The Evolution of Cloud Computing Over the Past Few Years Is Potentially One of the Major Advances in the History of Computing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AI Chips: What They Are and Why They Matter
APRIL 2020 AI Chips: What They Are and Why They Matter An AI Chips Reference AUTHORS Saif M. Khan Alexander Mann Table of Contents Introduction and Summary 3 The Laws of Chip Innovation 7 Transistor Shrinkage: Moore’s Law 7 Efficiency and Speed Improvements 8 Increasing Transistor Density Unlocks Improved Designs for Efficiency and Speed 9 Transistor Design is Reaching Fundamental Size Limits 10 The Slowing of Moore’s Law and the Decline of General-Purpose Chips 10 The Economies of Scale of General-Purpose Chips 10 Costs are Increasing Faster than the Semiconductor Market 11 The Semiconductor Industry’s Growth Rate is Unlikely to Increase 14 Chip Improvements as Moore’s Law Slows 15 Transistor Improvements Continue, but are Slowing 16 Improved Transistor Density Enables Specialization 18 The AI Chip Zoo 19 AI Chip Types 20 AI Chip Benchmarks 22 The Value of State-of-the-Art AI Chips 23 The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 23 Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 26 U.S. and Chinese AI Chips and Implications for National Competitiveness 27 Appendix A: Basics of Semiconductors and Chips 31 Appendix B: How AI Chips Work 33 Parallel Computing 33 Low-Precision Computing 34 Memory Optimization 35 Domain-Specific Languages 36 Appendix C: AI Chip Benchmarking Studies 37 Appendix D: Chip Economics Model 39 Chip Transistor Density, Design Costs, and Energy Costs 40 Foundry, Assembly, Test and Packaging Costs 41 Acknowledgments 44 Center for Security and Emerging Technology | 2 Introduction and Summary Artificial intelligence will play an important role in national and international security in the years to come. -
The Race to Exascale Getting Artificial Intelligence and Big Data up to Speed
Issue 06 July 2019 SUPERCOMPUTING aSIa 1,000,000,000,000,000,000 THE RACE TO EXASCALE GETTING ARTIFICIAL INTELLIGENCE AND BIG DATA UP TO SPEED IT'S A MATERIAL WORLD A QUANTUM LEAP INTO THE FUTURE MOVE IT! MCI (P) 037/04/2019 Issue 06 CONTENTS July 2019 FEATURES p. 24 A Quantum Leap into the Future Building an ‘unhackable’ internet p. 28 Move it! Helping big data go round the globe p. 32 Scaling New Heights at SCA19 Highlights from SupercomputingAsia 2019 p. 6 Digital Dispatch Supercomputing news from around the world p. 10 It’s a Material World How high-performance computing is transforming the material world COVER STORY p. 36 Business Bytes p. 18 The latest industry moves p. 38 THE RACE TO Super Snapshot EXASCALE India’s need for speed Getting artificial intelligence and big data up to speed Data Mover Challenge 2020 Topology SUPERCOMPUTING SINET 100G aSIa DTN @ KREONET2 Denmark 100G DTN @ TransPAC- EDITOR’S NOTE EDITORIAL ADVISORY COMMITTEE London, Paris PacificWave Prof. Tan Tin Wee DTN @ 100G Seattle Surfnet DTN @ Prof. Satoshi Matsuoka DTN @ Chicago New York South Korea SINET 100G Prof. John Gustafson n this issue, we celebrate yet another successful Yves Poppe DTN @ Japan SingAREN-NICT LA edition of the annual SupercomputingAsia 100G conference, which saw more than 700 research CEO & PUBLISHER NII-SingAREN Dr. Juliana Chan 100G SingAREN- and industry delegates from around the world flock CAE-1 Internet2 100G 100G to Singapore on March 12-14, 2019 (Scaling New Singapore EDITOR-IN-CHIEF DTN @ AARNET-SXTransPORT Heights At SCA19, p. -
Issues in Developing the New Generation High Performance Computers
Issues in developing the new generation high performance computers Depei Qian Beihang University ICPP 2015,Beijing Sep. 4, 2015 Outline • A brief review • Issues in developing next generation supercomputers • Prospects A brief review The 863 program • The most important high-tech R&D program of China since 1987 • Proposed by 4 senior scientists and approved by former leader Deng Xiaoping in March 1986 • A regular R&D program, named after the 5-year plan, current the 12th 5-year 863 program • 8 areas, Information Technology is one of them • Strategic, looking-ahead, frontier research on major technologies supporting China’s development • Emphasize technology transfer and adoption of research outcomes by industry • Encourage enterprise participation Evolution of 863’s emphasis • 1987: Intelligent computers – Influenced by the 5th generation computer program in Japan • 1990: from intelligent computer to high performance computers – Emphasize practical HPC capability for research and industry • 1998: from high performance computer system to HPC environment – Emphasize resource sharing and ease of access – Broaden usage of the HPC systems Evolution of 863’s emphasis • 2006: from high performance to high productivity – Emphasize other metrics such as programmability, program portability, and reliability besides peak performance • Current: from HPC environment to HPC application service environment – Emphasize integrated efforts on HPC systems, HPC environment, and HPC applications – Explore new mechanisms and business models for HPC services -
China's Efforts on Supercomputing
China’s Efforts on Supercomputing: Progress and Applications (022)-65375551 [email protected] http://www.nscc-tj.cn Progress of High 11 Performance Computing in China and Plan. National Supercomputing 2 Centers, Supercomputer Systems and Applications. Exascale Supercomputer in 3 China: From Prototype to E- System Some Exploratory Work of 4 Lattice QCD on E-prototype System Global Progress in Supercomputer 1 TOP500 List Global Progress in Supercomputer 1 Supercomputer System Share Global Progress in Supercomputer 1 TOP500 List Global Progress in Supercomputer 1 TOP500 List Global Progress in Supercomputer 1 IBM SUMMIT 122 4356 8.8 Global Progress in Supercomputer 1 IBM SUMMIT TH-1A Supercomputer “TH-1A” was ranked the first on Top500 list released in Nov.2010. 国际学术界的评价 三大技术创新 Remark from international academia Three technical innovations 中国的“天河一号”采取的CPU与 GPU融合的结构,代表了未来超级计 算机的发展趋势。随着计算机规模的 n CPU+GPU异构融合体系结构 不断拓展,这种结构虽然不是唯一的 解决方法,但目前看来是最好的。 Ø CPU+GPU heterogeneous architecture The architecture is not the only solution, but the best so far n 64位多核多线程自主飞腾1000 CPU Ø -- 美国斯坦福大学计算机系主任比尔•戴利 64 bits Multi-core and Multi-thread CPU Billy Daley, Computer Science College, Stanford University n 自主高速互连通信技术 “天河一号”的运算速度比橡树岭国家实验 室的要快大约40%,这是运算速率的极大提升。 中国同时研制了一种互联技术,让这些处理器 Ø Self-developed High-speed interconnect 相互联系,这不是美国的技术,而是中国自己 communication technology 的技术。这是一个创举。 The technology belongs to China, not U.S., it’s a pioneering work -- 美国田纳西大学教授杰克•唐加拉 Prof. Jack Dongarra, Tennessee University Past of Supercomputer in China 2 Roadmap of TH-1A TH-1A System -
Performance Computing to US Competitiveness
The Vital Importance of High- Performance Computing to U.S. Competitiveness BY STEPHEN J. EZELL AND ROBERT D. ATKINSON | APRIL 2016 High-performance computing (HPC) refers to systems that, through a Leadership in high- combination of processing capability and storage capacity, can rapidly performance computing remains indispensable solve difficult computational problems across a diverse range of scientific, to a country’s industrial engineering, and business fields. HPC represents a strategic, game- competitiveness, changing technology with tremendous economic competitiveness, science national security, and leadership, and national security implications. Because HPC stands at the potential for scientific discovery, yet forefront of scientific discovery and commercial innovation, it is heightened global positioned at the frontier of competition—for nations and their competition places enterprises alike—making U.S. strength in producing and adopting HPC America’s HPC central to its competitiveness. But as competitor nations rapidly scale up leadership under increasing threat. their investments in and applications of high-performance computing, America will need concerted public and private collaboration and investment to maintain its leading position in both HPC production and application. INFORMATION TECHNOLOGY & INNOVATION FOUNDATION | APRIL 2016 PAGE 1 TABLE OF CONTENTS Introduction ............................................................................................................................... 3 What is HPC, and Why Does -
Assessing China's Efforts to Become an “Innovation
i ASSESSING CHINA’S EFFORTS TO BECOME AN “INNOVATION SOCIETY” – A PROGRESS REPORT HEARING BEFORE THE U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION ONE HUNDRED TWELFTH CONGRESS SECOND SESSION MAY 10, 2012 Printed for use of the United States-China Economic and Security Review Commission Available via the World Wide Web: www.uscc.gov UNITED STATES-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION WASHINGTON: 2012 ii U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION Hon. DENNIS C. SHEA, Chairman Hon. WILLIAM A. REINSCH, Vice Chairman Commissioners: CAROLYN BARTHOLOMEW Hon. CARTE GOODWIN DANIEL A. BLUMENTHAL DANIEL M. SLANE ROBIN CLEVELAND MICHAEL R. WESSEL Hon. C. RICHARD D’AMATO LARRY M. WORTZEL, Ph.D. JEFFREY L. FIEDLER MICHAEL R. DANIS, Executive Director The Commission was created on October 30, 2000 by the Floyd D. Spence National Defense Authorization Act for 2001 § 1238, Public Law No. 106-398, 114 STAT. 1654A-334 (2000) (codified at 22 U.S.C. § 7002 (2001), as amended by the Treasury and General Government Appropriations Act for 2002 § 645 (regarding employment status of staff) & § 648 (regarding changing annual report due date from March to June), Public Law No. 107-67, 115 STAT. 514 (Nov. 12, 2001); as amended by Division P of the “Consolidated Appropriations Resolution, 2003,” Pub L. No. 108-7 (Feb. 20, 2003) (regarding Commission name change, terms of Commissioners, and responsibilities of the Commission); as amended by Public Law No. 109-108 (H.R. 2862) (Nov. 22, 2005) (regarding responsibilities of Commission and applicability of FACA); as amended by Division J of the “Consolidated Appropriations Act, 2008,” Public Law Nol. -
Market and Technology Watch Report Year1
E-Infrastructures H2020-EINFRA-2016-2017 EINFRA-11-2016: Support to the next implementation phase of Pan- European High Performance Computing Infrastructure and Services (PRACE) PRACE-5IP PRACE Fifth Implementation Phase Project Grant Agreement Number: EINFRA-730913 D5.1 Market and Technology Watch Report Year 1 Final Version: 0.54 Author(s): Nico SANNA (CINECA), Aris SOTIROPOULOS (GRNET) Date: 30.04.2018 D5.1 Market and Technology Watch Report Year 1 Project and Deliverable Information Sheet PRACE Project Project Ref. №: EINFRA-730913 Project Title: PRACE Fifth Implementation Phase Project Project Web Site: http://www.prace-ri.eu Deliverable ID: D5.1 Deliverable Nature: Report Dissemination Level: Contractual Date of Delivery: PU* 30 / April / 2018 Actual Date of Delivery: 30 / April / 2018 EC Project Officer: Leonardo Flores Añover * - The dissemination levels are indicated as follows: PU – Public, CO – Confidential, only for members of the consortium (including the Commission Services) CL – Classified, as referred to in Commission Decision 2005/444/EC. PRACE-5IP- EINFRA-730913 i 30.04.2018 D5.1 Market and Technology Watch Report Year 1 Document Control Sheet Title: Market and Technology Watch Report Year 1 Document ID: D5.1 Version: 0.54 Status: Final Available at: http://www.prace-ri.eu Software Tool: Microsoft Word (Windows and Mac) File(s): PRACE-5IP-D5.1.docx Written by: Nico SANNA (CINECA), Aris Authorship SOTIROPOULOS (GRNET) Contributors: Adem Tekin (UHEM) Ahmet Tuncer Durak (UHEM) Andreas Johansson (LiU) Andrew Emerson (CINECA)