0.0000 0.0000 1 .0000 22 395.64 0.00 0.0000 c.0000 1.ccoo ,0000 1 .0000 23 469.4b 0.00 0.0000 0.0000 1 I'.OOOO 1 .0000 24 557.04 0.00 0.0000 0.0000 - 1.0000 1 .0000 25 660.96 0.00 c .cooo c .0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 806.515 NUMBER MEAN CIAMETERf 102.589 VOLUME MEAN DIAMETER( MUGELE & EVANS )..... 120.744 VOLUME MEAN CIAMETER< HERUAN ...««.« 147.131 SALTER DIAMETER * '' 138.332 AREA MEAN ClfMCTER .... 112.866 STANGARJ DEVIATION OF DIAMETER, BY NUMBER...... 47.139 STANDARD DEVIATION CF VOLUME 29.450 COEFFICIENT CF VARIATION OF DIAMETER

GEOMETRIC NUMBER MEAN 01AMETEF(MEDI• 89.952 GEOMETRIC VOLUME MEAN 0I AMETtF(MEDI AN) 143.400 CECM. STANCARO DEVIATION OF NUMBER DIAMETER ••••• 1.726 GEOMETRIC STC DEV OF VOLUME ClAMETEF 1.277 277

DRCPLLT DISTRIUUTIGN PEK kUN CISC NO. 2 / DISC SPCED=gOOO. RPM / POTENTIAL= -8.0 KV

CLASS CLASS DROPLET FRACTILN FRACTION CUMULATIVE CUMULATIVE NU. AVE.DIA NUMOER NUMdER VOLUME NUMBER VOLUME

o.oooc 0 .0000 1 1 o.a<5 0.00 o.rooo C .0000 0.0000 % 12.97 0.00 C.0000 0 .0000 0.0000 3 15.34 0 .00 o.coco G .0000 o.cooo 0.0000 0 .0000 0.0000 4 1«.20 0.01 0.0000 0 .0000 o.ocoo 5 21.59 2.01 0.0042 0.0000 0.0043 0.0001 6 25.62 2.52 0.005 3 0 .0001 0.0096 7 30.4C 6 .93 0.0146 0 .0002 0.0242 0.0003 <3 36.07 11 .0 3 0 .0233 c .0306 0.0475 0.0009 9 42.80 1 i .74 0.0374 0 .0017 0.0849 0.0026 0.0062 10 50. 79 23 .24 0. 04 90 0 .0036 0.1339 0.0163 11 60.27 ja.u7 0.08 15 0 .0 101 0.2154 0.0370 12 7 1.51 4 7 .46 C. 1001 0 .0207 0.3155 0.0866 13 d4. €5 68 .05 0.1435 0 .0496 0.4590 14 IOC.68 56 .08 0.118 3 0 .0683 0.5772 0.1549 15 119.47 62.82 0.1325 0 .1278 C.7097 0.2827 16 141.76 65 .92 , 0.1390 0 .2240 0.6487 0 .5067 0.7974 17 168.20 51 .21 0. 1080 0 .2907 0.9567 0.9806 la 199.58 19 .32 C.04Û7 0.1832 C.9974 1.0000 19 236.82 1 .23 0. 00 26 0 .0194 1.0000 1.0000 20 231.OC 0 .00 C.OOOO 0 .0000 1.0000 21 333.42 0.00 0. CÛÛO 0 .0000 1.0000 1 .0000 1.0000 22 395.64 0 .00 0.00 00 0 .0000 1.0000 1.0000 23 469.45 0 .00 G.GOOO 0 .0000 l.OOOO 1.0000 24 557.04 Û .00 O.OCUJ 0 .0000 1 .0000 1.0000 26 660.96 0 .00 0.0000 0 .0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 474.237 tUMQER MEAN CIAMETERi 104.189 VOLUME MEAN OIAMETER( MUGELE Ù EVANS 120.853 VOLUME MEAN DIAMFTERC HÇRDAN 150.540 SAUTER DIAMETER 138.202 AREA NFAN DIAMETER . 113.095 STANDARD DEVIATION OF DIAMETER, BY NUMEEM...... 44.037 STANDARD DEVIATION OF VOLUME DI A { HERDAN. 38*471 COEFFICIENT CF VARIATION OF CIAMETEF(NUMBER)..... 0.423 COEFF. OF VAF. OF VOLUME MEAN DIAMETER(HERDAN)... 0.256

GECNETRIC NLfBEK MEAN 94.284- GEOMETRIC VOLUME MEAN 0 IAMETER(MED I AN) 144.869 GECM. STANCAFO DEVIATION OF NUMBER DIAMETER 1.597 C-ECMETfilC ST C DEV OF VOLUME DIAMETER 1*338 c\ rv Ci n r> n in m ik m C C T H M fV3 ru M H* #-# m m rr e* w n D c -4 H ZI > C D C D en w ro o «r. Cû S u> n o n n m m > > m r r r 3: H o rj O iT' a- o oi f: Ci ru w 3C s s 3L m n Z z i> •H c c o > m m n •n •n n o m s m r "4 H «4 • t> 1» (A X 7} 2 73 m m 23 » n » m o Ov U) Cu lii f\> ro K» w K". M* M# H c- M C V > O & s 3: 72 O U1 u 0) K# n > m c w sO 0^ O a- N a- 01 f- u ûi ru ro N- H- O •n m 7 M m m m O (n n N {J1 w H* %n H» (S »— O o a ru 0% o Ul m (J1 M o Z 7 n o > 1» > > T3 H $ • # • • • • (/) n «r • # • $ 7 < M m m n 2 7 Z ? r > lA o o > o m ai •si 4> /n fU fti ru N OD A m > S in O C M en o S m H H rn » > (/) H rr. O m ;p G < M -) > > -0 w < m (ài u O K» S Ce a o\ 0". ru M* "n > O n m • 2 2 m O n O o o o o •— C *£) o %û O sù o a cc o N u ru o o O o < ? z X Z XI • n n H H (r, # # # • • o m Kt # ê • # • m < • H H m o o o o o M* o #-# m* o: W /U 0* N -w L o o O c -n > > c > a C • • m m % Z tJ o o o o o Ui vo H 7 7 r H "tl "D 53 3 C m u u 0: •Ni OJ Où se o \Û N fu o o c < c • k £ 73 d O # C t-HO 3E O < O # cr r Z m 2 n M « # % 2 • m X! c b > * r > « m C • X c o o o o o o o o o o o o cv Cï O r* o O o o o o a o o s o % % 2 a c 2 # 71 r. • z • • • • m n $ # m m m T 2 m • ê c m $ o o o o o o c O M h' Cl Ci o o o o O o o O o o Ci o H H > (T. H • * > r # z o o o Q w o u w K* c 4^ cc •sO s s s 01 ro M» o O o o O o 7 m m 7 n m • • 7 n ê c o o o o M (U Oî O M* ru ru u H* ro 00 01 (JJ lU c o o o C 71 Tl M a 7: # « m > o o c c- o ai m CL 0> c a o u O cr w (w 01 c o o o Z O > # • Cl * 3: Cû 3 2 2 V • * » # %) n m rr n > m cc • • • m • c -1 n o • * k-iD 2 H % < • < • z m rr m rr • • • > # o o o o o o o o o o o o o o o o o o o o o o o o o •Si n "& t» —4 X) • M 71 7 • » 7 # • 7 z m o C • • • (/) # # o o o o o o w M • 1> w ro ru o o o o o Ci o o o o o o o o o 71 z ï> 2 • # e o o o c o N cr • « w si Càj ru o o o o o o o c o o o c 2 c 7 CE # • * # o o o o o 01 •— • • œ ro o o o vO ai u o o o o o o Ci o rr % 2 m # é « • # o o o o o s o ro Œ ro ù c u O! oi ru o o o c. o o » -i • • m OC # X) • * • • # • m • é 30 n • • • • • « $ * • • o 33 • • # • • # # • # • i> « • • • » • # • • • • • • • # # 7 M M M o o o o o o O o Cï o o • # o o o o o o o o • • w • • • • • • • • • • # # # • # e # • e # • # e • # • • * é • • • • • « • • # # c o o o o o » • • \0 OC si Ch in ro H* o o O o o o o o • « • • • • • » # o o o Cr 03 w o CD 01 U ru o en ro o o o o o o o o o o 01 o ro C\ u* w vû O Cv o o w* CD 01 o o o o M M» W" •si O Cl fU O CD »— e O) M o o N iC O OJ O O» o #-* M* w M* o o o o O o o O o o o o O # • # # a o o o o o • • • • e • # * # e # • # # # • (\> » • # # • • • • N w 03 #-# 0\ o o o o o o M •g N Ul ru o o O o o o o O o o o o o o M w o (jJ N (n Ù) t-* C\ o o o o Ov o o ru o O! Ni tu N* o o o o o o o o o o N fo PO fo (Ji a N O M# Oj o o o o o »-* •— o *o ru o m* Oî fu o o o o o o o o o o o o o o (AJ N u\ u o s in s ru o o o o o o 279

DROPLET ÛISTHIBUTICivI PfcR RUN CISC NC. 2 / DISC SPFtO=9000. RPM / POTENT[AL=-22.0 KV

CLASS CLASS DROPLET FRACTION FkACTICN CUMULATIVE CUMULATIVE NC. AVE.CI 4 NUMBER NUMBER VOLUME NUMBER VOLUME

1 1 C .8H> 0.00 0.0000 C.0000 0.0000 0.0000 2 1 2.93 0.00 c.coco 0.0000 0.0000 0.0000 .

o 15 .34 0 0 0 0.0000 0.0000 c.ccco 0.0000 0 0 4 ie.2C O.COCl 0.0000 0.0001 0.0000 5 21.55 1.15 0.C018 0.0000 0.0019 0.0C0Û 6 25.(2 1 1 .97 0.C182 0.0002 0.0201 0.0CO2 7 3C.4G 27.14 0.04 13 0.0006 0.0615 0.0008 a 3fc .C 7 63.36 0.C965 0.0025 0.1579 0.0033 s 42.80 66.95 0.1019 0.0044 0.2599 0.0076 10 50.79 59.17 C.t901 0.0064 0.3500 0.0141 11 60.27 66.00 n,10 05 0.0120 0.4505 0.0261 12 71.5 1 17.61 0.0268 0.0053 0.4773 0.0314 13 84.€5 18.86 C.0287 0.0096 0.5060 0.0410 14 100.68 40.0 7 0.C610 0.0339 0.5670 0.0749 15 119.47 54.18 0.0825 0.0767 0.6495 0.1516 It 141.76 77.43 0.1179 c.iezo 0.7674 0.3346 17 168.20 131.42 0.2001 0.5190 0.9675 0.8536 Ifc iy9.se 20.06 C.03 05 0.1323 0.9961 0.9659 19 236.€2 1.27 0.00 19 0.0141 1.0000 1.0000 20 281.00 0.00 C .C'JOO 0.0000 1.0000 1 .0000 21 313.43 0.00 C.C'OOO 0.0000 1.0000 1.0000 22 39 5.6 4 0.00 C.OOOJ 0 .0000 1 .0000 1.0000 ê3 469.45 0.00 0.0000 0.0000 1.00 00 1.0000 24 557.C4 0.00 0.00 00 0.0000 1.0000 1.0000 25 66 0.96 0.00 0.00CO 0,0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMdER IN A HUN 656.736 NUMBER MEAN CIAMETEk( 97.521 VOLUME ME/UN CIAMETER( MUGELE 6 EVANS ) 122.365 VOLUME MEAN DIAMETERC HERRAN ) 158.103 SALTEK DIAMETER 147.295 AREA MEAN CIAMETEH .. 111.610 STANDARD DEVIATION OF DIAMETEG, BY NUMBER 54.322 STANCARD DEVIATION OF VOLUME 01 A(HEPDAN. 32.114 COEFFICIENT CF VARIATION OF DIAMETEF(NUMflEfiJ..... 0.557 COEFF. OF VAF. OF VOLUME MEAN DI AME TEFi(HERDAN) .. . 0.203

CECMETRIC NLMGER MEAN DI AVETEF

DROPLET DISTRIBLTICN FER RUN CISC NO. 2 / DISC SPEE0=9000. RPM / PCTENTIAL= 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC( AVE.CIA NUMdER NUMBER VOLUME NUMBER VOLUME

0.0000 o

o 0.0000 1 10.89 é O 0 .0000 C .0000 2 12,92 0.11 0 .0001 0.0000 0.0001 0.0000 3 15.34 1 .86 0 .0020 0 .0000 0.0021 0.0000 4 18.20 2 .62 0.0029 0 .0000 0.0050 c.oooo 5 2 1.59 7.49 0 .0082 0.0000 0.0132 0.0000 6 25.62 20.93 0.0229 0.0001 0.0360 0.0002 7 30.40 29.80 0.03 25 0.0004 0.0686 0.0005 0.0010 8 36.07 23.30 0.0254 0.0005 0.0940 9 42.80 14.97 0.0163 0.0005 0.1104 0.0015 0.0023 10 5C.79 15.42 0 .0168 0 .0008 0.1272 0.0046 11 60.27 24.24 0.C26 5 0.0022 0.1537 0.0120 12 71.51 48.45 0.0529 0.0074 0.2066 13 84.£5 lbO.12 0.1639 0.0384 0.3705 0.0504 14 ioo.ee 145.50 c• 1589 0.0622 0.5294 0.1125 15 119.47 129.0 7 0.1409 0 .0921 0.6703 0.2 046 0.3191 lb 141.76 96.02 0.1048 0.1145 0.7752 17 168.20 75.37 0 .0323 0.1501 0.8575 0.4692 18 195.58 91.71 0.1002 0.3052 0.9577 0.7744 0.9749 19 236.£2 36.07 0.0394 0.2005 C.9971 0.0251 1.0000 1.0000 o 281.CC 2.70 0.0029 1.0000 21 333.43 0.00 0.0000 0.0000 1.0000 22 395.6-4 0.00 0.0000 0 .0000 1.0000 1 .0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.04 0.00 0.0000 0.0000 1.0000 1.0000 25 66 0.96 0.00 c.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 915.740 NUMBER MEAN CIAM&TER( 115.287 VOLUME MEAN DIAMETER* MUGELE & EVANS ) 137.598 VGLLME MEAN CI AMHTER( HERDAN )... 178.200 SALTER DIAMETER 161.120 tiEfi MEAN 127.252 STANCARD DEVIATION [IF DIAMETER. BY NUMBER 53.901 STANCARD DEVIATION OF VOLUME DI/> (HERDAN) 49.453 COEFFICIENT OF VARIATION OF DIAMETER*NUMBER)..... 0.468 CQEFF. OF VAP. OF VOLUME MEAN 01AMETFR(HERDAN)... 0.278

GECMtTRIC NUNBER MEAN DIAMcTEK(MEDIAN).101.121 C2CMETRIC VOLUME MEAN DI AMETEF(MEDI^N) ...... 170.307 GLCM. STANDARD DEVIATION OF NUMBER DIAMETER ..... 1.740 GECMETRIC STC DEV OF VOLUME tlAMOTEF ...... 1.372 A C, r> A n r\ (n (n en C < -y ni m m m c O H H X; > a O C a tn4»0jt\j^o*octi->io.oi^s-ujw^o»f. n n n n n m m > > r" r r r s —1 c n o iti f. u fv m» z f W z s •z s T| -n o > en Z Z i> H c c CÛ > • > % 7> m m T) ZI (/) XI n X z m V z M 0\ Oî u u ro r\) > ~i û M a c- > o 2 z % cr- 01 a- c vj ce w vC 0> f- 1— a s H* o n > m r T) m 7 m o O a Uî u U M M < n « m m ifi o •NJ tn U fk m M* o «• o e> M e> Q tn n> (n to O m r z z o c > t> t* > Tl M ft ft ft ft ft • A • • • » * • • t/i n < r < H rn m # • • > u a s z z Z r t» lA O m 4s o dû U1 ru N ON flom ro s 0& r> «• n\ (H t\) lit Ce o tf) H 1» n c t» c <• rn n H O a\ U o ro no o (T\ N a U1 \r> o N O N U5 o to- u t-x tn n 71 r * 7! n •-4 tx t» -4 n *4 W t» •s O c a • •n > > z m a a C/) o s m -4 -1 m j) > (r H n O m X O < #4 > z *0 M 1-» z D o o < c 73 71 m tl > O o m # z 2 m o n o I\) f- CD sD u ro o M ro ro o o o o o o o < 2 X) * 2 D 01 O 2 2 2 r m m H H m • * • • • • • • • • • o m n < # -i H m o u *0 vo •P- S u ro s CO u > C > C C # • m m X) Z T3 c o o >c (JO O ce Ul Œ tn •- *• o ro o o o t-» O o o o o X m 0) m H z z r H T # V %] C m < c # e X X- H •0 H o n o c s n < C # a- m r z t-l m c * • m O z r. z m X n o c > > r > • # m c x- c o o O o Q o O O a o o o O o o o o Q o O o o o o n Tl (/) z o s 2 2 o c 2 • X o z • z II m T1 m # c > Ui -» m m •n z ni o m ft o o o rv o o o o o o o o o o o c o o o o o o 33 H H > M # # > r # o M #— p s n e> H 2 u S ro f' f- t\) o M w H" ro OJ M o o o o o o o œ H o w o Z m m z o rri # 2 m • o (T- (n o »-» «g t-< vC M •>1 Oi o N m if) u •si «û N fo o o o o m M o CE C 71 71 G T. # # > o U ir. o u, Ul O c. O M a» rv Ul -u f\i Ul o -y o o o o 73 n • > z C' # • D • C to s # z H CE X S 2 > # # # 73 i-i 00 m m ni m # # # 73 > m a. # m C C H XJ O o 2 H X < • # # < # Z TJ n # n 2 Z m m m # # > # o o o o o o o O o O o o o o o o o o o o o o o o o < 73 T) n t> to 71 r # # • y # H 7 ft • • • • • • • • • • • • e • • • n T3 z z m o r # # • (n • ft o o •— w to V w u ro o o o o o o o o o o o o o o o o o o o r n m é > XI z to 2 # # # # ft o vû «-« U", 0" O o o • « c o o o o o o o o o o o o o o c H 73 3 c Z œ # # # • ft o o OV ro #- • • • -J ro 0* ro o o o o o o o o o o o o o o o 2 "0 m r 2 m # # # • ft o (Jl f\3 u OD u M 01 Ul o u GJ W o o o o o o • H • • # # # # a o m o o 33 m Œ ZI -4 C • m • • 73 m • # • # * # ft z • % • • D a ê # # # # • ft m z * • • > » # # # $ # ft m z • * * # ? c H Z • • # • # # # ft •— M o o o o o o o o o o o o o o o o o o o o o o o • • • • • # c z w • # # • » ft ft • • • » • * • • • # • • • • » é • • • • • • * • • • % c > » « • • # • e • # ft ft o o tn *n «0 01 w M I-» M» w o o o o o o o o o o • « • • # « • • # • • ft ft CD r r o o CD O- o t» 4» ^û N OJ o o o Uj t— o o o o o o m t> II * • • • • # • # • # # • ft ft o o w 05 CD 00 tn CD o «û ro t »-« \Ù ro *- o H* Ul o o û o » H o o -vl u Ce M s N ro N •0 ro 01 Ul 01 Ul K.» n . "4 o\ 01 N Oc w o o o o o o o o c o o o o o c o o o o o o o o < c 7: ft ft ft ft ft ft ft • ft ft ft ft ft # • • • • • • • n o o 0\ ro • • • • • • • • • • o X < o\ %o Ov O) o o te t M* o o o o o o o o o o o o o o o o o o o r c n oj w »-* r\) O w o GJ N 01 OJ OJ o o o o >1 N o o o (J\ fv) 01 û> U o o o o o o o o o o o o o c r Oî o O fVi N N 00 o o (C M Ch w ÙJ o IV) w o 6 o o o o o o o o o o o 2 > o o c f- ro 00 o 0^ •p- o 01 tC 0* f- w o o o o o o o o m -H < m 282

DROPLET DISTRiaClTICN PER RUN CISC NC« 3 / DISC SPEEO=3000. RPM / PûTENTIAL= -8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULAT NC. AVE,CIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.00 0.0000 0 .0000 0.0000 0.0000 2 12.93 C.OO C.OOOO 0 .0000 0.0000 0.0000 3 15.34 0.00 O.COOO 0.0000 0.0000 0.0000 4 18.20 0.0 0 0.0000 0.0000 0.0000 0.0000 5 2 1.59 0.30 0.0024 G.OOOO 0.0024 0.0000 Ù 25.(2 0.48 r.oo3a • 0 .0000 0.0C62 0.0000 7 30.40 8,37 0.0661 0.0001 0.0724 0.0001 8 36.C7 7.18 0.0567 0.0001 0.1291 0.0001 9 42.80 5.03 0.0398 0.0001 0.1688 0.0002 10 5 0.79 3.45 0.0272 0 .0001 0.1961 0.0004 11 60.27 2.53 C.0200 0.000 1 0.2161 C.0005 12 71.5 1 0.97 0.0077 0.0001 0.2237 0.0006 13 34.85 3.45 0.0273 0.0005 0.2510 0.0011 14 ICO.68 1.04 0.0J82 0.0003 0.2592 0.0014 15 119.47 0.79 0.0063 0.0003 0.2655 0.0017 16 141.76 1. 78 0.0140 0.0013 0.2796 0.0030 17 168.20 4.97 0.03SJ 0.0059 0.3188 0.0089 18 199.58 7.50 0.0593 0.0150 0.3781 0.0239 19 236.62 8.06 0.0700 0.0295 0.4481 0.0534 20 201.00 15.96 0.1261 0.0888 0.5742 0.1422 21 333.43 21.46 C. 1695 0.1994 0.7437 0.3416 22 395.64 22.14 0. 1749 0.3437 0.9186 0.6853 23 469.45 7,59 0.06CO 0.1969 0.9785 0.8822 24 557.04 2.72 0.0215 0.1178 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DKCPLE1 SPOT NUMBER IN A RUN 126.602 hUMBSR MEAN CIAMET£R( ) 251.185 VOLUME MEAN OIAMETERf MUGELE & EVANS ...... 315.662 VOLUME I4EAN DIAMETER* HEKOAN )... 396.767 SALTER DIAMETER 372.900 /REA MEAN DIAMETER . 290.678 ST4N0/R0 DEVIATION OF DIAMETEF, BY NUMBER. 146.868 STANDARD DEVIATION OF VOLUME OIA(HERDAN)...... 09.198 COEFFICIENT CF VARIATION OF 01AMETEP(NUMBER) 0.585 CUEFF. OF VAF. OF VOLUME MEAN 01AMETER{HERDAN)... 0.225

GfcGMETRIC NLNBER MEAN DI AMET ER( MED I/ÛN )..... 185.423 GEOMETRIC VCLUME MEAN DIAMETEF(MEDIAN) ...... 365.837 CECI». STANCARD DEVIATION CF NUMBER DIAMETER ..... 2.514 GHCMETRIC STD DEV OF VOLUME DIAMETER ...... 1.279 283

DROPLET DISTRIBUTION PER RUN CISC NO. 3 / DISC SPEEO=3000. RPM / POTENTIAL- 8.0 KV

CLASS CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULATIVE NC. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

I 1 G.89 0.00 C.OÛOO 0.0000 0.0000 0,0000 2 12.93 0.00 0 .0000 0.0300 0.0000 0.0000 3 15.34 0.00 0.0000 0 .0000 0.0000 0.0000 4 1 e,20 0.01 C.OOCl 0.0000 0.0001 0.0000 5 2 1.59 1 .83 0.0124 0.0000 0.G124 0.0000 6 25.€2 2.13 0.0144 0.0000 0.0268 0.0000 7 3C.40 5.11 0.0344 0.0000 0.0612 0.0001 8 36.C 7 1 1 .99 0.08C8 0 .0002 0.1420 0.0002 9 42.80 16.02 0. 1080 0.0004 0.2500 0.0006 10 50.79 1 I.42 0.076 J 0.0004 0.3269 0.0010 11 60.27 4.64 0.0312 0.0003 0.3581 0.0013 12 71.51 1 .96 0.0122 0.0002 0.3714 0.0015 13 34.€5 4.94 0.0332 0.0009 C.4046 0.0023 14 100.68 2.50 0.0169 0.0007 0.42 15 0.0031 15 119.47 3.55 0.0239 0.00 1 7 0.4454 0.0048 16 14 1.76 5.31 0.0358 0.0043 0.4812 0.0091 17 168.20 5.13 0. 0346 0.0069 0.5157 0.0160 Id 139.58 5.58 0.03 76 0.0126 0.5534 0.0286 19 236.62 5.50 0.0371 0.0207 0.5904 0.0493 20 231.OC 7.91 0.03 33 0.0497 0.6437 0.0990 21 333.43 29.01 0. 1954 0.3047 0.8392 0.4037 22 395.f 4 9.05 0.0610 0.1588 0.9002 0.5625 23 46 9.4 5 14.65 0.096 7 0.4295 0.9989 0.9920 24 55 7.C4 0.16 0.00 11 0.0080 1.0000 1 .0000 2b 66 0.96 0.00 0.0000 O.OOOO 1.0000 1.0000

STATISTICS PER RUN TOTAL DRCPLEl SPOT NUMBER IN A RUN 148.439 hUMHER MEAN CIAMETER( 201.739 VOLUME MEAN CIAMETEfi( MUGELE & EVANS 287.404 VOLUME MEAN DIAMETER( HERDAN ) 394.095 CALTER DIAMETER 369.610 /REA MEAN DIAMETER ...... 253.651 STANCARJ DEVIATION OF DIAMETER. QY NUMBER...... 154.273 STANCARD DEVIATION OF VOLUME DIA(HERDAN) 80.442 COEFFICIENT CF VARIATION OF CIAMETEF(NUMBER) 0.765 COEFF. OF VAK. OF VOLUME MEAN DIAMETER(HEROAN)... 0.204

CECMETRIC NUMBER MEAN DIAMETER(MEDIANi 133.672 GECMETRIC VOLUME MEAN DIAMETER(MEDlAN) 383.976 GECM. STANCARD DEVIATION CF NUMBER DIAMETER 2.704 GEOMETRIC STC DEV OF VOLUME DIAMETER . 1.279 284

ORUPLET UISTHiatTION PER RUN CISC NC. 3 / DISC SPEtD=3000. RPM / POTENTIAL=-22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.CI/1 NUMBER NUMBER VCLUME NUMBER VCLUME o o # I ic.es O O.OOCG C .0000 0.0000 0.0000 . 1 2.S3 0.00 C .0000 0.0000 0.0000 0.0000 3 15.24 0.14 0.0309 0.oooc C.0009 0.0000 4 18.20 0.35 0.00 21 0 .0000 0.0029 0.0000 5 2 1.59 0.44 0.0026 0.0000 0.0056 0.0000 6 25.€ 2 0.46 0.0027 0.0000 0.0083 0.0000 7 30.40 0 .3 5 0.0021 0 .0000 0.0104 0.0000 8 36.C7 0.80 0.0040 0.0000 0.0151 0.0000 y 42.80 2.11 0.0126 0.COG 1 0.0277 0.0001 10 50.79 2.59 0.0154 0.0001 0.0431 0.0002 11 60.27 6.31 0.0376 0.0004 0.0807 0.0006 12 71.5 1 7.32 0.04 36 0.0008 0.1243 0.0014 13 84.6 5 3.73 0.022 2 C.0007 0.1465 0.0022 14 130.68 4.7V 0.0285 0.0015 0.1750 0.0037 15 119.4 7 7.97 0.0475 0.0043 0.2225 0.0080 16 14 1.76 11.54 0.068 7 0.0103 0.2913 0.0183 17 168.20 20.03 0.1193 0.0299 0.4106 0.0481 16 199.58 13.33 0.C794 0.0332 C.4900 0.0813 19 236.82 7.23 0.04 30 C.0301 0.5330 0.1114 20 28 1.0 0 26.51 0.1579 0.1844 0.6909 0.2958 21 333.42 39.31 0.234 2 0.4567 0.9251 0.7525 22 395.€4 12.30 0.0733 0.2288 0.9964 0.9913 23 469.45 0.27 0.0016 0.0087 1.0000 1.0000 24 557.04 0.00 C .0000 0.0000 1.0000 1.0000 25 66Co96 0,00 0.0003 0 .0000 1. oooo 1.0000

STATISTICS PER HUN TOTAL DROPLET SPOT NUMBER IN A RUN 167.874 NUMBER MEAN C1AM£TER( i 225.605 VCLUME MEAN DIAMETEKC MUGELE & EVANS ).* . 266.723 VLLUME MEAN DIAMETERl HERDAN 323.705 SALTER DIAMETER 305.457 AREA MEAN ClfMETHR 249.448 STAND/RD CEVIATICN OF DIAMETEF, fcJY NUMBER.. 106.745 STANDARD DEVIATION OF VOLUME OIA(HEROAN) 63.188 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER) 0.473 COEFF. OF VAF. OF VOLUME MEAN DIAMETER(HERDAN)... 0.195

GEOMETRIC NUMBER MEAN DI AM£TEfi( MED I/>N ) 192.797 GEOMETRIC VCLUME MEAN DI A METE K( MED I/IN ) 315.942 GECM. STANCARD DEVIATION CF NUMBER DIAMETER 1.873 GECMETRIC STC DEV OF VOLUME DIAMETER 1.268 285

DRCPLET DISTRI8UTI0N PEW RUN DISC NC. 3 / DISC SPEEO^aOÛO. XPM / PCTENTIAL= 22.0 KV

CLASS CLASS DHOPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NL. AVE.CI A NUMBER NUMUEK VCLUME NUMBER VOLUME

1 10.89 0.00 O.COOO 0.0000 0.0000 0.0000 o 2 1 2.S3 O O 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 C.OOCO 0.0000 0.0000 0.0000 4 18.20 0 .00 C.CJvO 0.0000 0.0000 0.0000 5 21.59 0.52 0.0028 0.0000 0.0028 0.0000 6 25.62 0.61 C.0033 o.ooco 0.0061 0.0000 0.85 0.0046 0.0000 0.0107 0.0000 7 30.40 0 o o 0 8 36.C7 0.004 3 0.0000 * 0.0150 0.0000 • 9 42.<30 o o 0.00 21 C .0000 0.0171 0.0000 10 50.79 0.83 0.0045 0.0000 0.0216 0.0001 11 60.27 2.44 0.01 31 0,00%2 0.0347 0.0003 12 71.5 1 5.72 C.0307 0.0007 0.0654 0.0010 1 j 84.£5 11 .07 0.05 95 0.0023 0.1249 0.0033 14 IOC.68 15.27 0.0820 0.0053 0.2069 0.0086 15 119.47 12.45 0.0669 0.0072 0.2737 0.0158 16 141.76 10.60 0.0569 0.0103 0.3306 0.0260 17 168.20 24.91 0.1337 0.0403 0.4644 0.0663 18 199.56 19.66 0.1056 0.0531 0.5699 0.1195 19 236.S2 19.14 0.1028 0.0864 0.6727 0.2059 2 0 28 1.00 22.35 C.1200 0.1685 0.7927 0.3744 21 333.43 24.42 0.13 11 0.3077 0.9238 0.6822 22 395.64 12.83 Cm 0689 0.2700 C.9927 0.9522 23 469.45 1 .36 0.0073 0.0478 1.0000 1.0000 24 . 557.04 0.00 C.OOOO 0.0000 1.0000 1.0000 25 660.96 0.00 0.00 0 0 0.0000 1.0000 • 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 186.253 NUMBER MEAN CIAMETER( 209.117 VOLUME MEAN DIAMETERt MUGELE & EVANS ). 250.769 VOLUME MEAN CIAMETERt HERDAN ).. 320.203 SALTER DIAMEIER 293.682 AREA MEAN DIAMETER ....,...... 231.917 STANDARD DEVIATION UF DIAMETER. BY NUMBER 100.549 STANDARD DEVIATION OF VOLUME DIA(HERDAN)...... 79.253 COEFFICIENT CF VARIATION OF OIAMETEW(NUMBERi..... 0.481 COEFF. fJF VAF. CF VOLUME MEAN DIAMETER (HERDAN)... 0.248

GECMEIRIC NUNBER MEAN OIAMETER(MED I AN) 182.413 GEOMETRIC VCLUME MEAN DIANETEF(MEDIAN) 300.434 GECM. STANDARD DEVIATION OF NUMBER DIAMETER 1.752 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.338 286

DRCPLET OISTHIULTICN PEN RUN CISC NO. 3 / DISC 3PtED=ô000. RPM / POTENTIAL= 0.0 KV

CLASS CLASS DROPLET FKACTICN FRACTION CUMULATIVE CUMULATIVE NC. AVE.CIf NUMBER NUMBER VCLUME NUMBER VOLUME

•coco 0 .0000 1 1c.ys Û .00 0 .0000 0 .0000 c 0 .0000 0 .0000 2 12.92 0.00 c .0000 0 .0000 .0000 0.0000 3 15.34 0.00 c.0000 0 .0000 0 .0000 4 Ie. 20 0 .03 0.0001 0 .0000 0 .0001 c 0.0166 0.0000 5 21.59 7.41 0.0165 0 .0000 0.0001 6 2 5.62 8.6 5 0.0192 0 .0001 0.0358 .0003 7 30.40 19 .74 0.0439 0.0002 0.0797 0 .0004 .1336 0.0007 a 3 6. C 7 24.25 Û.05 39 0 0 .1334 0.0014 9 42.60 22.42 0.04 98 0.0007 0 .2558 0.0030 10 5C .79 32.57 0.0724 0 .0016 0 .3287 0.0058 11 60.27 32.82 c.0729 0.0027 0 0.3765 0.0088 12 71.5 1 2 1.50 0.0478 0.0030 .4527 0.0168 13 84.65 34.27 0. 0762 0.0080 0 .5077 0.0264 14 100.68 24.78 0.C551 0.0097 0 .5516 0.0393 15 119.47 19.76 c.043 9 0.0129 0 0 .5994 0.0627 16 141.76 21.50 c. 04 78 0.0234 .6471 0.1017 17 168.20 21.45 0.0477 0.0390 0 .2346 m 199.58 43. 78 c.0973 0.1330 0. 7444 0 .9056 0 .6026 19 23€.£2 72.5 ^ c.16 12 0.3680 0 .3046 0 -9854 0.9072 20 281 .00 35.94 0.07 99 0 .0928 1 .0000 1 .0000 21 333.43 6.55 0.01 46 0 .0000 22 395.64 C.00 0 .0000 0 .oooc 1. 0000 1 .0000 23 469.45 0 .00 0 .0000 0 .0000 1.0000 1 .0000 24 55 7.C4 0.00 0 .0000 c .0000 1 .0000 1 1 .0000 25 66 C. 9 6 0 .00 c ,0000 0.0000 1 .0000

STATISTICS PEH RUN TOTAL DRCPLET SPOT NUMBER IN A RUN 449.975 NUMi3E;R MEAN L"IAMETEH( 134.684 VCLUME ME4N OIAMETEH( MLGELt & EVANS 179.762 VOLUME MEAN UIAMETEHt HERÛAN ). 243.786 225.469 SALTER DIAMETER 160 AKEA MEAN DIAMETER ...... 629 STANCARO DEVIATICN OF DIAMETER, BY 87.630 STANCAR.) DEVIATION OF VCLUME DI A (HERD AN) • 53.027 COEFFICIENT CF VARIATION GF CIAMETER{NLMBER)..••. 0,651 COEFF. OF VAR. OF VOLUME MEAN DIAMETER

GtCMETRiC 1\UM8ER MEAN 01 AMETER(MED I AN . 104.115 GECMETKIC VCLUME MEAN DIAMETER(MED I AN) ...... 236.352 CECM. STANC/RD DEVIATION GF NUMBER DIAMETER ..... 2.142 CECMETRIC ST C DEV OF VOLUME DIAMETER ...... 1.313 287

DROPLET OISTRIfcJUTICN FER RUN CISC NO. 3 / DISC SPEED=6000. RPM / PGTENTIAL= -8.0 KV

CLASS CLASS DROPLET FRACTILN FRACTION CUMULATIVE CUMULATIVE NO. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 0.00 C.GOOD 0.0000 0.0000 0.0000 2 12.93 0.00 0.00 CO 0.0000 0.0000 0.0000 3 15.34 0.00 C.0000 0.0000 0.0000 0.0000 4 18.20 0.00 0.0000 C.0000 0.0000 0.0000 5 2 1.59 0.6b 0.00 n 0.0000 0.0011 0.0000 6 25. e 2 1.18 0.0021 0.0000 0.0032 0.0000 7 30.40 10.14 0.0176 0.0001 0.0208 0.0001 8 3€.C7 13.31 0.0231 0.0001 0.0439 0.0002 9 42.80 18.86 0.0327 0.0003 0.0766 0.0005 10 50.79 26.66 0.0463 0.0007 0.1229 0.0012 11 60.27 35.74 0.0620 0.0015 0.1849 0.0027 12 71.5 1 40.42 0.0701 0.0029 0.2550 0.0056 là 84.8 5 32.07 0.0557 0.0038 0.310 7 0.0094 14 100.68 30.06 0.0522 0.0060 0.3626 0.0154 15 119.47 32.19 0.0558 0.0107 0.4187 0.0261 •16 141.76 78.15 0.1356 0 .0435 0.5543 0.0697 17 168.20 79.10 0.1373 0.0736 0.6915 0.1433 18 1^9.58 37.99 0.0659 0.0591 0.7574 0.2023 19 2.36.£2 49.51 0.08 59 0.1286 0.8433 0.3309 20 28 1.00 29.30 0.0508 0-1271 0.8942 0.4580 21 233.43 45.50 0.0789 0.3298 0.9731 0.7878 22 395.€4 12.44 0.0216 0.1506 0.9947 0.9384 23 469.45 3.05 0.0053 0.0616 1.0000 1.0000 24 557.C4 0.00 O.OOOO 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PEP. RUN TOTAL DROPLET SPOT NUMBER IN A RUN 576.331 hUMBER MEAN CIAMETCR( ).. 158.032 VOLUME MEAN DIAMETER( MUGELE & EVANS ...... 206.926 VOLUME MEAN DIAMETER( HEKDAN } 297.537 SALTER DIAMETER 261.596 AREA MEAN DIAMETER . 104.185 STANCARO DEVIATION OF DIAMETER, BY NUMBER...... 94.687 STANDARD DEVIATION UF VOLUME DIA(HERDAN) 90.060 COEFFICIENT CF VARIATION OF CIAMETER{NUMBER)..••• 0.599 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)•.. 0.303

CECMETRIC NUMOEW MEAN DIAMETER(MED 1 AN) 129.933 CECMETRIC VCLUME MEAN DIAMETER(MED I AN) 281.421 CECM. STANCARD DEVIATION OF NUMBER DIAMETER ..... 1.927 GEOMETRIC STC DEV OF VOLUME DIAMETER 1.427 288

OWCPLET DISTfaOUTICN PER RUN CISC NO. 3 / DISC SPEEO=6000. RPM / PCTENTIAL= 6.0 KV

CLASS CLASS ORCPLET FKACTICN FRACTICN CUMULATIVE CUMULATIVE NC. AVE.DIA NUMBER KUM8EK VCLUME NUMBER . VOLUME

1 10.as 0.00 C.0000 o.oooo 0.0000 o.oooo 2 12.52 0.00 0.0000 0.0000 0.0000 0.0000 3 15.34 0.00 0.0000 C .0000 0.0000 0.0000 4 18. 20 0.03 C.COCl 0 .0000 0.0001 0.0000 5 2 1.59 4.86 0.0180 0 .0000 0.0181 0.0000 6 25.62 5.62 C.C2C8 0.0000 0.0389 0.0000 7 30.40 3.58 0.0133 0.0000 0.0522 0.0001 6 36.C7 6.17 0.0229 0 .0001 0.0751 0.0002 y »2.eo 6.55 0.024 3 0.0002 0.0993 0.0003 10 5C.7Ç 4.73 0.0175 0 .0002 0.1168 0.0006 11 60.27 2.01 0.0075 0.0001 0.1243 0.0007 12 71.51 5.66 0.0210 0.0007 0.1452 0.0014 13 34.85 12.26 0.045 4 0.0025 0.1907 0.0039 14 100.68 18.84 0.C6çg 0 .0064 0.2604 0.0102 15 lis.47 35.1 1 C.1301 0.0198 0.3905 0.0300 16 141.7e 26.25 0.0972 0 .0247 0.4377 0.0547 17 168.20 26.37 0.G977 0.04 15 0.5854 0.0962 Id 199.56 2 1 .43 0.3794 0.0563 0.6648 0.1524 19 236.€2 17.03 0.0631 0.07 47 0.7279 0.2272 20 281.CC 35.3 7 C.13 10 0.2592 0.8588 0.4864 21 333.43 32.41 C.120? 0.3965 0.9789 0.8834 22 395.6 4 5.70 0.0211 0 .1166 1.0000 1.0000 23 46S.45 0.00 0.00 00 0.0000 1.0000 1.0000 24 537.04 0.00 c.cooo 0.0000 1.0000 1.0000 25 66C.S6 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 270.003 hUMHER MEAN CIAMETCR( j...... 176.625 VOLUME MEAN CIAM£TER( MUGELE 6 EVANS ) 223.688 VCLUME MEAN CIAMET£R{ HERDAN 294.047 SALTER DIAMETER 209.558 fREA NFAN CIAMETER . 203.935 STANCARD DEVIATION OF DIAMETER, BY NUMEER...... 98.582 STANCARO CEVJATiûN OF VCLUME CIA(HEAOAN)...... 6S»753 COEFFICIENT OF VARIATION OF DIAMETER(NUMBER)..... 0.552 CGEFF. OF VAR. UF VULUME MEAN OI AMETER(HERDAN)... 0.237

C5CNETR1C NLNBEK MEAN DIAMETER(MEOI AN) 146.309 CeCMETRIC VCLUME MEAN D1AMETER{MED I AN) 283.531 GECW. STANCAFU DEVIATION OF NUMBER DIAMETER ..... 2.018 CECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.338 289

DRUPLET ûISTKIBLiTlGN PER RUN CISC NO. 3 / DISC SPEED=COOO. «PM / PCTENTIAL=-22.0 KV

CLASS CLASS OKOPLET FFACTICN FRACTION CUMULATIVE CUMULATIVE NC. AVE.CIA NUMBER NUMBER VCLUME NUMGEA VCLUME o 1 10.89 o o 0.0000 0.0000 0.0000 0.0000 2 12.93 c.oo 0.0000 0.0000 0.0000 0.0000 3 15.34 0.27 O.CCOti 0.0000 O.C006 0.0000 4 18.20 0.66 0.0014 0.0000 0,0019 0.0000 5 2 1.59 0.38 C.COCti 0.0000 0.C027 0.0000 b 25.62 0.17 0.0003 0.cooo 0.0030 0.0000 7 30.40 2.10 0.0043 0.0000 0.0073 0.0000 8 36.C 7 8.40 0.0171 0.0001 0.0245 0.0001 9 42.80 22.28 0.04 54 0.0005 0.C6S9 0.0006 10 5 0.79 27.77 0.0566 0.0010 0.1265 0.0017 11 60.27 12.56 0.0256 0.0008 0.1521 0.0025 12 71.5 1 3.6 5 0.0074 0.0004 0.1596 0.0028 13 8 4. £ £ 10.32 0.02 10 0.0018 0.1806 0.0047 14 100.€8 78.70 0. 16 05 0,0230 0.3411 0.0277 lb lis.47 77.97 0.1590 0.0381 O.SOOl 0.0658 16 14 1.76 39.1 7 0.079% 0 .0320 0.5800 0.0977 17 168.2C 33.31 0.Co 79 0.0454 0.6479 0.1432 la 199.56 36,55 0.0 7 45 0.0833 0.7224 0.2264 19 236.82 56 ,50 0.1152 0 .2150 0.8376 0.4415 20 231.OC 69.64 0.1420 0.4428 0.9796 0.8842 21 332.43 8.6 3 0.017b 0.0917 0.9972 0.9759 22 3 3 5.64 1 .36 C .00 28 0.0241 1.0000 1.0000 Z3 469.45 0.00 0.00 0 0 b.oooo 1.0000 1.0000 24 557.04 0.00 0.0000 OiOOOC 1.0000 1.0000 o 25 650.96 O O C.OOOO 0.0000 l.OOOO 1.0000

STATISTICS PER RUN TOTAL D3CPLET SPOT NUMBER IN A RUN 490.413 NUMBER MEAN C1AMETER( )...... 156.417 VOLUME MEAN DIAMETCRC MUGELÊ C EVANS ...... 152.247 VCLUME MEAN CIAMETER( HERDAN ...... 251.414 SALTER DIAMETER ...... 229.593 AREA MEAN DIAMETER . 176.057 STANDARD DEVIATION GF DIAMETER. EY NLM6ER 80.869 STANDARD DEVIATION OF VOLUME OIA(HEROAN)...... 61.820 COEFFICIENT CF VARIATICN CF DIAMETER(NUMBER>..... 0.517 COEFF. OF VAR. OF VOLUME MEAN DIAMETEfi(HERDAN)... 0.246

GECMETRIC NUMBER MEAN DIAMETER(MEDIAN).. 133.870 CECMETRIC VCLUME MEAN DI AMETER(MEDI AN.) ...... 241.950 CECM. STANCAFÛ DEVIATION CF NUMBER CIAMETEfl ..... 1.809 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.347 290

OKCPLET OISTRIdLTICN PER kUN CISC NC. 3 / DISC 3PCED=6000. RPM / POTENT IAL= 22.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NC. AVE.CIP NUMBER NUMBER VCLUME NUMBER VOLUME

1 1 c.as 0.00 0.00 00 0.0000 0.0000 0.0000 2 12.92 C.OO O.ÛOOO 0.0000 0.0000 0.0000 3 15.34 1 .39 0. 00.30 C.0000 0.0030 0.0000 4 ie.20 3.37 0.0073 C .0000 0.0103 0.0000 5 2 1.5S 2.58 0.0056 0.0000 0.0160 0.0000 6 25.62 1 .53 0.00 33 C .0000 0.0193 O.OOOO 7 30.40 2.04 0.0045 O.OOOO 0.0237 0.0000 a 3 €. C 7 8.39 0.0183 0.0001 0.0420 0.0001 9 4 2.ec 18.95 0.04 13 0.0003 0.0833 0.0005 10 50.79 26.15 0.05o9 0.0008 0.1402 0.0012 11 6C.27 32.23 0.0702 0 .00 16 C.2104 0.0028 12 71.5 1 29.88 0.0651 C.0025 0.2754 0.0053 13 84.EE 28.26 0.0615 0.0039 0.3370 0.0092 14 100.6a 74.72 0.1627 0.0172 0.4996 0.0264 15 119.47 44.39 0.C966 0 .0171 0.5963 0.0435 16 141.76 21.20 0. C4t)2 0.0136 0.6424 0.0572 17 16€.2C 21 .73 0.047 3 0.0234 0.6897 0.0805 18 199.56 16.25 0.0354 0.0292 0.72 51 0.1097 19 236.62 18.48 G.04 0 2 0.0555 0.7654 0.1652 20 28 1.0 0 42.84 0.0933 0.2148 0.8586 0.3800 21 333.43 53.67 0.1168 0.4495 0.9755 0.8296 22 395.64 9.91 0.02 16 0.1387 0.9970 0.9682 23 469.45 1 .36 0.0030 0 .0318 1.0000 1 .0000 24 55 7.C 4 0.00 G.OOOO 0.0000 1.0000 1.0000 25 660.96 0.00 O.OOOO 0 .0000 1.0000 1.0000

STAT I STICS PER RUN TOTAL DROPLET SPOT NUMBER IN A 459.318 NUMBER MEAN CIAMETER( 154.047 VOLUME ME AN CIAMETER( MUGELE & 212.673 VOLUME MEAN DIAMETER( HERDAN )... 309.298 SALTER DIAMETER 276.192 /REA MEAN DIAMETER . 126.099 STANC/SRD CEVIATIGN UF DIAMETER, BY NUMBER... 104.528 STANDARD CEVIATICN OF VCLUME DIA(HEPDAN)...... 75.231 COEFFICIENT CF VARIATION OF CIAMETE{NUMBER) 0.679 COEFF. OF VAF. OF VOLUME MEAN DIAMETFR(HERDAN)... 0.243

GECMF.TRIC NLMBER MEAN DIAMETEP (MEDIAN) 121.317 CEOMETRIC VOLUME MEAN DIAMETER(MED I AN ) ...... 296.834 GEOM. STANCAFO DEVIATION CF NUMBER DIAMETER 2.040 GEOMETRIC STC DEV OF VOLUME CIAMETEP 1.374 291

OROPLL. T IMSTRIOtTICN FER HUN cisc no. a y disc 3PEEO=

class class dficplet fractiln fraction cumulative cumulative no. ave.01a number numbeh vclume number vclume

1 io.es 0.00 C .0000 O.OOCO 0.0000 0.0000 2 12. 0.00 G .0000 0 .0000 0.0000 0.0000 3 15.34 C.OO 0.0000 0.0000 C.0000 0,0000 4 18.20 0.02 O.OOCO 0 .0000 0.0000 0.0000 b 21.5S 2.71 0.00 Id 0.0000 0.0018 0.0000 6 25.62 4.56 0.CO31 0.0000 0.0049 0.0000 7 30.40 40.32 0.0274 0.0003 0.0323 0.0003 a 36.0 7 58.09 0.0390 0 .0007 0.0713 0.0010 9 42.80 77.69 0.0522 0.0015 0.1235 0.0024 10 SC.79 103.06 0.06S2 0 .0033 0.1928 0.0057 11 60.27 127.25 0 .0855 0.0067 0.2782 0.0125 12 71.51 112 .34 Û.0755 0 .0059 0.3537 0.0224 13 84.25 145.80 0.0979 0 .0216 0.4516 0.0440 14 IOC.68 127.62 0.0857 0.0315 0.5374 0 .0755 15 119.47 112.13 0 .07= 3 0 .0463 0.6127 0.1218 16 14 1. 76 89 .03 0.C55B 0 .0614 0.6725 0.1832 17 168.20 258.79 0.1738 0.2982 0.8464 0.4814 18 195.58 178.93 0.1202 0 .3445 0.9666 0.8259 19 236.82 43.2» 0.0291 0.1392 0.9956 0.9651 £0 281.00 6 .50 0.0044 0 .0349 1.0000 1.000 0 il 333.43 0.00 0.0000 0.0000 1.0000 1.0000 22 395.6 4 0,0 0 C.00 00 C.OOOO 1.0000 1.0000 23 46 9.45 0 .0 D c.oooo 0.0000 I.0000 1.0000 24 55 7.C4 0.00 C.0000 0.0000 1.0000 1.0000 25 66 0.96 0.00 c.oooo OeOOOO 1.0000 1.0000

statistics per run total droplet spot number in a 1488.592 number mean diameter* 114.421 volume 4ean diameterc mugele & 140.443 volume mc4n ciamcter( hekuan ) ... 182.307 salter diameter 167.2s9 /rea mean diameter 128.774 standard deviation of oiametef, by number 59.100 standard deviation of vclume dia(herdan) 44.087 coefficient cf variation of ciametep{number)•.... 0.517 coeff. of var. of volume mean 01amlteriherdan)... 0.242 geometric nlnber mean diametek(med ian. 98.276 cecme-tric vclume mean di ameter (medi an) ...... 175.817 ceom. stancard deviation of number diameter 1.779 geometric std oev of volume diameter 1.335 292

ONOPLET OISTRieuTIQN PER RUN CISC NO. 2 / DISC SPEED=9000. HPM / PCTENriAL= -8.0 KV

Class class droplet fracticn fraction cumulative cumulative NC. AVE.CIA NUMbcR NUMBER VCLUME NUMBER VOLUME

1 1 C-3S 0:00 €.0000 0.0000 0.0000 0.0000 o o o o 2 12.93 0.05 O C.OOOO G-OOCO 0.0000 3 15.34 0.85 C .C008 0.0000 0.0009 0.0000 4 18.20 1 .08 0.00 11 Û.OOCO 0.0020 0.0000 b 2 1 .55 3 .4 8 0.0035 C.0000 0.0055 0.0000 t! 25.(2 4.2 9 C .0043 0.0000 0.00«7 0.0000 7 3 0.40 ?1 .06 0.02 1.) 0.0002 0.03 08 0.0003 a 36 .G 7 24.97 G .02 49 0 .0005 0.0557 0.0C07 9 4 2.30 43.93 0.043^ 0.0013 0.0996 0.0021 10 50 .79 39.32 0.0393 0.0020 0.1389 0.0041 11 6C.27 66.20 0.C681 C .0058 0.2070 0.0098 12 71.51 57.25 0.0572 0.0081 0.26 42 0.0179 13 84. 99.02 0.0989 0.0234 0.3632 0.0413 14 100.68 78.71 0.0786 0 .0311 0.4418 0.0724 15 119.47 78.08 0.C780 0.0515 0.5198 0.1239 It. 141.76 187.87 0. 1877 0 .207C 0.7075 0.3209 17 16 8.2 0 200.57 0.2004 0.3692 0.9079 0.7001 18 1-JJ9.58 84.12 0.0840 0.2587 0.9920 0,5587 19 236.62 8.03 0.00 83 0.0413 1.0000 1.0000 20 281.00 0.00 C.COOO C.OOOO 1.0000 1.0000 2 1 333.43 0.00 0.0000 0.0000 1.0000 1 .0000 22 295.64 0.00 C.OOOO 0.0000 1.0000 1.oooo 23 46S.45 O.OU C .0000 0.0000 1.0000 1.0000 24 5157.C4 0.00 0.30 00 0.0000 1 .0000 1.0000 25 66C.S6 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DRCPLET SPOT NUMt3ER IN A RUN 1000.860 NUMBER MEAN CIAMET£R( ) 118.451 VOLUME MEAN DIAMETER( MLCELfc £ EVANS 137.141 VOLUME MEAN DIAMETER{ HERJAN ) 165.214 SALTER DIAMETER 155.226 AREA MEAN CIAMETER 129.000 STANDARD CEVIATICN UF DIAMETER. GY NUMBER 51.117 standard deviation of volume jla(herdanj...... 34.871 COEFFICIENT CP VARIATION OF DIAMETEF(NUMBER ) 0.432 COEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN ).•. 0.211

CECMETRIC NLP8ER MEAN DIAMETLR(MED IANJ ...... 105.141 GEOMETRIC VOLUME MEAN DIAMETER(MEOIfN) 160.823 CECM. STANCAPD DEVIATION OF NUMBER CIAMETER 1.694 GECMETRIC STC DEV OF VOLUME DIAMETER 1.280 293

diîupltit distkiaoticn per run cisc no. 3 / oise spceo=90n0. rpn y potential^ 8.0 kv

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULAT NC. AVE.DIA NUMOEH NUMBER VCLUME NUMBER VOLUME

1 10.89 0 .00 0.0000 0 .0000 C.OOOO 0.0000 2 12.93 0.00 C .0000 0.0000 0.0000 0.0000 3 15.34 0.00 C.OOOU 0.0000 0.0000 0.0000 4 18.20 0.21 0.0002 0 .0000 0.0002 0.0000 5 2 1.59 5 .89 0.0056 0.0000 0.0058 0.0000 6 25.f 2 6.16 C .C059 c.ooco O.Cl 16 0.0001 7 30.40 27.33 C .0259 0 .0003 0.0375 0.0003 8 36. C 7 33.54 C.0318 0.0005 0.0693 0 .0008 9 42.SO 48 .95 0 .0464 0.00 13 0.1157 0.0021 10 SC. 79 42 .01 0 .039rt 0.0018 0 .1555 0.0039 11 00.27 63 .60 C.060 3 0,0045 0.2158 0.0084 12 71.5 1 6 9 .61 0.0660 0 .0083 0.28 18 0.0167 13 34.(5 87 .34 0.0828 0.0174 0.3645 0.0341 14 IOC.68 88.1V a.0836 0.0294 0.4481 0 .0635 15 119.47 133.93 C .1269 0 .0745 0.5750 0. 1380 16 141.76 1 17.34 0.11 12 0.1090 0.6862 0 .2470 17 168.20 193 .08 0. 18 30 0.2996 0.8692 0.5468 la 199.58 99.60 0.0944 0 .2583 0.9635 0.8051 19 236.62 32.26 C.0306 0.1398 0.9941 0.9449 20 23 1.00 4.15 0.0039 0.0300 0.9980 0.9749 21 333.43 2 .07 0.0020 0.0251 1.0000 1.0000 22 335.64 0 .00 C.OOOU 0cOOOO 1.0000 1.0000 23 469.45 0 .00 0.0000 0 .0000 1.0000 1.0000 24 55 7. C 4 0.00 C.COOO 0.0000 1 .0000 1 .0000 25 66C.96 J .00 0.00 00 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DRCFLET SPOT NUMBER IN A RUN 1055.296 NUMBER MEAN ClAMETERC ) 119.537 VOLUME 4EAN DIAM£TER( MUGELE & EVANS ).. 142.610 VOLUME MEAN DIAMETERf HEROAN 181.714 SALTER OIAMEIER 166.135 AREA MEAN DIAMETER . 132.226 STANDARD DEVIATION OF DIAMETER, EY 56.549 STANDARD DEVIATION- OF VOLUME UIA (HERDAN) 49.947 COEFFICIENT CF VARIATION OF CIAMETER(NUMBER) 0.473 COEFF, OF VAF. OF VOLUME MEAN 01 A.METER (HERD AN ) .. . 0.275

CECMETRIC NUMBER MEAN DIAMETER(MEDIAN) 104.331 GECMETRIC VOLUME MEAN DIAMETER(MEDI AN) 174.457 GECW. STANCAKO DEVIATION OF NUMBER DIAMETER 1.747 CECMETRIC STC DEV OF VOLUME DIAMETER 1.345 C u. 45- U lu o œ s 0 01 45- U fu »-• O vO a n n n n m m > > m r s N a 01 4^ u ro z r % 2 2 2 -n •n Z Z t> ~4 CL > n > 01 m • m m Tl •n O n m r # (/) n H H • > x m m n en X! m 73 T, n %) D z H o U1 Oi U ru t\) I-* M h* i> o c V o 6 ^ a: % en 01 CT' vû Ul CD w vù o O CD N C- 01 OJ OJ io ro n > n n 1) m •M m m m o (n o -Ni tn (jJ H- Ov (D M» < n Z lA O o o A ru a O (n »-* OD ttt rv3 o m r z D O > 1» t> )> "ti • » * • • e e • # M O f 7 < H m m r # # # • OJ t» 2 7 7. 7 Vf} a 4> fh O m Œ ru •si n\ m (n ro CD m 4> n\ 01 ru w sT CD n w -» n C > c < m fTi a* x> en U' o A) m o O m 01 M O n Tl 1— •ar Tl n w n N! Ni O ru vn o («i 01 \ O C Û3 ft Tl > n O M (/) T» O m 2 m H H •X3 *— 1-* M- m O n À) D < KM h- Z o O o > > (n a CJ U U ro M W (Jl sC 01 ro ÏU < m m > n O o o o O O c Tî T < ? 2 O o CD o N CD OJ yù OJ N N «O ro O C- ro sj ro 2 O 0: a 2 2 X 7 z ni m # # # • • o m m < -4 H o o o O O # • • # # O "CJ n "0 •71 > > O W Ul 4^ vO s O N 0^ ro H- ro o 01 4> K* S n r r > > C; c m tu o o o o o »- 0^ 01 O 01 (JJ 01 o CD \0 0"i H z z r H "n T xi z; O Oi CC 01 C- e 7) m L1 m < h" c t-, H "3 H n n c o 2 o < D m r z ni z n tM m U r t> i 2 Tl c 1. n > m C o o o o o o o o o o o O O O o o O o o o o 2 o 2 2 2 o c 2 xf c. • o o o o Z Tl M cr m n m m M". Tl % m a m o o o o o o o o w M* C > vC -4 H H O o o o o o o o o o o o o o 2 n O % > m H > r o o o o o o u o o K- vC Oc œ Oi s ro o o o o n 2 m m T. C m 7 m o o m c o a 03 -H O »— C ^-1 \n m m o -sj (D 01 •-• U1 M* s OI H* m M O a 71 7: o X o c o c o (JJ eu ru ro Cî^ N C ro OJ Oj tr. a ce > 2 C > N fU X C # r nj s œ 2 X s: "N z H vo m m m m t> m CD m X w, •H 73 o Cl 2 H X < < *0 n rr. •—t m m m o o o o o o o *n 2 Z Tl n 1» t> o o o o o o o O o o o o o O o o o o < X! -t 33 n Z 7 # • é z z m n n > TJ C c/) o o o o o o FU ro ro H* o o o o o o o o o o O o o > T! "fc> o o r A rn Z % o o o o o 0" ru ro s o ru M o o o o o o o o c o o c 2 • C 7 CE o o o c o N N 01 (xl Oi H rr ft ft I 2 m i-» N ro fu ro ru ro o o û o o o o o z *0 o o o c o s vT (ÂJ 4^ 01 o ro CD Oc ru OJ \C r K> o o o o H « * m a # Z) m a n 73 rr • # 73 m • • z H C 73 • « o X # • m Z • # w • • n z # • ft z # # • H» z c -4 »-* •- •— o o o o o o o o o o O o o o o o o o • 9 # e # • O c 2 • • # « # # • • ft # # 2 C > # o o o o o o CD N (T en eu fu fu ru o Ci o o o o • • • • # # e o CD r r o o o o o o 01 ÛÎ N 01 0\ N 00 01 M \Ci P ru M o o o ft ft ft * # m > II o o c o o o OJ w OI sTl M ru N 0\ x> OJ CO \n Ni o ro 7) -4 1 o o o o o o s CD c Oi ÙJ ru c^ H \C Oj ro Oi CT^ fu ru M <" ru fU m • CD (n U1 ro a (T W O a o ^ Ù) O w n o vû ru ON #— M o o o o o o o o O o o o O • • • # o o o o a o < c # » • • # • # # # # • # # • # # • # • • # • (jj ia «• OJ Cl # • ê # • # ê # o 2 < ru N ï\) tjJ ru o o o o o o vû -Ni ru M* o o o o O o o o O o o o o o r C lï) M u CD U) CD H* n? <£) N vû M CC o o o o o o (V) (Ù CD (r Ce h- 0» vd ojw M o H* OJ rv Cto vD vO fo c o o o o o o o o o o c r o o o o o o ro 01 <> en fu en c en #-# o O o o o o o 2 > o o o o o o w fu ru en o o CD o ru o N CD ro o o o o n H < m 295

DROPLET OISTRIBLTION PER KUN CISC NO. 3 y DISC SPEEO=9000. RPM / POTENTIAL= 22.0 KV

CLASS CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULATIVE NC. AVE.CIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 10.89 2.07 0.0021 0.0000 0.0021 0.0000 2 12.S3 2.72 0.002U 0 .0000 0.0049 0.0000 3 15.34 10 .03 C.0103 0.0000 0.0152 0.0000 4 18.20 8.91 0.C0S2 0 .0000 0.0244 0.0000 5 21.59 13.90 0.0143 C.OOOl 0.0387 0.0001 O 25.6 2 14.50 0.0149 0 .0001 0.0536 0.0002 7 30.40 13.15 0.0135 0.0001 0.0671 0.0003 a 36.C 7 13.37 0.0137 0 .0002 0.0806 0.0005 9 42.80 14.37 0.0148 0 .0004 0.0956 0.0009 10 50. 79 18.55 O.Cl91 0.OC09 0.1146 0.0018 11 60.27 56.73 0.0583 0 .0045 0.1729 0.0063 12 71.51 85.63 0.0880 0.0114 0.2609 0.0177 13 84.€5 84.17 0.0365 0.0186 0.3474 0.0363 14 100.66 162.75 0. 1672 0.0602 0.5146 0.0965 15 lis.47 92 .77 0.0953 0.0573 0.6059 0.1539 16 141.76 S3.23 0.0958 0 .0963 0.7056 0 .2502 17 168.20 122.04 0.1254 0.2106 0.8310 0.4607 18 19S.5e 135.08 0.1380 0.3893 0.9693 0.8501 19 236.€2 26.82 0.0276 0.1292 0.9973 0.9792 20 281.OC 2.58 0.0027 0 .0208 1.0000 1.0000 21 333.4 3 0.0 0 C.COOO O.OOOO 1.0000 1.0000 22 395.64 0.00 0.00 00 0 .0000 1eOOOO 1.0000 23 4ÔS.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.C4 0 .00 0.0000 0 .0000 1.0000 1.0000 25 66C.S6 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A 9 73 .379 hUMQER MEAN CIAMETERC 118.5 76 VOLUME MEAN CIAMETER( MUGELE & 141.440 VOLUME MEAN DI AMKTERC HERDAN ) 178.854 SAUTER 164.529 AREA WEAN DIAMETER . . 131.237 STANDARD DEVIATION UF DIAMETER, 56.270

STANDARD DEVIATION OF VOLUME DIA(HERDAN).•• .# # # # # 44.017

COEFFICIENT CF VARIATION OF C1AMETEF(NUMQERJ # # # # # 0.475 COEFF . OF Vf F. OF VOLUME MEAN DIAMETERCHERDAN)... 0.246

CECMETRIC NUMBER MEAN DI AMETE R (MEDI AN ) 102.308 GECMETRIC VCLUME MEAN DIAMETEH(MEDI AN) 172,430 GECM. STANCAFD DEVIATION CF NUMBER CIANETER 1.829 GEOMETRIC STC DEV OF VOLUME ClAMETEF 1.332 296

DRCPLET DISTRIBUTICN PfH RUN CISC NO* 4 / DISC SPEEO=3000. KPM / PCTENTIAL= 0.0 KV

CLASS CLASS DROPLET FRACT ICN FRACTION CUMULATIVE CUMULAT NC. AVE.CI A NUMBER NUMHER VCLUME NUMBER VCLUME

0.0835 0.0000 m

• 0.0000 1 o 83.67 0.0835 2 12.S3 99.76 0 .0995 C.OOOl 0.1830 0.0001 3 15.34 149.83 0.1494 0 .0002 0.3.324 0.0002 4 ie.20 144.73 C.1443 G.0003 0.4768 0.0005 b 2 1.5S 177.31 0. 1763 0.0005 0.6536 0.0010 6 25.62 155.46 0.1551 0.0008 0.8087 0.0018 7 30.4G 77.98 0.0778 0.0007 0.8864 0.0025 6 36.C 7 30.50 0.0304 0.0004 0.9168 0.0029 9 42. 30 15.13 0.0151 0.0004 0.9319 0 .0033 10 50 .79 5.38 0.0054 0.0302 0.9373 0.0C35 11 GO.27 6.23 0 .0062 0.0004 0.9435 0.0039 12 71.51 1.13 0.0011 0.0001 0 .9446 0.0040 13 34.es 1.24 0.0012 0.0002 0.9459 0.0042 14 100.68 0.30 0.0003 0.0001 0.9462 0.0043 15 119.47 C.78 C.COOd 0.0004 0.947C 0.0047 16 141.76 1.39 0.CG14 0 .0012 0.9483 0.0059 17 16E.20 5.61 0.0056 0.0080 0.9539 0.0140 18 199-58 C.OO O.COOO C .0000 0.9539 0.0140 236,62 1.42 0.0014 G.0057 0.9554 0.0197 20 281.0 0 5.75 0.0057 0.0385 0.9611 0.0581 21 333.43 1 3.46 0.0134 0 .1505 0.9745 0.2086 22 395.64 13.73 0.0137 0.2565 0.9882 0.4651 23 46 S.45 6.78 0.00 68 0.2114 0.9950 0.6765 24 557.C4 3.31 0.0033 0.1723 0.9983 0.8488 2b 66C.9 6 1.74 0.00 17 0.1511 1.0000 1.0000

STATISTICS PER RUN TOTAL DRCPLET SPOT NUMdER IN A RUN ...... 1002.634 NUNGER MEAN CIAMETEH( ) 39.104 VOUJVE mean OIAMcTCR( MUGELfi & EVANS 148.923 VULUWE ME4N DIAMETCW( HERDAN 460.673 SALTER DIAMETER 407.219 /R£A MEAN DIAMETER 90.127 STANDARD CEVIATICN UF DIAMETER» BY NUMBER...... El.242 STANDARD DEVIATION OF VOLUME DIA(HERDAN). 119.865 COEFFICIENT CF VARIATION OF CIAMETEF(NUMBER) 2.078 CUEFF. OF VAR. OF VOLUME MEAN DIAMETER(HERDAN)... 0.260

GECMETRIC NUMBER MEAN 01AMETER( MEDI AN) 22.863 GECNETRIC VOLUME MEAN 01AWETER(MEDIAN) 442.279 GL'CM. STANDARD OEVIATICN CF NUNDER DIAMETER 2.086 GECMETRIC STC DEV OF VOLUME DIAMETER ...... 1.371 297

DROPLET DISTHIQtTICN PER RUN CISC NG. 4 / DISC SPLEO=3000. RPM / PCTEN7IAL= -8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULATIVE CUMULATIVE NO. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

1 1C.8S 0.00 0.0000 0.0000 C.OOOO 0.0000 2 12.53 0.00 C.OCOO 0 .0000 0.0000 0.0000 3 IS.34 0.00 0.0000 0.0000 0.0000 0.0000 4 18.20 0.00 0.00 00 0.0000 0.0000 0.0000 U 2 1.59 0 .00 c.oooo 0.0000 C.OOOO o.oooo 6 25.f 2 0.01 0.0001 0.0000 0.0001 0.0000 7 3C.4C 1.66 C.0155 0.0000 0.015? 0.0000 a 36.C7 4.06 0.03 73 0.0001 0.0535 0.0001 y 42.EG 7.07 0.0660 0 .0003 0.1155 0.0005 10 50.79 4.33 0.0404 0.0003 0.1599 0.0008 11 60.27 1.88 0.0175 0.0002 0.1774 0.0011 12 7 1.51 3.62 0 .0338 0.0008 0.2112 0.0018 13 84.€5 1 .74 0.01o2 0.0006 0.2274 0.0025 14 100.ea 0.00 C.OOOO 0.0000 0.2274 0.0025 15 lis.47 3.5/ 0.0333 0.0036 0.2607 0.0061 16 141.76 3.35 0.0359 0.0065 0.2966 0.0126 17 16e.2C 4.61 0.0430 0.0130 0.3396 0.0256 lU 195.58 4.77 0.0445 0.0225 0.3842 0.0482 19 236.82 12.88 C.1201 0.1015 0.5043 0.1497 20 281.00 38.53 0.3594 0.5075 0.6637 0.6572 21 333.43 13.17 0.1228 0.2898 0.9865 0.9470 22 395.64 1.44 0.0135 0.0530 1.0000 1.0000 23 46 5.45 0.00 0.0000 0 .0000 1.0000 1.0000 24 bb7.04 0.00 0.0000 0.0000 1.0000 1 .0000 25 66 C. 5 6 0.00 0.00 00 0 .0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 107.200 NUMBER MEAN CIAMETER( } 212.464 VOLUME ^EAN DIAMETEf<{ MUGELE S EVANS ) 250.334 VOLUME MEAN CIAMETER( HEKJAN ).. 292.461 SALTER DIAMETER ...a 282.064 AREA MEAN DIAMETER 236.029 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 103.246 STANDARD DEVIATION OF VOLUME DIA(HEfiDAN) 47.030 COEFFICIENT CF VARIATION OF CIAMETEP(NUMBER)..... 0.486 COEFF. OF VAR. OF VOLUME MEAN DIAMETER{HERDAN)... 0.161

GEOMETRIC NUMBER MEAN DIAMETER(MEDI4N)...... 173.236 CeCMETRIC VOLUME MEAN CIAMETER(MEOIfN) 288.031 CECM. STANDARD DEVIATION CF NUMBER DIAMETER ..... 2.106 GEOMETRIC STC DEV OF VOLUME DIAMETEF 1.204 298

UROPLET OISTRIEiUTICN PEN RUN CISC NO. 4 / DISC SPEED=.3000. f"ÎPM / POTENTIAL= 8.0 KV

CLASS CLASS DROPLET FRACTION FRACTION CUMULAT IVE CUNULAT NL. AVE.CI A NUMHER NUMBER VCLUME NUMBER VOLUME

1 10.89 13.05 0.0278 C .0000 0.0278 0.0000 2 12. S3 16.02 0.0341 0 .0000 0.0619 0.0000 3 15.34 37.31 0.0795 0.0001 0.1414 0.0001 4 ie.2C 49.15 0.1047 0.0001 0.2461 0.0002 5 2 1.59 54.06 0.1152 0.0003 0.3613 0.0005 6 25.6 2 93.33 0.1908 0 .0007 0.5601 0.0012 7 30.40 70.66 0. 1505 0 .0009 0.7106 0.0021 £j 3 6.07 2 1.07 0 .0449 0 .0005 0.7555 0.0026 9 42.80 13.06 0.0279 0 .0005 0.7834 0.0031 10 50. 79 8.22 0.0175 0.0005 0.8009 0.0036 11 60-27 2.63 0.3056 0 .0003 0.8065 0.0038 12 71.5 1 1 .17 0.00 25 0.0002 0.8090 0.0040 13 84.€5 1.20 0.0026 0.0003 0.8116 0.0044 14 100.68 3.88 0.0083 0.0018 0.8198 0.0062 lb 115.47 2.06 C.0044 0.0016 0.8242 0.0078 lb 14 1.76 18.45 • 0.03 93 0 .0244 0.8635 0.0323 17 16 6.20 5.25 0.0112 0 .0116 0.8747 0.0439 16 199.56 2.79 0.0060 0.0103 0.8807 0.0542 19 236.82 6.16 0.0132 0.0382 0.8938 0.0924 20 281.OG 18 .23 0.0388 0.1881 0.9326 0.2805 21 332.43 19.12 C. 04 0 7 0.3297 0.9734 0.6102 22 395.64 10.97 0.0234 0.3159 0.9967 0.9261 23 46Ç.4E 1 .54 0.0033 0.0739 1.0000 1 .0000 24 557.04 0 .00 0.00 00 0.0000 1.0000 1.0000 25 660.96 0.00 0.00 00 0 =0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN ...... 469.446 tUMBER MEAN CIAMETER( 68.643 VOLOWE MEAN CIAMETER( MUGELE & EVANS ) 165.960 VOLUME MEAN OIAMETERi HERDAN ) 339.532 SAUTER DIAMETER 309.623 AREA MEAN CIAMETER . 121.619 STANCARO DEVIATICN OF OIAVETEC, EY 100.366 STANDARD DEVIATION OF VOLUME DIA(HERDAN) 73.331 COEFFICIENT CF VARIATION OF CIAMETER(NUMBER) 1.458 COEFF. OF VAR. OF VOLUME MEAN CIAMETER(HERDANJ.. . 0.216

GEOMETRIC NUMBER MEAN 01AMETE R (MED I AN ) 36.474 GECMETRIC VOLUME MEAN DIAMETER(MEDI AN ) 328.925 C£CM. STANCAFO DEVIATION LF NUMBER DIAMETER 2.650 GECMETRIC STC DEV OF VOLUME DIAMETEF 1.327 299

JKOPLLT DISFKIULTION PEW HUN CISC NO. 4 / DISC SPHEO= 3000. HPM / POTENT IAL=-22.0 KV

CLASS CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULATIVE NO. AVE.01/» NUMBER NUMBER VCLUME NUMBER VOLUME o o o 1 10.89 • 0.00 CO 0.0000 O.OCOO 0.0000 2 12.53 0.08 0.00 03 0 .0000 0.0003 0.0000 3 15. 34 1.31 C.C043 0.0000 0.0046 0.0000 4 ie.20 1.58 0.0052 0 .0000 0.0098 O.OCOO 5 21.59 3.35 0.0111 0.0000 0.0209 0.0000 Û 25.62 5.04 0.0169 C .0000 0.0378 0.0000 7 30.40 25 .06 0.0851 0 .0002 0.1229 0.0002 a 36.07 32.97 C.1093 0.0004 0.2322 0.0006 •a 4 2.30 21.0 7 0.0699 0 .00C4 0.3021 0.0009 10 50.79 14.24 0.0472 0.0004 0.3493 0.0014 11 60.27 15.90 Û.05 27 0.0008 0.4020 0.0022 12 71.S 1 15.95 0.0529 0.00 14 0.4549 0.0035 13 84.65 5.47 0.0182 0.0008 0.4730 0.0043 14 100 .66 2.28 0.007 5 0 .0005 €.4806 0.0049 15 115.47 3.90 0.0129 0.00 15 0.4935 Oà 0064 16 141.76 8.83 0.0293 0.0056 0.5228 0.0123 17 16 8.20 1 1.26 0.C373 0 .0125 0.56 01 0.024 7 18 199.52 6.76 0.0224 0 .0125 0.5825 0.0372 19 236.62 16.92 0.0561 0.0523 0.6366 0.0895 20 281.00 47.5 2 0.1575 0.2453 0.7961 0.3348 21 23 3.43 4 1.13 0.1364 0.3547 0.9325 0.6896 22 335.64 18.59 0.0616 0.2679 0.9941 0.9575 23 469. 45 1.77 0.0059 0.0425 1.0000 1.0000 24 55 7. C 4 0.00 C.COOO 0.0000 1.0000 1.0000 25 660.96 0.00 C.OOOO 0 .0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 301.641 NUMdER MEAN CIAME7ER( ) 168.617 VOLUME MEAN CIAMETER( MUCiELE & EVANS ).. 242.304 VOLUME MEAN CIAMET£R( HERDAN ) 331.485 SALTER DIAMETER 312.722 AREA MEAN CIAMETER ...... 213.461 STANC/RO DEVIATILN CF DIAMETER, EY NtMBER...... 131.114 STANDARD DEVIATION OF VCLUME CIA(HERDAN) 64.658 COEFFICIENT CF VARIATION OF C1AMETCK{NUMBER) 0.778 COEFF. OF VAR. OF VOLUME MEAN D1AMETER(HERDAN)... 0.195

GECMETRIC NUMBER MEAN 01AMETFF(MHDI^N) 1 11.364 GECMETRIC VCLUME MEAN OIAMETEK(MEDIAN) 323.870 CECM. STANCAFD DEVIATION OF NUMBER CIAMETER 2.677 GECMETRIC STC DEV OF VOLUME DIAMETEP 1.262 300

DROPLET UI STRI cJUTI CN PEH HUN CISC NO. 4 / DISC SPEED-3ÛÛ0. RAM / PCrENTIAL= 22.0 KV

CLASS CLASS DROPLET FKACTILN FRACTION CUMULATIVE CUMULATIVE NC. Ave.CI A NUMBER NUMBER VCLUME NUMBER VCLUME

0.0000 0.0000 0.0000 • 00 1 o 0.00 C. 00 00 .ocoo 2 1 2.93 0.05 0.0002 0 .0000 0 .0002 0 .0000 3 15.34 0.87 0.002/ 0 .0000 0 .0029 0 4 1 a. 2C 0,93 0.C029 O.GOOO 0.0058 c .0000 i3 2 1.59 0 .00 0.00 00 0.0000 0 .0058 0.0000 6 26.6 2 0.00 C.OOOO 0 .0000 0 .0058 0 .0000 7 3 0.40 1 .89 0.0059 0.0000 0.01 17 0 .0000 S 36. C 7 27.09 0.0043 0 .0003 0 .0965 0 .0003 9 42.80 63.95 C.20 01 0.0012 0.2967 0 .0015 .0027 10 50.79 41.21 0.1290 0 .00 13 0 .4257 0 .0036 11 60.27 17. ja 0.G544 0 .0009 0 .4801 0 .0046 12 71.5 1 11.91 0. 03 73 0 .0010 0 .5174 0 13 84.£5 9.58 C. Û3C-0 C.0014 0 .5473 0.0060 14 100.68 4.51 0.0141 0.0011 0 .56 14 0 .0071 .0093 15 115.47 5.67 C.Cl77 0.0023 0.5792 0 16 14 1.7C 7.67 0.02 40 0 .0051 0.6032 0 .0144 17 168.20 9. 77 0. 0306 0.0108 0 .6337 0.0253 16 199.58 8.82 0 .02 76 C .0163 0 .66 13 0 .0416 19 2 36.€2 17.09 0.0535 0.0529 0 .7148 0.0945 20 28 1. 00 33.20 G.1039 0.1717 0 .8188 0.2662 21 333.43 26 .-42 0.0627 0.2283 c .90 14 0 .4945 22 395.6 4 26.23 0.C821 0 .3786 0 .9835 0 .8731 .0000 23 469.45 5.26 0. 01 6 'j 0-1269 1.0000 1 24 557.04 0.00 0.0000 0 .0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A 319 .493 NUMBEP MEAN CIAMETE«{ 154 .183 VOLUME MEAN DI AMETER( MCGELE 237 .552 VCLUME MEAN 01AMETER( HERDAN 252 .804 SALTER 326 .376 /REA MEAN C ifMETER . . 202 .831 STANDfRJ CEVIATICN OF DIAMETER 131.996 STANCAR3 CcVIATION CF 76 .071 COEFFICIENT CF VARIATION OF CI AM tTE F ( NUM BER ) 0 .856 COEFF. OF VAH. OF VOLUME MEAN UIAMETER(HERDAN) ... 0 .216

GECMETRIC NUMBER MEAN 0 IAMETHh(MEDI AN• 103.241 CECMETRIC VCLUME MEAN DIAMETEH(MEOI AN) ...... 342.395 CECM. STANCAFD DEVIATION OF NUMBER ClAMETER 2.486 GECMETRIC STD DEV OF VOLUME DIAMETER 1.308 301

OWUPLHT DlSTHIBtTICN PER WU!\ DISC NO, 4 / DISC 3PtED=60G0. RPM / PGTENTIAL= 0.0 KV

CLASS CLASS DROPLET P-RACT ION FRACTION CUMULATIVE CUMULAT NC. AVE.DIA NUMBER NUMBER VOLUME NUMBER VOLUME

I 10.89 0.03 0.00.00 0.0000 0.0000 0.0000 2 12.93 0.00 O.COCO C .0000 0.0000 0.0000 3 15.34 0 .00 O.POCO O.OOOO 0.0000 0.0000 4 i 8.20 0.00 C.0000 0.0000 c.oooo 0.0000 5 2 1.59 0.00 0.ooco 0.0000 o.oooo 0.0000 6 25.e 2 0.00 o.oooo 0.0000 0.0000 0.0000 7 30.40 1.72 0.0053 0.0000 0.0053 0.0000 a . 3 6.07 14.15 0.0433 0.0003 0.0486 0.0003 9 4 2. a J 22 .03 0.0980 0.00 12 0.1466 0.0015 10 5 0.79 29.38 0.0899 0.0018 0.2365 0.0033 11 60.2 7 22.52 C.0689 0.0023 0.3054 0.0056 12 71.5 1 16.08 0.0492 0.0028 0.354 7 0.0084 13 84.65 9.90 0.0303 0.0028 0.3849 0.0112 14 10 0.6 8 10.36 0.0317 0.0050 0.4166 0.0162 15 119.47 13.69 0.0419 0.0110 0.4585 0.0272 16 14 1.76 29 .05 0.0889 0.0289 0.5475 0.0661 17 16 8.2 0 39. 15 0.1198 0.0875 0.6673 0.1536 18 199.58 23.45 0.0713 0.0876 0.7391 0.2412 19 236.82 45.77 0.140 1 0.2856 0.8791 0.5267 20 281.00 30.66 0.093d 0.3196 C.9730 0.8463 21 3.33.43 8.83 0.0270 0.1537 1.0000 1.0000 22 395.6 4 0.00 Û.OOCO 0.0000 1.OOCO 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 55 7.0 4 0.00 0.00 0 0 0 «0000 1.0000 1.0000 2b 60 0.9 6 0.00 0.0000 0 .0000 l.OOOO 1.0000

STATISTICS PER RUN TOTAL DROPLET SPCJT NUMBER IN A RUN 326.721 NUMBER MEAN C1AMETER( ) 144.561 VOLUME 4EAN CIAMETEH( MUGELE 6 EVAhS ) 186.674 VOLUME MEAN CIAMETERC HERDAN ) 248.934 SALTER iJlAMETER 229.268 /HEA *EAN OI/METER 168.575 STANDARD DEVIATICN OF OIAMETEF, HY NLMcER 86.849 STANDARD DEVIATION OF VOLUME 01A(HERDAN)...... 58.081 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)..... 0.601 COEFF. OF VAF. OF VOLUME MEAN DIAMETER(HERDAN)... 0.233

CECMETRIC NLfQER MEAN DI AMETEH( MED I /iN ) 116.179 CECMETRIC VOLUME MEAN DIAMETER(MEDI AN) ...... 240.590 GECM. STANCAGO DEVIATION OF NUMBER DIAMETER ..... 2.013 CECMETRIC SIC DEV OF VOLUME DIAMETEP 1.325 302

DRUPLUT DISTKIdOTiCN FER RUN CISC NO. 4 / DISC SPEED=6000. RPM / PCTENTIAL= -8.0 KV

CLASS CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULATIVE NC. AVE.DIA NUMBER NUMBER VCLLiME NUMBER VCLUME O o C 1 0.00 c.oooo 0,0000 0,0000• C.OOOO 2 12.53 0.0 0 0.COOQ C ,COOO 0.0000 0.0000 3 15.34 0.00 0.0000 0 ,0000 o.oooo 0.0000 4 18.20 O.Ol C.COCO 0,0000 0.0000 0,0000 b 2 1.5% 1.49 0.0055 0,0000 0.0056 0.0000 Ù 25.(2 1.76 0,006 3 0,0000 0.0121 0.0000 7 30.40 3.49 0,013.) 0.0000 0.0251 0.0001 8 36.C 7 5.5J 0,020b 0,000 1 0.0456 C.00C2 9 42.80 8.29 0,0306 0,0003 0.0763 0.0004 10 50.79 10.63 0 ,0402 0 ,0006 0.1165 0.0010 11 6C.27 6.79 0.0326 0,0008 0.1491 0.0018 12 71,5 1 7.53 0,0279 0,0011 0.1770 0.0029 13 •34. c 5 7.16 0.0266 0.0018 0.2035 0.0047 14 100.68 9.09 0.0337 0 ,0038 0.2373 0.0085 15 119.47 16.11 0.05S7 0.0112 0.2970 0.0197 16 141.70 27.95 0. 1037 0 ,0325 0.4006 0.0521 17 168.20 55.48 0.2057 0.1076 0.6064 0.1598 la 199.58 25,40 0 .0942 0 ,0823 0.7006 0.2421 19 236.82 40,1b 0.1489 0 ,2175 0.8495 0.4596 20 231.OC 24,72 C.C917 0.2236 0.9411 0.6832 21 J33.43 10 ,48 0.0389 0 .1585 0.9800 0.8417 22 395.64 4,07 0.0151 0. 1028 0.9951 0.9445 23 469.45 1,32 0.CO 49 0.0555 1.0000 1.0000 24 557.04 0,00 0.0000 0 «0000 I.0000 I .0000 25 66 C.96 0 ,00 C.OOOO 0.0000 1.0000 1.0000

STAT ISTIC3 PER RUN TOTAL DRCPLET SPOT NUMBER IN A RUN 269.672 NUMBER MEAN CIAMETER( ) 171.869 tÛLUPE MEAN CIAMETtfi< MOGELE & EVANS }.... 208.624 VCLUME MEAN CIAMETER( HERDAN ) 275.091 SALTER DIAMETER 246.752 AREA MEAN 0I4METER 191.984 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 85.710 STANC/IRJ CEVIATIGN OF VOLUME 85.549 COEFFICIENT CF VARIATION OF DIAMETEF(NUMBER ) 0.499 CÙEFF. Of VAR. OF VOLUME MEAN DIAMETEH(HERDAN)... 0.311

CECMETRIC NUNBEK MEAN DI AMHTER( MEOI AN J 146.228 GEOMETRIC VCLUME MEAN DIAMETER(MEDIAN) 261.415 CcCM. STANCARD DEVIATION CF NUMBER DIAMETER 1.875 CECMETRIC STC DEV OF VOLUME DIAMETER 1.388 303

DROPLET DISTRIBUTION PER RUN DISC NO. 4 / DISC SPEED=6G0C. HPM / PGTENTIAL= 3.0 KV

CLASS CLASS DROPLET FRACTICN FRACTICN CUMULATIVE CUMULATIVE NC. AVE.C I A NUMdEK NUMBER VCLUME NUMaeR VOLUME

.0000 1 10.69 0.00 0.0000 0.0000 0.0000 0 2 12.93 0.0 0 0.0000 0.0000 C.0000 0.0000 3 15.34 0.00 0.0000 0.0000 0.0000 0.0000 .0000 4 18.20 0.00 0.0000 0.0000 0.0000 0 5 2 1.59 0.54 0.0008 0.0000 0.0008 0.0000 6 25.£2 0.68 0.0010 0.0000 0.0018 0.0000 7 30.40 1 14.84 0. 1657 0.00 13 c.1675 0.0013 8 36.C 7 144.34 0.2083 0 .0027 0. 3758 0.0040 9 42.80 83.71 C.1208 0.0026 0.4966 0.0066 10 50.79 74.03 0. 1068 0.0039 0.6035 0.0105 11 60.27 40.9b 0.0591 0 .0036 0.6626 0.0141 12 71.51 13.53 0.0195 0.0020 0• 6821 0• 0160 13 J4.€5 10.86 0.0157 0 .0026 0.6978 0.0187 14 ioo.ee 7.66 0.0111 0.0031 0. 7088 0.0218 15 119.47 15.44 0.0223 c.0105 0 .7311 0.0323 16 141.76 19.42 0.0280 0 .0221 0. 7591 0.0544 17 168.20 25.07 0.0362 0.04 76 0.7953 0.1020 16 199.58 40.24 0.C581 0.1277 0.8534 0.2296 19 236.82 55.38 0.08 06 0,2962 0.9340 0.5258 20 231.CO 36.46 0.0526 0.3226 0.9866 0.8486 21 3 33.43 7.82 0.0113 0.1156 0.9979 0.9642 22. 395.64 1 .4b 0.0021 0.0358 1 .0000 1 .0000 23 46 9.4 5 0.00 0.00 00 0.0000 1 .0000 1 .0000 24 55 7.C4 0.00 O.COOO 0.0000 1.0000 1 .0000 25 66 C. 9 6 0.00 C.OOOO 0.0000 1 .0000 1 .0000

STATISTICS PER RUN TUTAL DROPLET SPOT NUMBER IN A RUN ...... 692.939 hUMBER MEAN CIAMETER( 93.378 VOLUME MEAN DIAMETER( MUGELE & EVANS ).... 153.424 VOLUME MEAN DIAM£T£R( HEKDAN ).... 252.765 SALTER DIAMETER 226.922 AREA NEAN DIAMETER . 126.250 STANDARD DEVIATION UF DIAMETER, BY NUMBER...... 65.030 STANC/RD CEVIATICN UF VOLUME. 61.515 COEFFICIENT CF VARIATION UF DIAMETER(NUMBER)..... 0.9îi CUEFF. OF VAP. UF VOLUME MEAN UIAMETER{HERO^N). .. 0.243

C-fcCMETRIC NUNOER MEAN DIAMCTCR ( MED I AN 66.161 GtCMETRIC VOLUME MEAN DIAMETER(MED I AN) 242.980 GEOM. STANDARD DEVIATION OF NUMBER DIAMETER 2.194 CECMETRIC ETC OEV OF VOLUME DIAMETEf ...... 1.368 304

ORCPLET DISTRieUTICN PER RUN CISC NO. 4 / DISC SPEEù~60C0. RPM / PCTENTIAL=-22.0 KV

CLASS CLASS DROPLET FPACTIC N FRACTICN CUMULATIVE CUMULAT NC. AVE.0 1 A NUMBER NUMBER VCLUME NUMBER VOLUME

1 ic.es 0.00 C.OC 00 0.OOOC 0.0000 0.0000 2 12.93 0.20 0.0003 0.0000 0.0003 0.0000 3 15.34 3.50 0.0052 C.OOOO 0.0055 0.0000 4 IE.20 4.12 0.0362 0.0000 0.0117 0.0000 b 21.59 12.93 0.0193 0.0000 0.0310 0.0000 0 25.62 15.83 0.0236 Ô.00G1 0.0547 0.000 1 7 3 0.40 f9.03 0.1181 0 .0005 0.1727 0.0006 b 36.C7 101 .07 0.1510 0.0010 0.3237 0.0016 Ç 42.80 71 .89 0.1074 0.00 12 0.4311 0.0029 10 50.79 56.72 0.3847 0.0016 0.5159 0.0045 0.0066 11 60.27 43.14 0.0644 0.0021 0.5803 12 71.5 1 22.41 0.0335 0.0018 0.6138 0.0084 13 84.65 9.10 0.0136 0.0012 0.6274 0.0096 14 10C.6£ 1 .25 0.C019 0.0003 0.6292 0.0099 15 119.47 0.95 0.00 14 0.0004 0.6307 0.0 103 16 141.76 1 2.05 0.0180 0.0076 0.6487 0.0179 17 168.20 37.10 0.0554 0.0390 0.7041 0.0568 16 1^9.58 41.89 0.06 26 0.0735 0.7667 0.1304 19 236.£2 35.26 C.C5 27 0.1034 0.8193 0.2338 20 231.OC 80.28 0.1199 0.3934 0.9393 0.6272 21 333.43 3 3.35 0.0498 0 .2730 0.9891 0.9002 22 395.64 7.30 C.OlC9 0 .0998 1.0000 1 .0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557.C4 0.00 0.0000 0.0000 1.0000 1.0000 25 65C.96 0.00 c.oooo 0.0000 1.OOCO 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A 669.358 hUMBER MEAN CIAMETER( 118.414 VOLUME MEAN CIAMETER( MUGELE & 189.030 VCLUWE MEAN 01AMETEfit HEROAN ) 288.479 SAUTER DIAMETER 266.507 AREA MEAN CIAMETER - 159.325 STANCAWD OEVIATICN OF DIAMETttî. BY NUMBER... 106.676 STANDARD CEVIATICN OF VCLUME OIA(HEPDAN) 61.991 COEFFICIENT CF VARIATION OF DIAMETCF(NUMBER).•.«. 0.901 COEFF. OF VAF. OF VOLUME MEAN CIAMETEP(HERDAN)•.• 0.215

GECNfclRIC NUMOER MEAN DIAMETEK(MEDIAN) 77.962 GECMETRIC VCLLME MEAN DIAMETER(MEDIAN) ..... 279.999 GECM. STANCARO DEVIATION OF NUMBER DIAMETER 2.493 GECMETRIC STC DEV OF VOLUME DIAMETER 1 .309 305

DHOPLET DISTRIBUTION PER RUN CISC NO. 4 / DISC SPErED=6000. RPM / POTENTIAL^ 22.0 KV

CLASS CLASS DROPLET FRACTILN FRACTION CUMULATIVE CUMULAT NO. AVE. C I A NUMBER NUMBER VCLUMF NUMBER VCLUME

1 10.89 0.00 0.00 00 0 .0000 C.OOOC 0.0000 2 I 2. 92 0.00 c.oooo 0.0000 0.0000 0.0000 3 15.34 0.00 0 .00 00 0 .0000 c.oooo C.OOOO •

o 0.0000 4 18.20 O 0.0000 0.0000 0.0000 S 21.59 1 .26 0.0031 0.0000 0.0032 0.0000 6 25.62 1 .57 0.0039 0.0000 0.0071 . 0.0000 7 30.40 14.74 0.0368 0.0002 0.0439 0.0002 a 36.C7 24.83 0.0621 0.0006 0.1060 0.0008 9 42.80 38.00 0.0950 0.0015 0.2009 0.0024 10 5C.7S 53.28 . 0.1331 0.0036 0.3341 0.0059 11 60.27 23.1b 0.05 7d 0.0026 0.3919 0.0065 12 71.51 7.99 0.0200 0.0015 0.41 19 0.0100 13 84,65 10.22 0.G255 0.0032 0.4375 0.0132 14 .10 0.66 29.43 0>. 07 35 0.0154 0.5110 0.0286 15 119.47 25.98 0.06 49 0.0227 0.5759 0.0513 16 141.7e 16.49 0.0412 0.0241 0.6171 0,0754 17 158.20 39.23 O.G980 0.0957 0.7152 0.1711 18 199.56 51 .44 0.1266 0.2096 0.8437 0.3807 19 236 .£2 28.39 0.0709 0.1933 0.9147 0.5740 20 231.00 29.21 0.0730 0.3322 0.9877 0.9061 21 333.43 4.94 0.0123 0.0939 1.0000 1.0000 22 395.64 0.00 0.0000 0 .0000 1.0000 1 .0000 23 469.45 0.00 C.OJOO 0.0000 1.0000 1.0000 24 557.04 0.00 0.0000 0 .0000 1.0000 1 .0000 25 660.96 0.00 0.0000 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 400.156 hUMGEK 4EAN CIAM£TER( 126.014 VOLUME MEAN DIAMETE«( MUGELE & EVANS ...... 169.482 VOLUME MEfN CIAMETEH( HERDAN 236.822 SALTER 3IAMETER ...... 215.339 AREA MEAN ClfMCTER 150.473 STANCARO DEVIATICN OF DIAMETER, BY NUMBER 82.337 STANCARO DEVIATICN CF VCLUME C IA(HcPOAN)•.••..•.« 59.097 COEFFICIENT CF VARIATION OF DlAMETER(NUMBER)....• 0.653 COEFF. OF VAP. OF VOLUME MEAN DIAMETEK{HERDAN)... 0.250

GECMETRÎC NLPBER MEAN DIAMETER (MEDIAN) 98.945 GECMETRIC VCLUME MEAN OIAMETEP(MCDIAN) ...... 227.743 GECW. STANCARD DEVIATICN OF NUMBER ClAMETER ..... 2.062 GECMETRIC SIC DEV OF VCLUME ClAMETER 1.353 306

UROPLCT DISTRIBUTION PER PUN CISC NG. 4 / DISC SPiIEO=9000. RPM / PCTENTIAL= 0.0 KV

CLASS CLASS DROPLET FRACTICN FRACTION CUMULATIVE CUMULATIVE NC AVE.OIA NUMBER NUMHEK VCLUME NUMBER VCLUME

0.0000 1 1 C.8S 0.00 0.0000 0 .0000 0.0000 0.0000 2 12.92 0.07 c.cooo 0 .0000 0.0000 0.0000 3 15.34 1.26 0.0005 c .0000 0.C005 0 .0000 4 18.20 1 .96 o.ooca 0 .0000 0.0013 0.0002 5 21 .59 65.78 0.0265 0 .0002 0.0278 0.0589 6 ,25e£2 76.96 0.03 10 0.0004 0.0006 0.0013 7 3 C.4C 33 .66 C.033 7 c.0007 0.0926 0. 0.0038 a 36.0 7 176 .45 0.0711 c.0025 1637 0.2829 c.oloa Ç 4 2.80 295 .56 0.1192 0.0070 0.4180 0.0241 10 5G./9 335 .13 0.1351 0.0133 0.5345 0.0433 11 60.27 268 .87 0.1165 0 .0192 0.6334 0.0705 12 71.5 1 245.26 0. C989 0 .0272 0.1 105 13 64 .£5 216,t> 4 0.0873 0 .0401 C.7207 0.1699 14 100.68 191.92 0.07 74 0 .0593 0.7981 0 .2556 15 119.47 165.98 0.0669 0 .0857 0.8650 0.3466 16 141.7c 10 5.49 0.0425 0 .OSIC 0.9075 0.5152 17 168.20 11 6.96 0.0472 0 .1686 0.9547 0.6461 18 ivy.58 54.38 C.C219 c. 1309 0.9766 0.7704 19 2-i6.82 30.90 0.0125 0 .1243 0.9891 0.9070 20 23 1 .00 20.32 0.C082 0.1366 0.9973 0.9577 21 333.43 4.52 0 .00 15 0.0507 0.9991 1.0000 22 395.f4 2.26 0.C00 3 0.0423 1.0000 1.0000 23 469.45 0.00 C .0000 0 .0000 1.0000 1.0000 24 5 5 7.C4 0 .00 0.0000 0 .0000 1.COOO 1.0000 2b 660.96 0.00 G .0000 0.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPCT NUMBER IN A RUN •••••••••••••• 2480.352 hUYBER MEAN CIAMETEH( 78.787 VuLUME MEAN OIAMETERC MUGELE & EVANS 109.952 VOLUME MEAN ClAMETEHt HERDAN 192.669 SAUTER DIAMETER 151.729 AriEA MEAN CIAMETER 93.665 STANDARD DEVIATION OF DIAMETER, BY £0.664 STANDARD DEVIATION OF VOLUME OIA(HEPDAN)...... 84.169 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)..... 0.643 CÙEFF. OF VAfi. OF VOLUME MEAN diameTER(HEROAN)... 0.437

CECMETRIC NUMBER MEAN DIAMETEK(MEDIAN)...... 66.531 GEOMETRIC VOLUME MEAN 01AMETER(MEDI AN) ...... 173.061 CECM. STANCAFD DEVIATION CF NUMBER CIAMETER ..... 1.767 GECMETRIC STC DEV OF VCLUME DIAMETER 1.629 307

DROPLET DISTRIBUTION PEW RUN CISC NC. 4 / DISC SPEEO=9000. RPM / PCTENTIAL= -8.0 KV

CLASS CLASS DHOPLET FRACTION FRACTICN CUMULATIVE CUMULATIVE NC. AVE.DI* NUMBER NUMBER VOLUME NUMBER VOLUME

1 io.es 0.00 0.0000 0 .0000 o.ocoo 0.0000 2 12.S3 0.00 c.oooo 0.0000 0.0000 0.0000 3 15.24 1 .09 €.0005 0.0000 0.0005 0.0000 4 ie.20 3.12 0.0015 0 .0000 0.0020 0.0000 5 21.59 68.53 0.0323 0.0003 0.0343 0.0003 6 25.62 81.96 0.0386 0 .0005 0.0729 0.0008 7 30.40 154.61 0.0729 0.0016 0.1458 0.0C24 a 36.C7 210.47 0.0992 0 .0037 0.2451 0.0061 9 42.80 228.94 0.1079 0.0067 0.3520 0.0128 10 50.79 227.81 0.1074 0.0112 0.4604 0.0240 11 60.27 191.21 C.C902 0.0 157 C.5SCG 0.0397 12 71.5 1 227.81 0.1074 0.0312 0.6530 0.0709 23 84.£5 174.01 0.0820 0.0398 0.7400 0.1108 14 10 0.63 124.15 • 0.0585 0.0475 0.7986 0.1582 15 113.47 1 19.04 0.0561 0.0761 0.8547 0.2343 16 141.76 85.04 C.0401 0.0908 0.8948 0.3251 17 168.20 91.42 0.0431 C.1630 0.9379 0.4681 18 199.58 83.13 0. 03 92 0.2477 0.9771 0.7358 19 236.£2 41.77 0.0197 0.2079 0.9968 0.9437 20 231.00 6.77 0.0032 0 .0563 1.0000 1.0000 21 . 333.43 0.00 C.OOOO 0.0000 1.0000 1.0000 22 395.64 0.00 0.0000 C .0000 1.0000 1.0000 23 469.45 0.00 o.ooco 0.0000 1.0000 1.0000 24 55 7.C4 0.00 c.oooo 0.0000 1.0000 1.0000 2b 660.96 0.00 O.CDCO 0.0000 1.0000 1.0000

STATISTICS PER RUN TOTAL DROPLET SPOT NUMBER IN A RUN 2120.888 hUMdER MEAN CIAMF.TER( 76.589 VOLUME MEAN OIAMETER( MLiGELE & EVANS )..... 107.907 VOLUME MEAN CIAMETER( HERDAN ) 176.265 SALTER DIAMETER 147.720 4REA MEAN DIAMETER ...... 92.2S1 STANCfRD DEVIATICN OF OIAMETEP» BY NUMBER.. 51.508 STANDARD DEVIATION OF VOLUME JIA(HERDAN)...... 58.806 COEFFICIENT CF VARIATION OF DIAMETEH(NUMBER)..... 0.673 COEFF. OF VAC. OF VOLUME MEAN DIAMETER{HERDAN)... 0.334

GECMETRIC NUMBER MEAN U1AMETEK{MEDlAN).... 63.194 GECMETRIC VOLUME MEAN DIAMETEF(MED I AN) ...... 163.855 CECM. STANCARD DEVIATICN CF NUMBER DIAMETER .... 1.836 CECMETRIC STC DEV OF VOLUME DIAMETER 1.516 308

DHOPLdT 01 STRI BLiTICN PER RUN CISC NO. 4 / DISC SPEED=9000. RPW / PCTeNTIAL= 8.0 KV

CLASS CLASS OHÛPLET FHACTION FRACTION CUWULATIWz CUMULATIVE NC. AVE.CIA NUMBER NUWQER VCLUMÊ NUMBER VCLUME

1 10.39 0.00 0.0000 0.0000 0.0000 0.0000 2 1 2.93 C.OO C.OQOO C.OOOO O.GOOO o.oooo 3 15.34 I .78 0.0009 0.0000 0.0009 o.oooo 4 ie.2C 4.99 0.0026 0.0000 0.0036 0.0000 5 21.59 95.64 0.0504 0 .0004 0.0539 0.0004 6 25.62 1 I 1.20 0.0586 C.0007 0.1125 0.0011 7 3C.4C 111.65 0.05fcd 0.0012 0.1713 0.0023 8 36.07 16 1 .86 0.0853 0.0030 0.2566 0.0053 9 42.80 180.85 0.095 3 0.0055 0.3518 0.0108 10 50.79 179 .82 €.0947 0.0092 0.4465 0.0200 11 60.27 172.83 0.0910 0.0147 0.5376 0.0347 12 71.= 1 190.64 0.1004 0.0271 0.6380 0.0618 13 84.85 167.34 0. 38 81 0.0398 0.7261 0.1015 14 100.68 151 .24 0. C79 7 0 .0600 0.8058 0.1616 15 119.47 91 .47 0.0482 0.0607 0.8539 0.2222 16 141.76 62.05 0.0327 0.0687 0.8866 0.2910 17 168.20 59.24 0.03 12 0.1096 0.9178 0.4006 18 195.58 108.34 0.0571 0.3350 0.9749 0.7356 19 236.82 42.44 0.0224 0.2192 0.9972 0.9548 20 23 1. 0 0 5.24 0.00 28 0.0452 1.0000 1.0000 o o 21 333.43 Ô C.OOOO 0 .0000 1.0000 1.0000 22 395.64 • 0.00 0 .0000 0.0000 1.0000 1.0000 23 466.45 0.00 C.OOOO 0.0000 1 .0000 1.0000 24 557.04 0.00 0.0000 C.OOOO 1,0000 1.0000 25 66 C.96 0.00 C.OOOO 0 .0000 1.0000 1 .0000

statistics per run TUTAL DRCPLET SPOT NUMBER IN A RUN 1898.626 NUMBER MEAN CIAMET£H( } .... 77.661 VOLUME MEAN CIAMETERC MUGELE & EVANS ) 110.568 VCLUME MEAN CIAMETER( HERDAN )... 180.020 SALTER DIAMETER 152.089 fREA MEAN CI/METER . 94.367 STANDARD DEVIATION OF DIAMETER, BY NUMBER...... 53.622 STANCfRJ CEVIATICN OF VCLUME OIA(HEPDAN) 57.232 COEFFICIENT CF VARIATION OF DIAMcTER{NUMBER, 0.690 CÛEFF. OF VAR. OF VOLUME MEAN CI AM E TER( HERD AM. .. 0.318

GECMEiRIC NUN8ER MEAN DIAVETEF(MEDIAN) 63.060 GECVETRIC VCLUME MEAN 01 A ^ET E R(MED I/iN ) 168.096 GECM. STANCAPD DEVIATION OF NUMBER DIAMETER ..... 1.893 GEOMETRIC STC DEV OF VOLUME DIAMETEP 1.500 309

dhopltt uisthiblltion per run CISC NCi. 4 / DISC SPEED= 9000. RPM / POTENTIAL=-22« 0 KV

CLASS CLASS DKOPLET FRACT ION FRACTION CUMULATIVE CUMULAT VOLUME NC. AVE.CIA NUMBER NUMBER VOLUME NUMBER

0.0000 1 1 0.89 0.68 0.0003 0.0000 0.0003 0.0000 2 12.93 1 .62 C.COOS 0.0000 0.0011 0.0095 0.0000 MU 15.34 16.89 0.0384 0.0000 0.0001 4 18.20 26.80 0.0133 0.0001 0.0228 0.0011 5 21.59 285.93 0.1416 0.0010 0.1644 6 25.€2 321 .65 0.1593 0.00 19 0.3238 0.0030 0.0044 7 .30.40 142.14 C.0704 0 .0014 0.3942 0.0064 6 36.(7 126.10 0.0625 0.0021 0.4566 y 4 2.80 122.25 0.06 06 0.0033 0.5172 0.0097 0.0134 10 SC.79 80.94 0.0401 0.0037 0.5573 C.6C79 0.0212 11 60.27 102.27 0.0507 0 .007% 0.036 7 12 71.El 121.87 0,0604 0.0155 0.6683 0 .0626 13 84.65 121.53 0.0602 0.0258 0.7285 0.0978 14 100.68 99.12 0.0491 0.0352 0.7776 0.1344 15 119.47 61.79 0.03 06 0.0367 0.8082 0.2327 16 141.76 99.1 9 0.C491 0.0983 0.8573 0.4292 17 168.20 1 18.63 0.0588 0.1964 0.9161 0*7670 18 199.58 122.10 C.0605 0.3378 0.9766 0.9637 19 236.82 42.56 0.02 11 0.1967 0.9977 1.0000 20 28 1.00 4.71 0.0023 0 .0363 1.0000 1.0000 21 333.43 0.00 0.0000 0.0000 1.0000 1.0000 22 395.64 C .00 O.COOO 0.0000 l.OOOO 1.0000 23 469.45 0.00 0.0000 0.0000 1.0000 1.0000 24 557. C4 0.00 0.0000 0.0000 1.0000 1.0000 25 660.96 0.00 0.0000 0.0000 1.0000

STATISTICS PER RUN TOTAL DRCPLET SPOT NUMBER IN A RUN ...... 2018.774 hUMBER MEAN CIAMtTER( 72.193 VOLUME MEAN DIAMETER( MLGELE & EVANS VOLUME MEAN CIAMETER( HÊRDAN 183.398 SAUTER DIAMETER 161.325 AREA MEAN ClAMETER <^3.937 STANDARD DEVIATION OF DIAMETER, BY hUMBER...... 60.117 STANDARD DEVIATION OF VOLUME DI A(HERDAN)....o»... 49.488 COEFFICIENT CF VARIATION OF DIAMETER(NUMBER)..... 0.833 COEFF. OF VAF. OF VOLUME MEAN DIAMETER(HERDAN)... 0.270

CECMETRIC NUMBER MEAN DIAMETER(MEDIAN) 52.689 GEOMETRIC VOLUME MEAN DIAMETEF

droplet 0istri8uticn fer run cisc no. 4 / disc speed=9coo. rpm / pctential= 22.0 kv class class droplet fraction fraction cumulative cumulative nc. ave.cia number number volume nukber volume

0.0000 1 10.as 0.00 0 .0000 0 .0000 0.0000 2 12.93 0 .0 0 0 .0000 c .0000 0.0000 0.0000 0.0000 3 15.24 2.63 0 .00 18 0 .0000 0.0018 0.0000 4 ie.20 9.15 0 .0064 0 .0000 0.0083 2 1.59 31.72 0 .0222 0 .0001 0.0305 0.0002 Ô 2e.62 38.98 0 .02 73 0 .0003 0.0578 0.0005 7 30.40 45.74 0 .0321 0 .0006 0.0899 0-0010 b j6.07 67.07 0 .0470 0 .00 14 0. 1369 0.0024 0.0061 9 42. ec 104.58 0 .0722 0 .0037 c.2102 10 50 .79 125.83 0 .0882 0 .0074 0.2985 0.0135 0.0255 11 6c.27 122 .67 0 .0860 0 .0120 0.3845 0.0432 12 71.51 108.86 0 .0763 0 .01 78 0.4608 13 84.85 15 7.55 c .1105 0 .0430 0.5713 090662 14 100.68 154.92 0 .1086 0 .0706 0.6799 0.1568 0.2882 15 11s.47 172.56 0 . 12 10 0 . 13 14 0.6009 16 141.76 128.13 0 .3898 0 .1630 0.8907 0.4512 0.6039 17 16 8. 2 c 71 .84 0 .0504 0 .1527 0.9411 13 1vs.58 50 .55 0 .0354 0 .1795 0.9765 0.7834 19 236.82 28.98 0 .0203 0 .1719 0.9968 0.9553 1 .0000 20 23 1.00 4.52 0 .002 2 0 • 0447 1.0000 1.0000 21 333.43 0.0 0 0 .0000 0 .0000 1.0000 1.0000 22 3%s.64 0.00 0 .0000 0 .0000 1.0000 1.0000 23 469.45 0.00 0 .0000 c .0000 1,0000 24 557.c4 0.00 0 .0000 0 .0000 1.0000 1.0000 1.0000 25 660.96 0.00 c.0000 0 .0000 1.0000

statistics per run tutal d»^0ple1 spot number in a run ...... 1426.262 nunbef. mean ciameterc « 91.002 volume mean diamhter( mugele s evans )...... 116.169 volume mean ciam£ter( herdam 166.942 salter jiameter 144.819 /rea mean clfmeter 104.120 stancarj deviation of oiaweter, oy number 50.610 5tancaro deviation of volume dia{heroan)••••••••• 55.772 (qefficient cf variation cf 0 iametef(number).•... 0.556 CQEFF » of vafi. of volume mean di ameter (hehdan ) . 0.334 cecmetric number mean oiameter(meoi an• 77.411 geometric volume mean 01ameter(medi an) 156.608 cecm. stancard deviation cf number diameter 1.804 geometric stc dev of volume diameter * ...... 1.455 311

XVII. APPENDIX G. SPRAY DISPERSION SPRAY DI SPEKS ICN CHARACTERISTICS FOR SUM DROPLET SIZE DISTRIBUTIONS disc potential median 5x cumul.vol 95% cumul.vol dispersion geom. std speed applied diameter diameter diameter coefficient deviation

kv micrcn micron micron

2 50. 0 312.2 128.0 508.0 1.217 1.532 2 50. -a 304.0 153.0 503.0 1.151 1. 487 2 5 0. a 339.5 196.0 480.0 0.637 1 .379 2 SO. -22 318.6 140.0 511.0 1.164 1 .475 2 50. 22 294.1 122.0 472.0 1.190 1. 449 2 CO. 0 238.6 121 .0 347.0 C.S47 1. 370 2 00. -8 171.0 83.0 279.0 1. 146 1.433 2 CO. 8 167.2 84.0 264.0 1.077 1. 402 2 CO. -22 174.8 76.0 263.0 1.070 1.444 2 00. 22 191.2 85.0 303.0 I. 140 1.457 2 50. 0 133.4 75.0 175.0 C.750 1.313 2 50. -a 131.9 72.0 202.0 C .986 1 .387 2 50. a 161 .9 83.0 250.0 1.032 1. 385 2 50. -22 139.4 56.0 193.0 0.983 1 . 445 2 50. 22 152.9 84.0 240.0 1.020 1 .438 SFRAY DISPERSION CHARACTERISTICS FOR SUM DROPLET SIZE DISTRIBUTIONS

Si disc potenti al median sx cumul.vol 95% cumul.vol cisfersion gecm. std 181 speed applled diameter diameter diameter coefficient deviation

hz kv miçrcn micron micron

so. 0 340.4 201.0 461.0 €.764 1 .338 3 50. -8 359.3 204.0 515.0 0.866 1.334 3 50. 8 362.3 186.0 495.0 0. 853 1.269 3 50. -22 290.7 150.0 393.0 0.836 1.378 3 50. 22 277.5 122.0 416.0 1.060 1.458 3 100. 0 215.2 9 8. 0 311 .0 c.989 1.404 3 ico. —8 257.9 119.0 419.0 1. 163 1.519 •a 100. a 262.3 121.0 384.0 1.003 1.432 3 w 1 co. -22 215.2 104.0 315.0 c.9s0 468 m 1 . lo 3 100. 22 267.7 98.0 412.0 1. 174 1 . 553

3 150. 0 164.6 86.0 235.0 c.905 1. 36 2 •3 1=0. -8 149.6 81.0 205.0 0.829 1.328 3 iso. 8 164.5 88.0 241.0 0.920 1.371 3 150. -22 154.9 75.0 250.0 1.130 1.470 2 iso. 22 156.8 79.0 232 .0 0.976 1.409 SPRAV OISPERSICN CHARACTERISTICS FOR SUM DROPLET SIZE DI STRIdUTIONS disc POTENTI AL MEDIAN 5% cumul.vgl 95% cumul.vcl dispersion geqm. std SPEED APPLIED DIAMETER DIAMETER DIAMETER COEFFICIENT deviation

HZ KV MICRCN MICRCN MICRON

4 50. 0 42 1.1 259.0 619.0 c. 855 1.451 4 50. -8 278.4 179.0 357.0 c.639 1 . 253 4 50 . a 302.4 141.0 426.0 0.942 1.467 4 50. -22 309.4 165.0 416.0 c.eii 1.336 4 so. 22 324.5 1 78.0 461.0 €.872 1.374

4 1CO. 0 226.2 128.0 314.0 0. 822 1.350 4 ICO. -8 241 .5 136.0 407.0 1. 122 1.430 4 100. 8 228.9 127 . 0 340.0 0.931 1.391 4 ICO. gj -22 265.c 164.0 371 .0 C. 780 1 . 372 m 4 100. 22 206.8 100.0 302 .0 0.977 1. 458 4 150. 0 163.8 69.0 321.0 1 . 538 1 . 576 4 150. -8 158.4 72.0 253 .0 1. 143 1 . 496 150. 4 8 158 .8 71.5 240.0 1.061 1.518 4 1 50. -22 157.4 67.0 247.0 1. 144 1.518 4 150. 22 136.2 62.0 242.0 1.322 1 . 506 spray ci fprsicn characteristic s for radial urcplet size cistri8utions

disc di £c potential median 5% cumul.vol 95% cumul.vcl dispersion geqm. std numeer speed applied diameter diameter diameter ccefficient deviation

HZ KV MICRCN MICRCN MICRON

2 50. o 34 7. 1 105.0 514.0 1.178 1 . 405 2 SO. -8 331 .2 173.0 510.0 1.018 1 . 422 2 50. 8 361 .5 225.0 482 .0 c.711 1.300 2 SO. -2 2 348.0 203.0 517.0 c.902 1 .398 2 50. 22 322.1 202.0 480 .0 0. 863 1 . 356

2 ICO. 0 257.4 156. 0 347.0 0.742 1.274 2 ICO. -a 189.2 102.0 284.0 0.962 1 . 360 2 100 . 8 182. 5 107.0 270.0 0.893 1 . 333 U) 2 ICO. -22 193.7 112.0 267.0 c. 600 1.336 m 2 u1 1CO. 22 212.5 121.0 31 0 .0 0.889 1.357

2 ISO. 0 142.4 86.0 178.0 c.646 1.272 2 150. -8 145 .2 84.0 205.0 0.833 1 .338 2 150. 8 172.1 93.0 258.0 c.959 1 . 245 2 150. -2 2 153.9 96.0 192.0 0.624 1 . 294 2 ISO. 22 169.4 89.0 246.0 0.927 1 . 367 iiPfvAY LlbPZkSICN CHAAfCTERISTlCS FOR RADIAL DRCPLtT SIZE DISTRIBUTIONS ::::o

kv micron micrcn VICRON

3 50. 0 263.4 242.0 476.3 c .644 1 . 256 j £0. — 8 376.7 242.0 520.0 0. 734 1 50. 1.264 8 383.4 243.0 498.0 0 .665 3 50. 1 . 280 -22 313.8 180.0 393 .0 0.6 79 1.264 3 50. 22 310.3 169.0 42 8. 0 0.835 1 . 347 icc. 0 233. 1 138.0 314.0 c.755 1.303 ico. -8 281 .3 143.0 427.0 1.010 1 . 423 ico. 8 283 . 1 146.0 382.0 0.834 1 . 333 w ico. -22 238.9 122.0 317.0 c.s16 m ico. 1.337

01sc disc potenti al median 5x cumul.vol 95% cumul.vol dispersion gecm. std number speed applied diameter diameter diameter coefficient deviation

h2 kv micrcn micrcn micron

4 eo. 0 436.8 291.0 615.0 c.742 1 .358 4 so. — 8 285.9 209.0 357.0 0.518 1 . 205 4 so. e 327.3 197.0 430.0 0.602 1 . 322 4 50. -22 320 .3 231 .0 415,0 0.574 1.256 4 so. 22 341.5 223.0 463.0 0.703 1.308 4 ico. 0 238.3 141.0 316.0 c. 734 1.318 4 ico. -a 259.0 149.0 408.0 1.000 1 .382 4 ico. 8 240.2 147.0 339.0 0.799 1 .363 u) 4 ico. -22 278.0 174.0 m 372.0 0.712 1.304 -j 4 ico. 22 226.0 127.0 305.0 0. 788 1 . 345 4 150. 0 171.0 64.0 335 ,0 1.585 1.627 4 iso. -8 162.9 72.0 257.0 1. 136 :i. 51 1 4 1 so. a 167.0 69.0 245.0 1.054 1. 495 4 iso. -22 173.9 83.0 250 .0 c.960 1.417 4 150. 22 153.9 78.0 248.0 1.105 i .448