AN EXPLORATION on GOLDBACH's CONJECTURE E. Markakis1, C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Math.NT] 10 May 2005
Journal de Th´eorie des Nombres de Bordeaux 00 (XXXX), 000–000 Restriction theory of the Selberg sieve, with applications par Ben GREEN et Terence TAO Resum´ e.´ Le crible de Selberg fournit des majorants pour cer- taines suites arithm´etiques, comme les nombres premiers et les nombres premiers jumeaux. Nous demontrons un th´eor`eme de restriction L2-Lp pour les majorants de ce type. Comme ap- plication imm´ediate, nous consid´erons l’estimation des sommes exponentielles sur les k-uplets premiers. Soient les entiers posi- tifs a1,...,ak et b1,...,bk. Ecrit h(θ) := n∈X e(nθ), ou X est l’ensemble de tous n 6 N tel que tousP les nombres a1n + b1,...,akn+bk sont premiers. Nous obtenons les bornes sup´erieures pour h p T , p > 2, qui sont (en supposant la v´erit´ede la con- k kL ( ) jecture de Hardy et Littlewood sur les k-uplets premiers) d’ordre de magnitude correct. Une autre application est la suivante. En utilisant les th´eor`emes de Chen et de Roth et un «principe de transf´erence », nous demontrons qu’il existe une infinit´ede suites arithm´etiques p1 < p2 < p3 de nombres premiers, telles que cha- cun pi + 2 est premier ou un produit de deux nombres premier. Abstract. The Selberg sieve provides majorants for certain arith- metic sequences, such as the primes and the twin primes. We prove an L2–Lp restriction theorem for majorants of this type. An im- mediate application is to the estimation of exponential sums over prime k-tuples. -
On Sufficient Conditions for the Existence of Twin Values in Sieves
On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius . -
Leonhard Euler: His Life, the Man, and His Works∗
SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St. -
Leonhard Euler Moriam Yarrow
Leonhard Euler Moriam Yarrow Euler's Life Leonhard Euler was one of the greatest mathematician and phsysicist of all time for his many contributions to mathematics. His works have inspired and are the foundation for modern mathe- matics. Euler was born in Basel, Switzerland on April 15, 1707 AD by Paul Euler and Marguerite Brucker. He is the oldest of five children. Once, Euler was born his family moved from Basel to Riehen, where most of his childhood took place. From a very young age Euler had a niche for math because his father taught him the subject. At the age of thirteen he was sent to live with his grandmother, where he attended the University of Basel to receive his Master of Philosphy in 1723. While he attended the Universirty of Basel, he studied greek in hebrew to satisfy his father. His father wanted to prepare him for a career in the field of theology in order to become a pastor, but his friend Johann Bernouilli convinced Euler's father to allow his son to pursue a career in mathematics. Bernoulli saw the potentional in Euler after giving him lessons. Euler received a position at the Academy at Saint Petersburg as a professor from his friend, Daniel Bernoulli. He rose through the ranks very quickly. Once Daniel Bernoulli decided to leave his position as the director of the mathmatical department, Euler was promoted. While in Russia, Euler was greeted/ introduced to Christian Goldbach, who sparked Euler's interest in number theory. Euler was a man of many talents because in Russia he was learning russian, executed studies on navigation and ship design, cartography, and an examiner for the military cadet corps. -
Goldbach's Conjecture
Irish Math. Soc. Bulletin Number 86, Winter 2020, 103{106 ISSN 0791-5578 Goldbach's Conjecture: if it's unprovable, it must be true PETER LYNCH Abstract. Goldbach's Conjecture is one of the best-known unsolved problems in mathematics. Over the past 280 years, many brilliant mathematicians have tried and failed to prove it. If a proof is found, it will likely involve some radically new idea or approach. If the conjecture is unprovable using the usual axioms of set theory, then it must be true. This is because, if a counter-example exists, it can be found by a finite search. In 1742, Christian Goldbach wrote a letter to Leonhard Euler proposing that every integer greater than 2 is the sum of three primes. Euler responded that this would follow from the simpler statement that every even integer greater than 2 is the sum of two primes. Goldbach's Conjecture is one of the best-known unsolved problems in mathematics. It is a simple matter to check the conjecture for the first few cases: 4=2+2 6=3+3 8=5+3 10 = 7 + 3 12 = 7 + 5 14 = 11 + 3 16 = 13 + 3 18 = 13 + 5 20 = 17 + 3 ········· But, with an infinite number of cases, this approach can never prove the conjecture. If, for an even number 2n we have 2n = p1 + p2 where p1 and p2 are primes, then obviously p + p n = 1 2 (1) 2 If every even number can be partitioned in this way, then any number, even or odd, must be the arithmetic average, or mean, of two primes. -
Goldbach, Christian
CHRISTIAN GOLDBACH (March 18, 1690 – November 20, 1764) by HEINZ KLAUS STRICK, Germany One of the most famous, still unproven conjectures of number theory is: • Every even number greater than 2 can be represented as the sum of two prime numbers. The scholar CHRISTIAN GOLDBACH made this simple mathematical statement to his pen pal LEONHARD EULER in 1742 as an assumption. (In the original version it said: Every natural number greater than 2 can be represented as the sum of three prime numbers, since at that time the number 1 was still considered a prime number.) All attempts to prove this theorem have so far failed. Even the offer of a prize of one million dollars hardly led to any progress. CHEN JINGRUN (1933-1996, Chinese stamp on the left), student of HUA LUOGENG (1910-1985, stamp on the right), the most important Chinese mathematician of the 20th century, succeeded in 1966 in making the "best approximation" to GOLDBACH's conjecture. CHEN JINGRUN was able to prove that any sufficiently large even number can be represented as the sum of a prime number and another number that has at most two prime factors. Among the first even numbers are those that have only one GOLDBACH decomposition: 4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 12 = 5 + 7. For larger even numbers one finds a "tendency" to increase the number of possibilities, but even then there is always a number that has only a few decompositions, such as 98 = 19 + 79 = 31 + 67 = 37 + 61. See the graph below and The On-Line Encyclopedia of Integer Sequences A045917. -
Sieve Theory and Small Gaps Between Primes: Introduction
Sieve theory and small gaps between primes: Introduction Andrew V. Sutherland MASSACHUSETTS INSTITUTE OF TECHNOLOGY (on behalf of D.H.J. Polymath) Explicit Methods in Number Theory MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH July 6, 2015 A quick historical overview pn+m − pn ∆m := lim inf Hm := lim inf (pn+m − pn) n!1 log pn n!1 Twin Prime Conjecture: H1 = 2 Prime Tuples Conjecture: Hm ∼ m log m 1896 Hadamard–Vallee´ Poussin ∆1 ≤ 1 1926 Hardy–Littlewood ∆1 ≤ 2=3 under GRH 1940 Rankin ∆1 ≤ 3=5 under GRH 1940 Erdos˝ ∆1 < 1 1956 Ricci ∆1 ≤ 15=16 1965 Bombieri–Davenport ∆1 ≤ 1=2, ∆m ≤ m − 1=2 ········· 1988 Maier ∆1 < 0:2485. 2005 Goldston-Pintz-Yıldırım ∆1 = 0, ∆m ≤ m − 1, EH ) H1 ≤ 16 2013 Zhang H1 < 70; 000; 000 2013 Polymath 8a H1 ≤ 4680 3 4m 2013 Maynard-Tao H1 ≤ 600, Hm m e , EH ) H1 ≤ 12 3:815m 2014 Polymath 8b H1 ≤ 246, Hm e , GEH ) H1 ≤ 6 H2 ≤ 398; 130, H3 ≤ 24; 797; 814,... The prime number theorem in arithmetic progressions Define the weighted prime counting functions1 X X Θ(x) := log p; Θ(x; q; a) := log p: prime p ≤ x prime p ≤ x p ≡ a mod q Then Θ(x) ∼ x (the prime number theorem), and for a ? q, x Θ(x; q; a) ∼ : φ(q) We are interested in the discrepancy between these two quantities. −x x x Clearly φ(q) ≤ Θ(x; q; a) − φ(q) ≤ q + 1 log x, and for any Q < x, X x X 2x log x x max Θ(x; q; a) − ≤ + x(log x)2: a?q φ(q) q φ(q) q ≤ Q q≤Q 1 P One can also use (x) := n≤x Λ(n), where Λ(n) is the von Mangoldt function. -
Explicit Counting of Ideals and a Brun-Titchmarsh Inequality for The
EXPLICIT COUNTING OF IDEALS AND A BRUN-TITCHMARSH INEQUALITY FOR THE CHEBOTAREV DENSITY THEOREM KORNEEL DEBAENE Abstract. We prove a bound on the number of primes with a given split- ting behaviour in a given field extension. This bound generalises the Brun- Titchmarsh bound on the number of primes in an arithmetic progression. The proof is set up as an application of Selberg’s Sieve in number fields. The main new ingredient is an explicit counting result estimating the number of integral elements with certain properties up to multiplication by units. As a conse- quence of this result, we deduce an explicit estimate for the number of ideals of norm up to x. 1. Introduction and statement of results Let q and a be coprime integers, and let π(x,q,a) be the number of primes not exceeding x which are congruent to a mod q. It is well known that for fixed q, π(x,q,a) 1 lim = . x→∞ π(x) φ(q) A major drawback of this result is the lack of an effective error term, and hence the impossibility to let q tend to infinity with x. The Brun-Titchmarsh inequality remedies the situation, if one is willing to accept a less precise relation in return for an effective range of q. It states that 2 x π(x,q,a) , for any x q. ≤ φ(q) log x/q ≥ While originally proven with 2 + ε in place of 2, the above formulation was proven by Montgomery and Vaughan [16] in 1973. Further improvement on this constant seems out of reach, indeed, if one could prove that the inequality holds with 2 δ arXiv:1611.10103v2 [math.NT] 9 Mar 2017 in place of 2, for any positive δ, one could deduce from this that there are no Siegel− 1 zeros. -
Linking Together Members of the Mathematical Carlos Rocha, University of Lisbon; Jean Taylor, Cour- Community from the US and Abroad
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Features Epimorphism Theorem Prime Numbers Interview J.-P. Bourguignon Societies European Physical Society Research Centres ESI Vienna December 2013 Issue 90 ISSN 1027-488X S E European M M Mathematical E S Society Cover photo: Jean-François Dars Mathematics and Computer Science from EDP Sciences www.esaim-cocv.org www.mmnp-journal.org www.rairo-ro.org www.esaim-m2an.org www.esaim-ps.org www.rairo-ita.org Contents Editorial Team European Editor-in-Chief Ulf Persson Matematiska Vetenskaper Lucia Di Vizio Chalmers tekniska högskola Université de Versailles- S-412 96 Göteborg, Sweden St Quentin e-mail: [email protected] Mathematical Laboratoire de Mathématiques 45 avenue des États-Unis Zdzisław Pogoda 78035 Versailles cedex, France Institute of Mathematicsr e-mail: [email protected] Jagiellonian University Society ul. prof. Stanisława Copy Editor Łojasiewicza 30-348 Kraków, Poland Chris Nunn e-mail: [email protected] Newsletter No. 90, December 2013 119 St Michaels Road, Aldershot, GU12 4JW, UK Themistocles M. Rassias Editorial: Meetings of Presidents – S. Huggett ............................ 3 e-mail: [email protected] (Problem Corner) Department of Mathematics A New Cover for the Newsletter – The Editorial Board ................. 5 Editors National Technical University Jean-Pierre Bourguignon: New President of the ERC .................. 8 of Athens, Zografou Campus Mariolina Bartolini Bussi GR-15780 Athens, Greece Peter Scholze to Receive 2013 Sastra Ramanujan Prize – K. Alladi 9 (Math. Education) e-mail: [email protected] DESU – Universitá di Modena e European Level Organisations for Women Mathematicians – Reggio Emilia Volker R. Remmert C. Series ............................................................................... 11 Via Allegri, 9 (History of Mathematics) Forty Years of the Epimorphism Theorem – I-42121 Reggio Emilia, Italy IZWT, Wuppertal University [email protected] D-42119 Wuppertal, Germany P. -
An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M
Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information An Introduction to Sieve Methods and Their Applications © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information LONDON MATHEMATICAL SOCIETY STUDENT TEXTS Managing editor: Professor J. W. Bruce, Department of Mathematics, University of Hull, UK 3 Local fields, J. W. S. CASSELS 4 An introduction to twistor theory: Second edition, S. A. HUGGETT & K. P. TOD 5 Introduction to general relativity, L. P. HUGHSTON & K. P. TOD 8 Summing and nuclear norms in Banach space theory, G. J. O. JAMESON 9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON & S. BLEILER 11 Spacetime and singularities, G. NABER 12 Undergraduate algebraic geometry, MILES REID 13 An introduction to Hankel operators, J. R. PARTINGTON 15 Presentations of groups: Second edition, D. L. JOHNSON 17 Aspects of quantum field theory in curved spacetime, S. A. FULLING 18 Braids and coverings: selected topics, VAGN LUNDSGAARD HANSEN 20 Communication theory, C. M. GOLDIE & R. G. E. PINCH 21 Representations of finite groups of Lie type, FRANCOIS DIGNE & JEAN MICHEL 22 Designs, graphs, codes, and their links, P. J. CAMERON & J. H. VAN LINT 23 Complex algebraic curves, FRANCES KIRWAN 24 Lectures on elliptic curves, J. W. S CASSELS 26 An introduction to the theory of L-functions and Eisenstein series, H. HIDA 27 Hilbert Space: compact operators and the trace theorem, J. -
Goldbach's Conjecture
U.U.D.M. Project Report 2020:37 Goldbach’s Conjecture Johan Härdig Examensarbete i matematik, 15 hp Handledare: Veronica Crispin Quinonez Examinator: Martin Herschend Augusti 2020 Department of Mathematics Uppsala University Goldbach's Conjecture Johan H¨ardig Contents 1 Introduction 3 1.1 Definition of the Conjectures . 3 2 Prime Numbers and their Distribution 4 2.1 Early Results . 4 2.2 Prime Number Theorem . 6 3 Heuristic and Probabilistic Justification 8 3.1 Method Presented by Gaze & Gaze . 8 3.1.1 Sieve Method by Gaze & Gaze . 9 3.1.2 Example . 10 3.2 Prime Number Theorem for Arithmetic Progressions . 11 3.3 Distribution of Primes Across Prime Residue Classes . 14 3.4 Heuristic Justification by Gaze & Gaze . 15 3.4.1 Conclusion . 16 3.5 Goldbach's Comet . 17 4 The Ternary Goldbach's Conjecture 18 4.1 Historical Overview . 18 4.2 Approach . 19 4.3 Theorems and Methods in the Proof . 20 4.3.1 Hardy-Littlewood Circle Method . 20 4.3.2 Vinogradov's Theorem . 22 4.3.3 The Large Sieve . 24 4.3.4 L-functions . 24 4.3.5 Computational Methods . 26 4.4 The Proof . 29 1 CONTENTS 2 Abstract The following text will provide a historical perspective as well as investigate different approaches to the unsolved mathematical problem Goldbach's conjecture stated by Christian Goldbach in the year 1742. First off, there will be an overview of the early history of prime num- bers, and then a brief description of the Prime Number Theorem. Subsequently, an example of a heuristic and probabilistic method of justifying the binary Goldbach's conjecture, proposed by Gaze and Gaze, will be discussed. -
A Friendly Intro to Sieves with a Look Towards Recent Progress on the Twin Primes Conjecture
A FRIENDLY INTRO TO SIEVES WITH A LOOK TOWARDS RECENT PROGRESS ON THE TWIN PRIMES CONJECTURE DAVID LOWRY-DUDA This is an extension and background to a talk I gave on 9 October 2013 to the Brown Graduate Student Seminar, called `A friendly intro to sieves with a look towards recent progress on the twin primes conjecture.' During the talk, I mention several sieves, some with a lot of detail and some with very little detail. I also discuss several results and built upon many sources. I'll provide missing details and/or sources for additional reading here. Furthermore, I like this talk, so I think it's worth preserving. 1. Introduction We talk about sieves and primes. Long, long ago, Euclid famously proved the in- finitude of primes (≈ 300 B.C.). Although he didn't show it, the stronger statement that the sum of the reciprocals of the primes diverges is true: X 1 ! 1; p p where the sum is over primes. Proof. Suppose that the sum converged. Then there is some k such that 1 X 1 1 < : pi 2 i=k+1 Qk Suppose that Q := i=1 pi is the product of the primes up to pk. Then the integers 1 + Qn are relatively prime to the primes in Q, and so are only made up of the primes pk+1;:::. This means that 1 !t X 1 X X 1 ≤ < 2; 1 + Qn pi n=1 t≥0 i>k where the first inequality is true since all the terms on the left appear in the middle (think prime factorizations and the distributive law), and the second inequality is true because it's bounded by the geometric series with ratio 1=2.