Assessing China's Efforts to Become an “Innovation

Total Page:16

File Type:pdf, Size:1020Kb

Assessing China's Efforts to Become an “Innovation i ASSESSING CHINA’S EFFORTS TO BECOME AN “INNOVATION SOCIETY” – A PROGRESS REPORT HEARING BEFORE THE U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION ONE HUNDRED TWELFTH CONGRESS SECOND SESSION MAY 10, 2012 Printed for use of the United States-China Economic and Security Review Commission Available via the World Wide Web: www.uscc.gov UNITED STATES-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION WASHINGTON: 2012 ii U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION Hon. DENNIS C. SHEA, Chairman Hon. WILLIAM A. REINSCH, Vice Chairman Commissioners: CAROLYN BARTHOLOMEW Hon. CARTE GOODWIN DANIEL A. BLUMENTHAL DANIEL M. SLANE ROBIN CLEVELAND MICHAEL R. WESSEL Hon. C. RICHARD D’AMATO LARRY M. WORTZEL, Ph.D. JEFFREY L. FIEDLER MICHAEL R. DANIS, Executive Director The Commission was created on October 30, 2000 by the Floyd D. Spence National Defense Authorization Act for 2001 § 1238, Public Law No. 106-398, 114 STAT. 1654A-334 (2000) (codified at 22 U.S.C. § 7002 (2001), as amended by the Treasury and General Government Appropriations Act for 2002 § 645 (regarding employment status of staff) & § 648 (regarding changing annual report due date from March to June), Public Law No. 107-67, 115 STAT. 514 (Nov. 12, 2001); as amended by Division P of the “Consolidated Appropriations Resolution, 2003,” Pub L. No. 108-7 (Feb. 20, 2003) (regarding Commission name change, terms of Commissioners, and responsibilities of the Commission); as amended by Public Law No. 109-108 (H.R. 2862) (Nov. 22, 2005) (regarding responsibilities of Commission and applicability of FACA); as amended by Division J of the “Consolidated Appropriations Act, 2008,” Public Law Nol. 110-161 (December 26, 2007) (regarding responsibilities of the Commission, and changing the Annual Report due date from June to December). The Commission’s full charter is available at www.uscc.gov. iii June 4, 2012 The Honorable Daniel Inouye President Pro Tempore of the Senate, Washington, D.C. 20510 The Honorable John A. Boehner Speaker of the House of Representatives, Washington, D.C. 20515 DEAR SENATOR INOUYE AND SPEAKER BOEHNER: We are pleased to notify you of the Commission’s May 10, 2012 public hearing on “Assessing China’s Efforts to Become an Innovation Society-A Progress Report.” The Floyd D. Spence National Defense Authorization Act (amended by Pub. L. No. 109-108, section 635(a)) provides the basis for this hearing. At the hearing, the Commissioners received testimony from the following witnesses: Dr. Robert D. Atkinson, President, Information Technology and Innovation Foundation; Dr. Danny Breznitz, Associate Professor of International Affairs, Georgia Institute of Technology; Richard P. Suttmeier, Professor of Political Science Emeritus, University of Oregon; Dr. Denis Fred Simon, Vice Provost for International Strategic Initiatives, Arizona State University; Dr. Earl C. Joseph II, Program Vice President, IDC; Dr. Horst Simon, Deputy Director, Lawrence Berkeley National Laboratory; Timothy K. Harder Director, EMC Cloud Infrastructure Division; Kathleen Walsh, Associate Professor of National Security Affairs, U.S. Naval War College; and Dr. Thomas Mahnken, Professor of Strategy, U.S. Naval War College. The hearing provided a broad overview of the innovation climate in China and specifically addressed research and development programs, emerging information and communication technology capabilities, and Chinese defense sector innovation. The hearing reviewed these issues in the context of their implications for the United States. We note that prepared statements for the hearing, the hearing transcript, and supporting documents submitted by the witnesses will soon be available on the Commission’s website at www.uscc.gov. Members and the staff of the Commission are available to provide more detailed briefings. We hope these materials will be helpful to the Congress as it continues its assessment of U.S.-China relations and their impact on U.S. security. The Commission will examine in greater depth these issues, and the other issues enumerated in its statutory mandate, in its 2012 Annual Report that will be submitted to Congress in November 2012. Should you have any questions regarding this hearing or any other issue related to China, please do not hesitate to have your staff contact our Congressional Liaison, Jonathan Weston, at (202) 624-1487 or via email at [email protected]. Sincerely yours, Hon. Dennis C. Shea Hon. William A. Reinsch Chairman Vice Chairman iv CONTENTS THURSDAY, MAY 10, 2012 ASSESSING CHINA’S EFFORTS TO BECOME AN “INNOVATION SOCIETY” – A PROGRESS REPORT Opening Statement of Chairman Dennis Shea (Hearing Co-Chair) ........................................... 1 Prepared Statement............................................ 3 Opening Statement of Commissioner Carte Goodwin (Hearing Co-Chair) .......................................... 5 Prepared Statement............................................ 6 Panel I: China and Innovation Introduction ................................................... 8 Statement of Robert D. Atkinson President, Information Technology and Innovation Foundation... 9 Prepared Statement........................................... 12 Statement of Dr. Danny Breznitz Associate Professor of International Affairs Georgia Institute of Technology.............................. 23 Prepared Statement........................................... 26 Panel I: Question and Answer .................................. 35 Panel II: China’s Innovation Infrastructure Introduction .................................................. 56 Statement of Richard P. Suttmeier Professor of Political Science, Emeritus University of Oregon......................................... 57 Prepared Statement........................................... 60 Statement of Dr. Denis Fred Simon Vice Provost for International Strategic Initiatives Arizona State University..................................... 66 Prepared Statement........................................... 69 Panel II: Question and Answer ................................. 77 v Panel III: Information and Communications Technology Innovation Introduction .................................................. 93 Statement of Dr. Earl C. Joseph II Program Vice President, IDC.................................. 94 Prepared Statement........................................... 97 Statement of Dr. Horst Simon Deputy Director, Lawrence Berkeley National Laboratory...... 107 Prepared Statement.......................................... 110 Statement of Timothy K. Harder Director, EMC Cloud Infrastructure Division................. 117 Prepared Statement.......................................... 120 Panel III: Questions and Answers ............................. 124 Panel IV: Defense Sector Innovation Introduction ................................................. 142 Statement of Dr. Thomas Mahnken Professor of Strategy U.S. Naval War College...................................... 143 Prepared Statement.......................................... 145 Statement of Kathleen Walsh Associate Professor of National Security Affairs U.S. Naval War College...................................... 151 Prepared Statement.......................................... 154 Panel IV: Questions and Answers ............................. 161 1 ASSESSING CHINA’S EFFORTS TO BECOME AN “INNOVATION SOCIETY” – A PROGRESS REPORT THURSDAY, MAY 10, 2012 U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION Washington, D.C. The Commission met in Room 562 Dirksen Senate Office Building, Washington, D.C. at 9:00 a.m., Chairman Dennis C. Shea and Commissioner Carte Goodwin (Hearing Co-Chairs), presiding. OPENING STATEMENT OF COMMISSIONER DENNIS SHEA HEARING CO-CHAIR CHAIRMAN SHEA: Good morning. It's 9:00 o'clock. If we could ask the first two witnesses to come forward and give their opening remarks. Good morning, and welcome to the fifth hearing of the U.S. -China Economic and Security Review Commission's 2012 Annual Report cycle. My name is Dennis Shea, and I am co -chair of today's hearing. We will be examining China's efforts to foster innovation through a variety of policies, some of which are likely to have a profound effect on the United States’ economy. China has made no secret of its ambition to shift its economy from one dependent on manufacturing products invented elsewher e to a more integrated economy that can invent, develop, and produce works whose intellectual property originated within China. The 15 -year Medium and Long -Term Plan, adopted in 2006, describes 402 technologies in which China seeks to gain expertise. The plan also calls for China to limit its dependence on foreign technology to just 30 percent by 2020. The 12th Five -Year Plan, adopted last year, identifies seven strategic emerging industries in which Chinese corporations are expected to become global champions. They include clean energy technology, next generation information technology, biotechnology, high -end equipment manufacturing, alternative energy, new materials, and clean energy vehicles. The goal is to triple the contribution that these industr ies make to Chinese GDP from five percent to 15 percent by the year 2020. To do this, the Chinese government intends to increase spending on research and development, from 1.75 percent of GDP in 2010 to 2.2 percent in 2015. By contrast, the United Stat es spent 2.9 percent of its GDP on research and development in 2009, slightly higher than the developed country average of 2.4 percent according to the OECD. Total expenditures by the Chinese central and local
Recommended publications
  • An Introduction to CPU and DSP Design in China
    SCIENCE CHINA Information Sciences . REVIEW . January 2016, Vol. 59 012101:1–012101:8 doi: 10.1007/s11432-015-5431-6 An introduction to CPU and DSP design in China Weiwu HU1,2,4 *, Yifu ZHANG1,2,3 & Jie FU1,2,3 1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; 2Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; 3School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4Loongson Technology Corporation Limited, Beijing 100195, China Received June 26, 2015; accepted August 10, 2015; published online October 29, 2015 Abstract In recent years, China has witnessed considerable achievements in the production of domestically- designed CPUs and DSPs. Owing to fifteen years of hard work that began in 2001, significant progress has been made in Chinese domestic CPUs and DSPs, primarily represented by Loongson and ShenWei processors. Furthermore parts of the CPU design techniques are comparable to the world’s most advanced designs. A special issue published in Scientia Sinica Informationis in April 2015, is dedicated to exhibiting the technical advancements in Chinese domestically-designed CPUs and DSPs. The content in this issue describes the design and optimization of high performance processors and the key technologies in processor development; these include high-performance micro-architecture design, many-core and multi-core design, radiation hardening design, high- performance physical design, complex chip verification, and binary translation technology. We hope that the articles we collected will promote understanding of CPU/DSP progress in China. Moreover, we believe that the future of Chinese domestic CPU/DSP processors is quite promising.
    [Show full text]
  • 956830 Deliverable D2.1 Initial Vision and Requirement Report
    European Core Technologies for future connectivity systems and components Call/Topic: H2020 ICT-42-2020 Grant Agreement Number: 956830 Deliverable D2.1 Initial vision and requirement report Deliverable type: Report WP number and title: WP2 (Strategy, vision, and requirements) Dissemination level: Public Due date: 31.12.2020 Lead beneficiary: EAB Lead author(s): Fredrik Tillman (EAB), Björn Ekelund (EAB) Contributing partners: Yaning Zou (TUD), Uta Schneider (TUD), Alexandros Kaloxylos (5G IA), Patrick Cogez (AENEAS), Mohand Achouche (IIIV/Nokia), Werner Mohr (IIIV/Nokia), Frank Hofmann (BOSCH), Didier Belot (CEA), Jochen Koszescha (IFAG), Jacques Magen (AUS), Piet Wambacq (IMEC), Björn Debaillie (IMEC), Patrick Pype (NXP), Frederic Gianesello (ST), Raphael Bingert (ST) Reviewers: Mohand Achouche (IIIV/Nokia), Jacques Magen (AUS), Yaning Zou (TUD), Alexandros Kaloxylos (5G IA), Frank Hofmann (BOSCH), Piet Wambacq (IMEC), Patrick Cogez (AENEAS) D 2.1 – Initial vision and requirement report Document History Version Date Author/Editor Description 0.1 05.11.2020 Fredrik Tillman (EAB) Outline and contributors 0.2 19.11.2020 All contributors First complete draft 0.3 18.12.2020 All contributors Second complete draft 0.4 21.12.2020 Björn Ekelund Third complete draft 1.0 21.12.2020 Fredrik Tillman (EAB) Final version List of Abbreviations Abbreviation Denotation 5G 5th Generation of wireless communication 5G PPP The 5G infrastructure Public Private Partnership 6G 6th Generation of wireless communication AI Artificial Intelligence ASIC Application
    [Show full text]
  • Crystal Reports Activex Designer
    報告編號: 公司註冊處電子查冊服務 日期 : REPORT ID: RPS350 COMPANIES REGISTRY ELECTRONIC SEARCH SERVICES DATE: 28-2-2011 根據《公司條例》(第32章) 成立∕註冊的新公司 頁數: Newly Incorporated / Registered Companies under the Companies Ordinance (Cap. 32) PAGE: 1 本報告涵蓋的日期(日/月/年): Period Covered (By Date)(D/M/Y): 21/02/2011 - 27/02/2011 序號 公司名稱 公司註冊編號 成立∕註冊日期(日-月-年) Sequence No. Company Name C.R. Number Date of Incorporation / Registration(D-M-Y) 1 1st ATELIER LIMITED 1562496 21-2-2011 壹號創美有限公司 2 2B DEVELOPMENT LIMITED 1563538 23-2-2011 3 3B REFINERY LIMITED 1565086 24-2-2011 4 3D GLOVES CO., LIMITED 1564568 24-2-2011 威勤防護手套有限公司 5 A PLUS INDUSTRIAL (CHINA) LIMITED 1564845 24-2-2011 時駿實業有限公司 6 A&O CARGO (HK) LIMITED 1563039 22-2-2011 華優達貨運(香港)有限公司 7 A.R.M. ASIA CO., LIMITED 1562451 21-2-2011 8 AB2 Cloud Limited 1563866 23-2-2011 9 ABIZ LIMITED 1566123 27-2-2011 10 ABLE ACCORD LIMITED 1565456 25-2-2011 11 ABLE CHINA INTERNATIONAL GROUP LIMITED 1563286 22-2-2011 華誠國際集團(中國)有限公司 12 ABLE EAGLE CORPORATION LIMITED 1564381 24-2-2011 新鷹有限公司 13 ABLE FORTUNE HOLDINGS LIMITED 1564866 24-2-2011 成福集團有限公司 報告編號: 公司註冊處電子查冊服務 日期 : REPORT ID: RPS350 COMPANIES REGISTRY ELECTRONIC SEARCH SERVICES DATE: 28-2-2011 根據《公司條例》(第32章) 成立∕註冊的新公司 頁數: Newly Incorporated / Registered Companies under the Companies Ordinance (Cap. 32) PAGE: 2 本報告涵蓋的日期(日/月/年): Period Covered (By Date)(D/M/Y): 21/02/2011 - 27/02/2011 序號 公司名稱 公司註冊編號 成立∕註冊日期(日-月-年) Sequence No. Company Name C.R.
    [Show full text]
  • Debian GNU/Linux Installation Guide
    Debian GNU/Linux Installation Guide July 31, 2021 Debian GNU/Linux Installation Guide Copyright © 2004 – 2021 the Debian Installer team This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License. Please refer to the license in Appendix F. Build version of this manual: 20210730. i Contents 1 Welcome to Debian 1 1.1 What is Debian? . 1 1.2 What is GNU/Linux? . 1 1.3 What is Debian GNU/Linux? . 2 1.4 What is the Debian Installer? . 3 1.5 Getting Debian . 3 1.6 Getting the Newest Version of This Document . 3 1.7 Organization of This Document . 3 1.8 About Copyrights and Software Licenses . 4 2 System Requirements 5 2.1 Supported Hardware . 5 2.1.1 Supported Architectures . 5 2.1.2 Three different ARM ports . 6 2.1.3 Variations in ARM CPU designs and support complexity . 6 2.1.4 Platforms supported by Debian/armhf . 6 2.1.5 Platforms no longer supported by Debian/armhf . 8 2.1.6 Multiple Processors . 8 2.1.7 Graphics Hardware Support . 8 2.1.8 Network Connectivity Hardware . 8 2.1.9 Peripherals and Other Hardware . 8 2.2 Devices Requiring Firmware . 8 2.3 Purchasing Hardware Specifically for GNU/Linux . 9 2.3.1 Avoid Proprietary or Closed Hardware . 9 2.4 Installation Media . 9 2.4.1 CD-ROM/DVD-ROM/BD-ROM . 9 2.4.2 Network . 10 2.4.3 Hard Disk . 10 2.4.4 Un*x or GNU system .
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • MIPS on Openbsd
    MIPS on OpenBSD [email protected] MIPS on OpenBSD ● Why should I care? ● Where can I get some? ● History ● Current world ● Future About Me ● OpenBSD dev, mostly doing ports. ● But I am not a computer scientist/tech person by trade. ● Interested in MIPS support. ● My start with MIPS ports: I wanted to play a game. About Me My current MIPS inventory: ● SGI O2 ● 2x Lemote Yeeloong ● Lemote Fuloong ● Loongson-1B development board Why MIPS? Why MIPS? ● According to a 2011 Forbes article, 500 million MIPS CPUs are shipped each year. ● At least some of them end up in general- purpose devices. ● We should aim to support those devices! Why MIPS? ● “Shut up and hack!” ● Help expose bugs. ● MIPS is not going away. ● Be the coolest person you know 8-) ● It's just fun! SGI SGI ● History ● Recent (2012) improvements SGI ● IP20: Indigo ● IP22: Indy, Indigo2 ● IP27: Origin ● IP28: POWER Indigo2 ● IP30: Octane, Octane 2 ● IP32: O2, O2+ ● IP35: Fuel, Tezro, Origin 3000, Onyx 4 SGI SGI ● What works? ● What doesn't? ● Where can I get one? Loongson Loongson ● China's homegrown CPU, from the Chinese Academy of Sciences (ICT) ● Little-endian MIPS ● Chinese technology independence? Loongson ● Loongson-1: 1A, 1B ● Loongson-2: 2B, 2C, 2E, 2F, 2G, 2H ● Loongson-3: 3A/2GQ, 3B, 3C ● Loongson-T: T Loongson ● Loongson-1: 1A, 1B ● Loongson-2: 2B, 2C, 2E, 2F, 2G, 2H ● Loongson-3: 2G, 2H, 3A/2GQ, 3B, 3C ● Loongson-T: T Loongson ● 2F machines: Fuloong, Lynloong, Yeeloong Loongson Loongson ● Yeeloong ● History on OpenBSD My workflow Loongson ● So where do I get one? MIPS & Ports MIPS & Ports Goal: ● Provide as close to the number of packages on amd64/i386 as possible.
    [Show full text]
  • AI Chips: What They Are and Why They Matter
    APRIL 2020 AI Chips: What They Are and Why They Matter An AI Chips Reference AUTHORS Saif M. Khan Alexander Mann Table of Contents Introduction and Summary 3 The Laws of Chip Innovation 7 Transistor Shrinkage: Moore’s Law 7 Efficiency and Speed Improvements 8 Increasing Transistor Density Unlocks Improved Designs for Efficiency and Speed 9 Transistor Design is Reaching Fundamental Size Limits 10 The Slowing of Moore’s Law and the Decline of General-Purpose Chips 10 The Economies of Scale of General-Purpose Chips 10 Costs are Increasing Faster than the Semiconductor Market 11 The Semiconductor Industry’s Growth Rate is Unlikely to Increase 14 Chip Improvements as Moore’s Law Slows 15 Transistor Improvements Continue, but are Slowing 16 Improved Transistor Density Enables Specialization 18 The AI Chip Zoo 19 AI Chip Types 20 AI Chip Benchmarks 22 The Value of State-of-the-Art AI Chips 23 The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 23 Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 26 U.S. and Chinese AI Chips and Implications for National Competitiveness 27 Appendix A: Basics of Semiconductors and Chips 31 Appendix B: How AI Chips Work 33 Parallel Computing 33 Low-Precision Computing 34 Memory Optimization 35 Domain-Specific Languages 36 Appendix C: AI Chip Benchmarking Studies 37 Appendix D: Chip Economics Model 39 Chip Transistor Density, Design Costs, and Energy Costs 40 Foundry, Assembly, Test and Packaging Costs 41 Acknowledgments 44 Center for Security and Emerging Technology | 2 Introduction and Summary Artificial intelligence will play an important role in national and international security in the years to come.
    [Show full text]
  • Chinese Multinational Companies in Global R&D and Innovation Rankings
    1 Chinese Multinational Companies in Global R&D and Innovation Rankings: An Explorative Study Sergey Filippov Assistant Professor Faculty of Technology, Policy & Management Delft University of Technology [email protected] Paper presented at the Third Copenhagen Conference on “’Emerging Multinationals’: Outward Investment from Emerging Economies”, Copenhagen, Denmark, 25-26 October 2012 2 Abstract Internationalisation of Chinese firms is a salient feature of the contemporary world economy. They evolve from local producers to multinational companies, strengthening their presence in a variety of economies – from neighbouring developing countries to sophisticated western markets. Their competitive advantage is often found in access to low costs labour, and in many cases, state support. Innovation is becoming an important variable of the international business strategies of emerging Chinese multinationals. The question is whether innovation will be a new competitive advantage of emerging Chinese multinationals. While this is a very relevant subject, due to its novelty, it is not yet sufficiently addressed. Therefore the aim of this paper is to contribute to the nascent literature stream on this topic. We examine performance of Chinese companies in the global R&D and innovation rankings, both quantitatively and qualitatively. This can be considered as a first step in a study of the interplay of innovation and internationalisation of Chinese firms. Key words: innovation, China, multinationals, ranking 3 1. Introduction The beginning of the 21st century has been marked by a spectacular rise of China that has shown a sustained two-digit economic growth for several years. China represents an attractive multi-million market for western multinationals. Many of whom establish R&D centres in China in order to adjust their products for the Chinese market as well as to develop new ideas and concepts for application globally.
    [Show full text]
  • Company Name(Ecountry Hall No
    Company name(ECountry Hall No. Booth No. Email Website Project/ProductE-mail Name(English)Website superpix Micro Tchina 5 ZKY10 [email protected] image sensor chip typical application demonstration project Sanjin group hunchina 9 9S33 hnsanjin@ www.hnsanjin.com SLon Magnetic chinaS 9 9s35 annabelee www.slon.cIndustrialisation of SLon HGMS series Institute of Mic china 5 ZKY11 [email protected] HMotor Controller for Variable Frequency Air Conditioner Tsinghua Universchina 8 8G06 [email protected] [email protected] Tsinghua Universchina 8 8G06 [email protected] Organic [email protected] Tsinghua Universchina 8 8G06 [email protected] [email protected] Tsinghua Universchina 8 8G06 [email protected] Broadband jsong@tsinhttp://riit.tsinghua.edu.cn Jiangxi Gao'an china 9 9s35 sale@htgjledHttp://www.LED [email protected] Hunan Hongyingxchina 9 9S33 36913613 hyxbio.comEnzyme Pre36913613 hyxbio.com china 9 9s35 [email protected] www.707hitech.com china 9 9s35 [email protected] www.707hitech.com JIUJIANG LISHANchina ENTECH9 CO., LTD.9s35 [email protected] JIUJIANG LISHANchina ENTECH9 CO., LTD.9s35 [email protected] JIANGXI CHEN china 9 9S35 [email protected] JIANGXI CHEN china 9 9S35 [email protected] jiangxi Longzhe china 9 9S35 jxlz2008@ http://www “JX-108”Nejxlz2008@ http://www.jxlongzheng.com china 9 9S35 [email protected] [email protected] Jiangxi Academychina 9 9S35 [email protected] The [email protected] Jiangxi Academychina 9 9S35 [email protected] the [email protected] Jiangxi Academychina 9 9S35 [email protected] Hihg-purity [email protected] Jiangxi Academychina 9 9S35 [email protected] Hihg-purity [email protected] Jiangxi Academychina 9 9S35 [email protected] GAP planti [email protected] wuhan universit china 8 8G10 [email protected].
    [Show full text]
  • The Evolution of Cloud Computing Over the Past Few Years Is Potentially One of the Major Advances in the History of Computing
    INSTITUTIONAL ARRANGEMENT, TECHNOLOGICAL INNOVATION AND APPLICATION EVOLUTION: THE RISE OF CHINA’S EMERGING COMPUTING INFRASTRUCTURE Jiang Yu, Institute of Policy and Management, Chinese Academy of Sciences No. 15, Zhonguancun Beiyitiao, Beijing, 100190, P.R. China Email: [email protected], Telephone: 0086 10 59358509 Yue Zhang, Institute of Policy and Management, Chinese Academy of Sciences No. 15, Zhonguancun Beiyitiao, Beijing, 100190, P.R. China Email: [email protected] ABSTRACT This paper tries to explore the interaction of institutional arrangement, technological innovation and application evolution underlying the impressive growth of China’s computing infrastructure. Drawing upon the actor-network theory, we construct a framework to explain how the elements identified forge the evolution of the sector. Our study hopes to provide the analytical lens and explanatory power to probe this growth process under the emerging contexts. We conduct an in-depth case study on the growth of China’s emerging computing infrastructure to justify the framework. Chinese government has been deeply involved in the development of the computing infrastructures including the systems of supercomputing and cloud computing to build a nationwide computing backbone network. In the resent emerging of cloud computing, the networks which involved in much more diversified actors with heterogeneous interests are shaping under a more open setting. However, the facility-oriented strategies by the dominant state-owned players still exert great challenge to the cloud computing development which needs sustainable benefits generated from the infrastructure. Our paper tries to provide a systematic understanding on the growth of China’s emerging computing infrastructure and offer some important insights to the emerging industries in other large emerging countries.
    [Show full text]
  • Ubiquitous Computing Power: the Cornerstone of an Intelligent Society Position Paper
    Ubiquitous Computing Power: the Cornerstone of an Intelligent Society Position Paper February 2020 Embrace Ubiquitous Computing Power, Embrace the Bright Future of an Intelligent Society Liang Hua Chairman of Huawei's Board of Directors Computing is a way of perceiving the world. From their intelligent journey; they will enter the next stage mainframes to PCs, and from PCs to smartphones and of growth – the developing stage – only when their per wearables, computing has become a de facto extension capita computing power surpasses 10,000 GFLOPS. of human capability. Just like the wide adoption of electricity, which laid Our approach to computing is also evolving. Statistical the foundation for an industrial society, ubiquitous computing will soon become mainstream, and we computing power will become the cornerstone of an estimate that five years from now AI applications intelligent society. will account for more than 80% of all computing Second, we need to build a diversified computing power used around the world. It will be a new age of power ecosystem to drive the computing industry intelligent computing. forward. In the intelligent world, we will see more The technologies behind computing and connectivity diverse application scenarios and data types than are progressing by leaps and bounds every day, and ever before, which calls for a much more diversified they will soon pave the way for a world where all computing power architecture. things sense, all things are connected, and all things If we hope to succeed in building a prosperous and are intelligent. Ubiquitous computing power will be diversified computing power ecosystem, we will need the cornerstone of this future world.
    [Show full text]
  • Porting RT-Preempt to Loongson2f
    Porting RT-preempt to Loongson2F Wu Zhangjin, Nicholas Mc Guire Distributed & Embedded System Lab, SISE, Lanzhou University, China Tianshui South Road 222,Lanzhou,P.R.China [email protected], [email protected] Abstract Loonsong2F, is a MIPS compatible single core CPU, it is a low-power, mid-range performance proces- sor and therefore suitable for industrial usage. This paper focus on the effort of porting the RT-preempt extension of Linux to this processor based platform(FuLoong2F). we will briefly introduce the features of this platform, and outline the motivation of selecting RT-preempt, and then discuss the technical issues of porting RT-preempt to a new architecture, and describe the specifics of the platform. Further we cover the non-technical issues of how to integrate such work into mainstream development, and finally present some preliminary benchmark results based on community tool (notably cyclictest). KeyWords: RT-preempt, Loongson, Real Time, Linux, industrial applications 1 Introduction The 2nd generation of CPUs from Loongson[5] de- signed by ICT,CAS in China is currently at the 2F release, with the 2G to be expected this year. This MIPS compatible single core CPU is a low- power, mid-range performance CPU primarily tar- geting desktop and net-books. The features are listed in table 1. CPU Core Frequency 800MHz-1GHz Power Consumption 4 Watt. Power Management scalable cpu frequency Built-in North bridge,DDR2 Controller FIGURE 1: FuLoong(2F) Mini PC TABLE 1: Main features of Loongson2F Due to its low power-consumption, fan-less op- eration and integration in form-factors suitable for The FuLoong(2F)[6] Mini PC made by Lemote, industrial usage, we have been working on porting as a Loongson2F based machine, the total power con- suitable RTOS to it, the primary targets for this ef- sumption is only 10 watt which ensures quiet opera- fort have been the XtratuM hypervisor and mainline tion, and With small size (190x145x37mm) and light RT-preempt[7].
    [Show full text]