Contact Potentials, Fermi Level Equilibration, and Surface Charging Pekka Peljo,*,† Joséa

Total Page:16

File Type:pdf, Size:1020Kb

Contact Potentials, Fermi Level Equilibration, and Surface Charging Pekka Peljo,*,† Joséa Article pubs.acs.org/Langmuir Contact Potentials, Fermi Level Equilibration, and Surface Charging Pekka Peljo,*,† JoséA. Manzanares,‡ and Hubert H. Girault† † Laboratoire d’Electrochimie Physique et Analytique, École Polytechnique Fedéralé de Lausanne, EPFL Valais Wallis, Rue de l’Industrie 17, Case Postale 440, CH-1951 Sion, Switzerland ‡ Department of Thermodynamics, Faculty of Physics, University of Valencia, c/Dr. Moliner, 50, E-46100 Burjasot, Spain *S Supporting Information ABSTRACT: This article focuses on contact electrification from thermodynamic equilibration of the electrochemical potential of the electrons of two conductors upon contact. The contact potential difference generated in bimetallic macro- and nanosystems, the Fermi level after the contact, and the amount and location of the charge transferred from one metal to the other are discussed. The three geometries considered are spheres in contact, Janus particles, and core−shell particles. In addition, the force between the two spheres in contact with each other is calculated and is found to be attractive. A simple electrostatic model for calculating charge distribution and potential profiles in both vacuum and an aqueous electrolyte solution is described. Immersion of these bimetallic systems into an electrolyte solution leads to the formation of an electric double layer at the metal−electrolyte interface. This Fermi level equilibration and the associated charge transfer can at least partly explain experimentally observed different electrocatalytic, catalytic, and optical properties of multimetallic nanosystems in comparison to systems composed of pure metals. For example, the shifts in the surface plasmon resonance peaks in bimetallic core−shell particles seem to result at least partly from contact charging. ■ INTRODUCTION of an electric double layer around the particles. In addition, the forces between two spheres in contact are described. Although observation of potential differences when two metals To understand what happens upon metal−metal contact and are placed in contact dates back from the late 18th century how this phenomenon affects, for example, electrocatalytic, “electricians” and of course to the seminal work of Alessandro ff fi catalytic, and optical properties of bimetallic nanosystems, we Volta, the actual e ects of the contact electri cation are often must understand the governing principles. However, electro- neglected. Although bimetallic nanoparticles have recently chemists use different terms than solid state and semiconductor received increasing attention because of their promising 1−3 4−8 4,9 physicists, giving rise to additional confusion. In this article, we electrocatalytic, catalytic, and optical properties, it is describe the thermodynamics of the contact electrification from fi equally important to understand how contact electri cation can the point of view of an electrochemist. change and contribute to enhance these properties. The The history of the contact electrification until year 1900 has interaction of nanoparticles with their environment can, been comprehensively reviewed by Hong.11 The accurate sometimes drastically, shift the Fermi level of electrons in the measurement of the contact potential difference dates back to nanoparticles and influence their chemical and electrochemical the works of Hankel, Pellat, and Kelvin.12 Hankel studied an 10 properties as highlighted in a review by Scanlon et al. Contact apparatus based on a capacitor with two plates of different electrification can also significantly shift the Fermi level of materials, charging itself upon contact. When one plate was electrons in bi- or multimetallic structures in comparison with grounded and the other was insulated, the potential difference pure materials. This is important because these shifts in the increased with an increase in the separation distance between Fermi level can have a drastic effect on the properties of plates, enabling the measurement of the contact potential. multimetallic systems. For example, shifts observed in surface Pellat improved this method by connecting the first plate to a plasmon resonance of core−shell nanoparticles seem to result potentiometer to allow compensation of the contact potential. from contact electrification, as described vide infra. This so-called null method is very accurate, because even small, The aim of this article is to clarify the position of the Fermi uncompensated potentials resulted in measurable forces level after contact charging, to understand how much charge is between the capacitor plates, and this method was named transferred and where this charge is located, to give some idea about how these effects influence properties of these systems, Received: April 4, 2016 and to illustrate what happens when these particles are Revised: May 9, 2016 immersed in an electrolyte solution, leading to the formation Published: May 13, 2016 © 2016 American Chemical Society 5765 DOI: 10.1021/acs.langmuir.6b01282 Langmuir 2016, 32, 5765−5775 Langmuir Article after Kelvin. The sensitivity of the Kelvin probe was further electron at rest in a field-free vacuum. Then, the electronic increased by Zisman13 using vibrating plates coupled with energies in a metal have negative values. The work to bring this headphones as the detecting instrument. The state-of-the-art electron from the reference point to just outside of the metal is − ψ 20 ff system is now the Kelvin probe force microscope, allowing the e . The work function Φ=−eψμ − ẽ− is the di erence in measurement of the local contact potential difference between a the energies of the electron just outside of the metal (−eψ) and conducting atom force microscopy tip and the sample. This fi inside of the metal (μẽ−). The ionization energy (IE) is de ned technique allows the mapping of the surface topography and as the work to remove one electron from a particle. When the local work function with high spatial resolution. For further fi ff 14 state of charge is not signi cantly a ected by the removal of an details, the reader is directed to the review by Lee et al. electron, the IE can be approximated by The triboelectric electrostatic charging by friction has also 15 been covered in a review by Lacks and Sankaran, and is out of IE =−μẽ− =Φ+eψ (1) scope of this article focusing on the thermodynamics of the ψ ffi contact electrification. In 1951, Harper16 studied contact The electrostatic term e indicates that it is more di cult to electrification of different metal spheres. He demonstrated extract electrons from a particle that is positively charged. The that the amount of charge transferred upon contact of two basic concepts are further reviewed in the Supporting different metal spheres showed almost a linear relationship with Information. Electrons tend to flow in the direction that decreases the the contact potential difference between the two metals. To gradient of their electrochemical potential until it vanishes. This eliminate the effects of the triboelectric charging, the contact fl − process is known as Fermi level equilibration. In the case of two was achieved by a oating sphere apparatus, and the Volta A B 20 μ −−μ Helmholtz hypothesis that “the charge obtained on separating conductors A and B, the equilibrium condition is ẽ = ẽ. two bodies must have been present as a double layer when they This equilibrium is achieved through charge redistribution, and were in contact” was corroborated.16 These results clearly show hence it involves the electrostatic energy of the electrons. Thus, that when the separation between two spheres is increased, the the equilibrated Fermi level should be understood as the 21,24 fi − capacitance of the system changes: rst, the charge transfer electrochemical potential of the electrons, EF = μẽ; this is occurs to keep the Fermi levels of both spheres equal, and then also the highest occupied energy level at 0 K provided that at a certain threshold value, the tunneling of electrons is no these levels include the electrostatic potential energy. longer possible between the two spheres, and the charge When two conductors of different metals A and B carry remains constant.16 Because the capacitance of the system charges qA and qB, their energy is varies as a function of the separation, the electrostatic 1 1 interactions between the two equal spheres redistribute the W =Φ+Φ+()qqAA BB() qq AAψψ + BB surface charge, so that they can effectively be considered as e 2 (2) large dipoles.17 These large dipoles attract each other unless In the capacitance matrix formalism, the charges on the they have exactly the same charge (in this case they repel each conductors are expressed in terms of their (outer) electrostatic other).17 potentials and the self- and mutual capacitances as17 fi This article focuses on the contact electri cation from ⎛ ⎞ ⎛ ⎞ qA ⎛CC⎞ ψ A thermodynamic equilibration of the electrochemical potential ⎜ ⎟ ⎜ AA AB ⎟⎜ ⎟ of the electrons of two conductors upon contact. We have ⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎝ B ⎠ ⎝CC⎠⎝ B ⎠ recently proposed that the contact electrification in bimetallic q AB BB ψ (3) segregated systems can be quantitatively understood by simply ≡ A B fi At constant total charge qT q + q and xed spatial considering the system as a nanocapacitor, where a thin vacuum configuration of the conductors, the equilibrium condition layer separates the two metals. The potential difference (∂∂Wq/)A = 0with respect to the exchange of charge is between the two metals is directly given by the work function qCT, ij difference, and the amount of transferred charge can be achieved when the Volta potential difference is calculated simply from electrostatics.18 Comparison between ΔB ψψψ≡−()()//BA =−Φ−Φ≡−ΔΦBAe B e numerical simulations of the electrostatics and more A eq eq A comprehensive density functional theory (DFT) calculations (4) showed that the continuum calculations can satisfactorily From eq 1, this is equivalent to the Fermi level equilibration describe the general charge transfer behavior, but DFT A B μẽ−−= μẽ. Thus, the outer potentials of two conductors in calculations are required to accurately describe the atomic ff ff scale charge transfer at the metal−vacuum interface and to equilibrium di er in a quantity proportional to the di erence in fi − their work functions.
Recommended publications
  • Integrated Chemical Microsensor Systems in CMOS Technology by A
    microtechnology and mems microtechnology and mems Series Editor: H. Baltes H. Fujita D. Liepmann The series Microtechnology and MEMS comprises text books, monographs, and state-of-the-art reports in the very active field of microsystems and microtech- nology. Written by leading physicists and engineers, the books describe the basic science, device design, and applications. They will appeal to researchers, engineers, and advanced students. Mechanical Microsensors By M. Elwenspoek and R. Wiegerink CMOS Cantilever Sensor Systems Atomic Force Microscopy and Gas Sensing Applications By D. Lange, O. Brand, and H. Baltes Micromachines as Tools for Nanotechnology Editor: H. Fujita Modelling of Microfabrication Systems By R. Nassar and W. Dai Laser Diode Microsystems By H. Zappe Silicon Microchannel Heat Sinks Theories and Phenomena By L. Zhang, K.E. Goodson, and T.W. Kenny Shape Memory Microactuators By M. Kohl Force Sensors for Microelectronic Packaging Applications By J. Schwizer, M. Mayer and O. Brand Integrated Chemical Microsensor Systems in CMOS Technology By A. Hierlemann A. Hierlemann Integrated Chemical Microsensor Systems in CMOS Technology With 125 Figures 123 Professor Dr. Andreas Hierlemann Physical Electronics Laboratory ETH Hoenggerberg, HPT-H 4.2, IQE 8093 Zurich Switzerland Email: [email protected] Series Editors: Professor Dr. H. Baltes ETH Zürich, Physical Electronics Laboratory ETH Hoenggerberg, HPT-H6, 8093 Zürich, Switzerland Professor Dr. Hiroyuki Fujita University of Tokyo, Institute of Industrial Science 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Professor Dr. Dorian Liepmann University of California, Department of Bioengineering 466 Evans Hall, #1762, Berkeley, CA 94720-1762, USA ISSN 1439-6599 ISBN 3-540-23782-8 Springer Berlin Heidelberg New York LibraryofCongressControlNumber:2004114045 This work is subject to copyright.
    [Show full text]
  • Quantum Mechanics Electromotive Force
    Quantum Mechanics_Electromotive force . Electromotive force, also called emf[1] (denoted and measured in volts), is the voltage developed by any source of electrical energy such as a batteryor dynamo.[2] The word "force" in this case is not used to mean mechanical force, measured in newtons, but a potential, or energy per unit of charge, measured involts. In electromagnetic induction, emf can be defined around a closed loop as the electromagnetic workthat would be transferred to a unit of charge if it travels once around that loop.[3] (While the charge travels around the loop, it can simultaneously lose the energy via resistance into thermal energy.) For a time-varying magnetic flux impinging a loop, theElectric potential scalar field is not defined due to circulating electric vector field, but nevertheless an emf does work that can be measured as a virtual electric potential around that loop.[4] In a two-terminal device (such as an electrochemical cell or electromagnetic generator), the emf can be measured as the open-circuit potential difference across the two terminals. The potential difference thus created drives current flow if an external circuit is attached to the source of emf. When current flows, however, the potential difference across the terminals is no longer equal to the emf, but will be smaller because of the voltage drop within the device due to its internal resistance. Devices that can provide emf includeelectrochemical cells, thermoelectric devices, solar cells and photodiodes, electrical generators,transformers, and even Van de Graaff generators.[4][5] In nature, emf is generated whenever magnetic field fluctuations occur through a surface.
    [Show full text]
  • Fundamentals of Electrochemistry
    ffirs.qxd 10/29/2005 11:56 AM Page iii FUNDAMENTALS OF ELECTROCHEMISTRY Second Edition V. S. BAGOTSKY A. N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences Moscow, Russia Sponsored by THE ELECTROCHEMICAL SOCIETY, INC. Pennington, New Jersey A JOHN WILEY & SONS, INC., PUBLICATION ftoc.qxd 10/29/2005 12:01 PM Page xiv ffirs.qxd 10/29/2005 11:55 AM Page i FUNDAMENTALS OF ELECTROCHEMISTRY ffirs.qxd 10/29/2005 11:55 AM Page ii THE ELECTROCHEMICAL SOCIETY SERIES The Electrochemical Society 65 South Main Street Pennington, NJ 08534-2839 http://www.electrochem.org A complete list of the titles in this series appears at the end of this volume. ffirs.qxd 10/29/2005 11:56 AM Page iii FUNDAMENTALS OF ELECTROCHEMISTRY Second Edition V. S. BAGOTSKY A. N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences Moscow, Russia Sponsored by THE ELECTROCHEMICAL SOCIETY, INC. Pennington, New Jersey A JOHN WILEY & SONS, INC., PUBLICATION ffirs.qxd 10/29/2005 11:56 AM Page iv Copyright © 2006 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
    [Show full text]
  • A Fixed Surface Potential Probe with the Swing Capacitive Electrometer
    Proc. 2017 Annual Meeting of the Electrostatics of America 1 A Fixed Surface Potential Probe with the Swing Capacitive Electrometer Compared to the Vibrating Kelvin Probe Michael Reznikov Dept. of Integrated Systems Physical Optics Corp., Torrance, CA phone: (1) 310-320-3088 e-mail: [email protected] Abstract— The novel fixed (non-vibrating) Volta potential probe was evaluated in compar- ison with the standard, vibrating (400 Hz) commercial Kelvin probe. While both tested probes demonstrated the similar behavior, there were significant practical advantages of the novel probe. Specifically, the novel probe allows for the elevated distance to the surface and provides more sensitivity to charge under the coating layer. These differences are explained by the analysis of probe circuitry together with the electrostatic approach to the dynamics of the Volta potential measurement. I. INTRODUCTION The capacitive probe method for the measurement of charge induced in the probe elec- trode was proposed by Lord Kelvin (W. Thomson) in 1898 as a capacitive quadrant elec- trometer switching between the immovable probe and discharge shunt while the biasing voltage is applied to the material specimen [1] (see Fig. 1(a)). The using of biasing volt- age and thus the "zero signal" measurement were implemented because the capacitance of the quadrant electrometer is varied during the measurement and thus the measured value depends on the capacitance between the probe electrode and the surface of the specimen. Due to the manual switching and adjustment of biasing voltage, the using of original Kelvin probe was very time-consuming.. In 1932 the vibrating probe method was developed by W.A.
    [Show full text]
  • Dem-Cfd Analysis of Contact Electrification and Electrostatic Interactions During Powder Handling Processes
    DEM-CFD ANALYSIS OF CONTACT ELECTRIFICATION AND ELECTROSTATIC INTERACTIONS DURING POWDER HANDLING PROCESSES CHUNLEI PEI BEng A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Chemical Engineering University of Birmingham September 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Electrostatic phenomena are pervasive in powder handling processes. In this study, contact electrification and electrostatic interactions during powder handling processes are explored using the discrete element method coupled with computational fluid dynamics (DEM-CFD), in which contact electrification and electrostatic interaction models are developed and implemented. The effects of particle shape on contact electrification are also investigated, for which multi-sphere methods are adapted and implemented into the DEM-CFD. The electrostatic and dynamic behaviours in various powder handling processes are then analyzed, which include contact electrification of spherical particles during fluidization; electrostatic interactions during deposition of mono-charged and bi-charged particles; contact electrification and electrostatic interactions of spherical particles during fluidization; contact electrification of elongated particles in a vibrating container and particles of arbitrary shapes in a rotating drum.
    [Show full text]
  • Integration of Micro-Supercapacitors with Triboelectric Nanogenerators for a Flexible Self-Charging Power Unit
    Nano Research 2015, 8(12): 3934–3943 DOI 10.1007/s12274-015-0894-8 Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit Jianjun Luo1,§, Feng Ru Fan1,2,§, Tao Jiang1, Zhiwei Wang1, Wei Tang1, Cuiping Zhang1, Mengmeng Liu1, Guozhong Cao1,3, and Zhong Lin Wang1,4 () 1 Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China 2 Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China 3 Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA 4 School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA § These authors contributed equally to this work. Received: 17 July 2015 ABSTRACT Revised: 6 September 2015 The rapid development of portable and wearable electronic devices has Accepted: 8 September 2015 increased demand for flexible and efficient energy harvesting and storage units. Conventionally, these are built and used separately as discrete components. © Tsinghua University Press Herein, we propose a simple and cost-effective laser engraving technique for and Springer-Verlag Berlin fabricating a flexible self-charging micro-supercapacitor power unit (SCMPU), Heidelberg 2015 by integrating a triboelectric nanogenerator (TENG) and a micro-supercapacitor (MSC) array into a single device. The SCMPU can be charged directly by ambient KEYWORDS mechanical motion. We demonstrate the ability of the SCMPU to continuously energy harvesting, power light-emitting diodes and a commercial hygrothermograph. This inves- energy storage, tigation may promote the development of sustainable self-powered systems and triboelectric nanogenerator provide a promising new research application for supercapacitors.
    [Show full text]
  • Electroplating, Electrochemistry and Electronics
    NASF SURFACE TECHNOLOGY WHITE PAPERS 80 (10), 1-44 (July 2016) The 15th William Blum Lecture Presented at the 61st AES Annual Convention in Chicago, Illinois June 17, 1974 Electroplating, Electrochemistry and Electronics by George Dubpernell M&T Chemicals Ferndale, Michigan Recipient of the 1973 William Blum AES Scientific Achievement Award Page 1 NASF SURFACE TECHNOLOGY WHITE PAPERS 80 (10), 1-44 (July 2016) Contents 1. Historical 3 2. The Periodic Chart 4 3. The consumption of metals in electroplating 5 4. The double standard of electrode potentials - pH and reference electrodes 8 5. On the nature of electrode potentials and hydrogen overvoltage 14 6. Experimental 15 7. Discussion 21 8. Hydrogen overvoltage in electroplating 27 9. Contact potential - Volta potential - Electrostatic surface potential 30 10. The so-called hydrogen electrode 33 11. The Nernst theory of the electromotive activity of ions 34 12. Electrophysiology 35 13. Relationships to electronics 36 14. References 38 15. About the author 43 Page 2 NASF SURFACE TECHNOLOGY WHITE PAPERS 80 (10), 1-44 (July 2016) The 15th William Blum Lecture Presented at the 61st AES Annual Convention in Chicago, Illinois June 17, 1974 Electroplating, Electrochemistry and Electronics by George Dubpernell M&T Chemicals Ferndale, Michigan Recipient of the 1973 William Blum AES Scientific Achievement Award Editor’s Note: Originally published as Plating, 62 (4), 327-334 (1975), Plating, 62 (5), 436-442 (1975) and Plating, 62 (6), 573- 580 (1975), this article is a re-publication of the 15th William Blum Lecture, presented at the 61st AES Annual Convention in Chicago, Illinois on June 17, 1974.
    [Show full text]
  • Interfacial Potentials in Ion Solvation
    Interfacial Potentials in Ion Solvation A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics of the McMicken College of Arts and Sciences by Carrie Conor Doyle B.S. in Physics, Rutgers, the State University of New Jersey, 2013 June 2020 supervised by Dr. Thomas L. Beck Committee Co-Chair: Dr. Carlos Bolech, Physics Committee Member: Dr. Rohana Wiedjewardhana, Physics Committee Member: Dr. Leigh Smith, Physics Abstract Solvation science is an integral part of many fields across physics, chemistry, and biology. Liquids, interfaces, and the ions that populate them are responsible for many poorly understood natural phenomena such as ion specific effects. Establishing a single-ion solvation free energy thermodynamic scale is a necessary component to unraveling ion-specific effects. This task is made difficult by the experimental immeasurability of quantities such as the interfacial potential between two media, which sets the scale. Computer simulations provide a necessary bridge between experimental and theoretical results. However, computer models are limited by the accuracy-efficiency dilemma, and results are misinterpreted when the underlying physics is overlooked. Classical molecular dynamic techniques, while efficient, lack transferability. Quantum-based ab initio techniques are accurate and transferable, but their inefficiency limits the accessible simulation size and time. This thesis seeks to determine the physical origin of the interfacial potential at the liquid-vapor interface using classical models. Additionally, I assess the ability of Neural Network Potential (NNP) simulation methods to produce electrostatic properties of bulk liquids and interfaces.
    [Show full text]
  • Influence of Electrostatic Potentials on Rotating Discs for Liquid Spraying Adhemar Brandini Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1978 Influence of electrostatic potentials on rotating discs for liquid spraying Adhemar Brandini Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Brandini, Adhemar, "Influence of electrostatic potentials on rotating discs for liquid spraying " (1978). Retrospective Theses and Dissertations. 6373. https://lib.dr.iastate.edu/rtd/6373 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • Nanogenerators As a Sustainable Power Source: State of Art, Applications, and Challenges
    nanomaterials Review Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges Sridhar Sripadmanabhan Indira 1 , Chockalingam Aravind Vaithilingam 1,* , Kameswara Satya Prakash Oruganti 1 , Faizal Mohd 1 and Saidur Rahman 2,3 1 School of Engineering, Faculty of Innovation and Technology, Taylor’s University Lakeside Campus, No. 1, Jalan Taylor’s, 47500 Subang Jaya, Selangor, Malaysia; [email protected] (S.S.I.); [email protected] (K.S.P.O.); [email protected] (F.M.) 2 Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, 47500 Subang Jaya, Malaysia; [email protected] 3 American University of Ras Al Khaimah, 31291 Ras Al Khaimah, UAE * Correspondence: [email protected]; Tel.: +00-6012-354-3891 Received: 7 April 2019; Accepted: 13 May 2019; Published: 20 May 2019 Abstract: A sustainable power source to meet the needs of energy requirement is very much essential in modern society as the conventional sources are depleting. Bioenergy, hydropower, solar, and wind are some of the well-established renewable energy sources that help to attain the need for energy at mega to gigawatts power scale. Nanogenerators based on nano energy are the growing technology that facilitate self-powered systems, sensors, and flexible and portable electronics in the booming era of IoT (Internet of Things). The nanogenerators can harvest small-scale energy from the ambient nature and surroundings for efficient utilization. The nanogenerators were based on piezo, tribo, and pyroelectric effect, and the first of its kind was developed in the year 2006 by Wang et al.
    [Show full text]
  • Introduction to Fuel Cells: Fundamentals of Electrochemical Kinetics, Thermodynamics and Solid State Chemistry (II) for the Experienced
    Introduction to fuel cells: Fundamentals of electrochemical kinetics, thermodynamics and solid state chemistry (II) for the experienced Mogens Mogensen Fuel Cells and Solid State Chemistry Risø National Laboratory Technical University of Denmark P.O. 49, DK-4000 Roskilde, Denmark Tel.: +45 4677 5726; [email protected] Contents • Basics of electromotive force, cell voltage and reversibility • The course of electric potential through a cell - simplified • Potential concepts - energy and voltage • Electric potentials in more details • Examples - the potential and oxygen partial pressure through a YSZ based SOC • Polarisation of the cell and electrode overpotential types • Measurements of electrolyte resistance, reaction resistance and electrode overvoltage by EIS • Three electrode set-up and its problems • Other strategies • Electrode mechanisms • Recommended literature LargeSOFC Summer School 2010 Basics A fuel cell is a galvanic cell also called an electrochemical cell The relation between the chemical energy, ΔG (Gibbs free energy of reaction) of a cell reaction and the equilibrium (ideal) electrical voltage, also called the electromotive force, Emf, of the cell is given by -ΔG = n∙F∙Emf n is the number of electrons exchanged in the total reaction, and F is The Faraday constant = 96485 As/mol LargeSOFC Summer School 2010 Basics Important: ΔG and n must refer to the same reaction scheme! Example 1: 2- - H2 + O ' H2O + 2e - 2- ½O2 + 2e ' O H2 + ½O2 ' H2O 0 n = 2 and ΔG 298 = - 286 kJ/mol H2 Example 2: 2- - 2H2 + 2O ' 2H2O + 4e - 2- O2 + 4e ' 2O 2H2 + O2 ' 2H2O 0 n = 4 and ΔG 298 = - 572 kJ/mol O2 LargeSOFC Summer School 2010 Basics At standard conditions (25 °C and 1 atm): Emf = -ΔG0/(nF) = - (- 286 kJ/mol)/(2*96485 As/mol) = - (- 572 kJ/mol)/(4*96485 As/mol) = 1.23 V ΔG = ΔG0 + RTlnK, K is the constant in the law of mass action This gives us the Nernst equation: RT P EE=+ ln HO2 0 nF P P HO22 LargeSOFC Summer School 2010 Basics The cell voltage may deviate from the theoretical Nernst voltage.
    [Show full text]
  • Contact Electrification Induced Interfacial Reactions and Direct
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Contact electrification induced interfacial reactions and direct electrochemical nanoimprint Cite this: Chem. Sci.,2017,8,2407 lithography in n-type gallium arsenate wafer† Jie Zhang, Lin Zhang, Wei Wang, Lianhuan Han, Jing-Chun Jia, Zhao-Wu Tian, Zhong-Qun Tian and Dongping Zhan* Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e., the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels (EF) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will À Creative Commons Attribution 3.0 Unported Licence. shift due to the contact electricity and induce the spontaneous reduction of MnO4 anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Received 12th September 2016 Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface Accepted 16th December 2016 make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, DOI: 10.1039/c6sc04091h we developed a direct electrochemical nanoimprint lithography method applicable to crystalline www.rsc.org/chemicalscience semiconductors.
    [Show full text]