On the Sophie Germain Prime Conjecture

Total Page:16

File Type:pdf, Size:1020Kb

On the Sophie Germain Prime Conjecture WSEAS TRANSACTIONS on MATHEMATICS Fengsui Liu On the Sophie Germain prime conjecture FENGSUI LIU Department of Mathematics University of NanChang NanChang China [email protected] Abstract: - By extending the operations +,× on natural numbers to the operations on finite sets of natural numbers, we founded a new formal system of a second order arithmetic P(N),N,+,× ,0,1, . We designed a recursive sieve method on residue classes and obtained recursive formulas of a set sequence and its subset sequence of Sophie Germain primes, both the set sequences converge to the〈 set of all Sophie∈ 〉Germain primes. Considering the numbers of elements of this two set sequences, one is strictly monotonically increasing and the other is monotonically increasing, the order topological limits of two cardinal sequences exist and these two limits are equal, we concluded that the counting function of Sophie Germain primes approaches infinity. The cardinal function is sequentially continuous with respect to the order topology, we proved that the cardinality of the set of all Sophie Germain primes is using modular arithmetical and analytic techniques on the set sequences. Further we extended this result to attack on Twin primes, Cunningham chains and so on. ℵ0 Key Words: Second order arithmetic, Recursive sieve method, Order topology, Limit of set sequences, Sophie Germain primes, Twin primes, Cunningham chain, Ross-Littwood paradox − a 3 mod 4 1 Introduction If , then a is a Sophie Germain Primes are mysterious, in WSEAS there is a recent prime if and only if research also [7]. ≡ 2a + 1|M . Where M is a Mersenne number In number theory there are many hard a M = 2 1. conjectures about primes, the Sophie Germain prime a This theorem is astated by Euler in 1750 and conjecture is one from them. a If a, 2a + 1 are simultaneously prime, we call proved by Lagrange in− 1775. this natural number a be a Sophie Germain prime Thus the proof of the Sophie Germain prime and denote it with a predicate S(2, a). conjecture is a proof of another open problem, that The first few Sophie Germain primes are there are infinitely many Mersenne composites. 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131,…… . On the basis of heuristic prime number theory Like the twin prime conjecture, it is a conjecture and the prime theorem, Hardy and Littlewood that there are infinitely many Sophie Germain formulated the Sophie Germain prime conjecture as primes. We may express this conjecture with a very follows. simple formal sentence The number (x, S) of Sophie Germain primes S(2, a), less than or equal to a given real number x is but it is very hard to prove this sentence rigorously. approximately [2]π b a>푏 Sophie Germain∀ ∃ primes play an important role in (x, S)~2c ~ . number theory. Here are two examples. x dt 2c2 x This formula gives accurate2 predications. It is These primes were named after her when French π 2 ∫2 log t log 2t log x extremely difficult to prove this formula rigorously woman mathematician Sophie Germain (around in analytic number theory. 1825) proved that Fermat's Last Theorem holds true In 2006, Terence Tao expounded additive for such primes, this is the first general result toward patterns in primes and said: "Prime numbers have a proof of Fermat's Last Theorem. This beautiful some obvious structure. (They are mostly odd, result was extended by Legendre, and also by Denes coprime to 3, ect.) We don't know if they also have (1951), and more recently by Fee and Granville some additional exotic structure. Because of this, we (1991) [4]. have been unable to settle many questions about There is a theorem about Mersenne composites. primes."[21]. ISSN: 1109-2769 421 Issue 12, Volume 10, December 2011 WSEAS TRANSACTIONS on MATHEMATICS Fengsui Liu In 2007, G.Harman described the rapid x d mod a b development in recent decades of sieve methods and is the solution of the system of congruences i j analytic number theory, stressed again: "As is well x ≡ a mod a, known, the solution to these problems seems to be x b mod b. i well beyond all our current method."[6] If a, ≡b are coprime gcd(a,b)=1, by the Chinese j Many remarkable results have been proved using remainder≡ theorem the solution is unique and modern sieve theory. Because the parity problem, a computable. formidable obstacle, the traditional sieve theory is Except extending +, × to finite sets of natural unable to settle those conjecture [9] [21]. One needs numbers, we continue the traditional interpretation to recast the sieve method. of symbols +,×, , then we founded a now model of Based on the modern progress of model theory, the arithmetic of natural numbers by a two-sorted set theory, general topology and recursion theory we logic ∈ try to tackle those problems with a new sieve P(N), N, +, ×, 0,1 , . method. Where N is the set of natural numbers and P(N) is In an exotic realm of a second order arithmetic the power set〈 of N. ∈〉 P(N), we introduce set sequences of natural numbers, In contrast to the usual first order arithmetical and use the Chinese remainder theorem to recast or model refine Eratosthene's sieve method, then we can N, +,×, 0, 1 , capture some enough usable secret structures about we call this new model be a second order prime sets and use limits of set sequences to directly arithmetical model〈 or algebraic〉 structure and denote determine the set of all Sophie Germain primes and it with P(N). its cardinality. Mathematicians assume that N, +,×, 0, 1 is the standard model of Peano theory PA, similarly, we {a: S(2, a)} = limA T = lim , assume that P(N),N,+,×,0,1, 〈 is the standard〉 |{a: S(2, a)}| = |limA |=|lim′ T | = ′lim|T | = . i i model of the theory of the second order arithmetic ′ ′ ′ PA ZF, which〈 is a joint theory∈ 〉of PA and ZF, in i i i ℵ0 By this formulation, it is comparatively easy to other words the P(N) not only is a model of Peano prove the Sophie Germain prime conjecture, theory∪ PA but also is a model of set theory ZF. because this formula itself has discerned a logical As a model of set theory ZF, the natural numbers structure of the set of all Sophie Germain primes. are atoms or urelements, objects that have no The parity problem in the traditional sieve theory element. We discuss the sets of natural numbers and would naturally be circumvented. sets of sets of natural numbers. In the second order formal system P(N), we 2 A formal system formalize natural numbers and sets thereof as First of all we define several operations on finite individuals, terms or points. A determined set not sets of natural numbers. only contains its all elements but also includes all Let information of the distribution of its elements, A = a , a , … , a , … , a , especially the number of elements in this set. B = b , b , … , b , … , b The second order language +,×, 0, 1, has 1 2 i n be arbitrary finite sets〈 of natural numbers,〉 we define stronger expressive power. The second order model 1 2 j m A + B = a + b〈, a + b , … , a + b〉, … , a + has richer mathematical structures.〈 The ∈sec〉 ond b , a + b , order theory is more powerful and flexible. 1 1 2 1 i j n−1 〈 Except inheriting usual theorems of the first AB = a b , a b , … , a b , … , a b , a b . m n m For the empty set , 〉let order arithmetic, in P(N) we may introduce a new 1 1 2 1 i j n−1 m n m 〈 + A = , 〉 sort of mathematical structures and to prove some hard conjectures about primes. The first order A = .∅ arithmetic N has no well formed formula to Let A\B be∅ the set subtraction.∅ represent such new structures and to prove those Define the∅ solution∅ of the system of congruences conjectures about primes. X A = a , a , … , a , … , a mod a , In particular we introduce a new sort of X B = b , b , … , b , … , b , mod b ≡ 〈 1 2 i m〉 arithmetic functions to be f: N P(N) ≡ 〈 1 2 j m 〉 , X D = d , d , … , d , … , d , d mod ab. Where → ≡ 〈 11 21 i j n−1 m n m〉 ISSN: 1109-2769 422 Issue 12, Volume 10, December 2011 WSEAS TRANSACTIONS on MATHEMATICS Fengsui Liu which is a set valued function defined on the set N, It reveals a fundamental rule of the distribution of i.e., set sequences of natural numbers, to obtain a primes. Now the primes appear in a highly regular recursive sieve method on the residue classes. pattern. We may use the recursive sieve method to look Note, the traditional sieve theory itself is unable for a string of logical reasoning that demonstrates to prove Euclid's theorem [21]. the truth of the Sophie Germain prime conjecture is We do not discuss further this formal system in built into the structures of prime sets in the view from logic [14]. framework of recursion theory and general topology, rather than to look for good approximations or non- 3 A recursive formula and its simple trivial lower bounds of the counting function (x, S). consequences "A well chosen notation can contribute to making An ancient Greek mathematician Eratosthenes mathematical reasoning itself easier, or even πpurely created a sieve method for fining the primes in a mechanical."[11]. given range. As a simple example of the recursive sieve Based on the inclusion-exclusion principle, method, deleting the congruence class 0 mod p Lagendre used the sieve method of Eratosthenes to from the set of all natural numbers successively, i.e., i estimate the size of sifted sets of integers in a given all numbers a such that the least prime factor of a is range.
Recommended publications
  • [Math.NT] 10 May 2005
    Journal de Th´eorie des Nombres de Bordeaux 00 (XXXX), 000–000 Restriction theory of the Selberg sieve, with applications par Ben GREEN et Terence TAO Resum´ e.´ Le crible de Selberg fournit des majorants pour cer- taines suites arithm´etiques, comme les nombres premiers et les nombres premiers jumeaux. Nous demontrons un th´eor`eme de restriction L2-Lp pour les majorants de ce type. Comme ap- plication imm´ediate, nous consid´erons l’estimation des sommes exponentielles sur les k-uplets premiers. Soient les entiers posi- tifs a1,...,ak et b1,...,bk. Ecrit h(θ) := n∈X e(nθ), ou X est l’ensemble de tous n 6 N tel que tousP les nombres a1n + b1,...,akn+bk sont premiers. Nous obtenons les bornes sup´erieures pour h p T , p > 2, qui sont (en supposant la v´erit´ede la con- k kL ( ) jecture de Hardy et Littlewood sur les k-uplets premiers) d’ordre de magnitude correct. Une autre application est la suivante. En utilisant les th´eor`emes de Chen et de Roth et un «principe de transf´erence », nous demontrons qu’il existe une infinit´ede suites arithm´etiques p1 < p2 < p3 de nombres premiers, telles que cha- cun pi + 2 est premier ou un produit de deux nombres premier. Abstract. The Selberg sieve provides majorants for certain arith- metic sequences, such as the primes and the twin primes. We prove an L2–Lp restriction theorem for majorants of this type. An im- mediate application is to the estimation of exponential sums over prime k-tuples.
    [Show full text]
  • On Sufficient Conditions for the Existence of Twin Values in Sieves
    On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius .
    [Show full text]
  • ON PRIME CHAINS 3 Can Be Found in Many Elementary Number Theory Texts, for Example [8]
    ON PRIME CHAINS DOUGLAS S. STONES Abstract. Let b be an odd integer such that b ≡ ±1 (mod 8) and let q be a prime with primitive root 2 such that q does not divide b. We show q−2 that if (pk)k=0 is a sequence of odd primes such that pk = 2pk−1 + b for all 1 ≤ k ≤ q − 2, then either (a) q divides p0 + b, (b) p0 = q or (c) p1 = q. λ−1 For integers a,b with a ≥ 1, a sequence of primes (pk)k=0 such that pk = apk−1+b for all 1 ≤ k ≤ λ − 1 is called a prime chain of length λ based on the pair (a,b). This follows the terminology of Lehmer [7]. The value of pk is given by k k (a − 1) (1) p = a p0 + b k (a − 1) for all 0 ≤ k ≤ λ − 1. For prime chains based on the pair (2, +1), Cunningham [2, p. 241] listed three prime chains of length 6 and identified some congruences satisfied by the primes within prime chains of length at least 4. Prime chains based on the pair (2, +1) are now called Cunningham chains of the first kind, which we will call C+1 chains, for short. Prime chains based on the pair (2, −1) are called Cunningham chains of the second kind, which we will call C−1 chains. We begin with the following theorem which has ramifications on the maximum length of a prime chain; it is a simple corollary of Fermat’s Little Theorem.
    [Show full text]
  • Arxiv:Math/0412262V2 [Math.NT] 8 Aug 2012 Etrgae Tgte Ihm)O Atnscnetr and Conjecture fie ‘Artin’S Number on of Cojoc Me) Domains’
    ARTIN’S PRIMITIVE ROOT CONJECTURE - a survey - PIETER MOREE (with contributions by A.C. Cojocaru, W. Gajda and H. Graves) To the memory of John L. Selfridge (1927-2010) Abstract. One of the first concepts one meets in elementary number theory is that of the multiplicative order. We give a survey of the lit- erature on this topic emphasizing the Artin primitive root conjecture (1927). The first part of the survey is intended for a rather general audience and rather colloquial, whereas the second part is intended for number theorists and ends with several open problems. The contribu- tions in the survey on ‘elliptic Artin’ are due to Alina Cojocaru. Woj- ciec Gajda wrote a section on ‘Artin for K-theory of number fields’, and Hester Graves (together with me) on ‘Artin’s conjecture and Euclidean domains’. Contents 1. Introduction 2 2. Naive heuristic approach 5 3. Algebraic number theory 5 3.1. Analytic algebraic number theory 6 4. Artin’s heuristic approach 8 5. Modified heuristic approach (`ala Artin) 9 6. Hooley’s work 10 6.1. Unconditional results 12 7. Probabilistic model 13 8. The indicator function 17 arXiv:math/0412262v2 [math.NT] 8 Aug 2012 8.1. The indicator function and probabilistic models 17 8.2. The indicator function in the function field setting 18 9. Some variations of Artin’s problem 20 9.1. Elliptic Artin (by A.C. Cojocaru) 20 9.2. Even order 22 9.3. Order in a prescribed arithmetic progression 24 9.4. Divisors of second order recurrences 25 9.5. Lenstra’s work 29 9.6.
    [Show full text]
  • Sieve Theory and Small Gaps Between Primes: Introduction
    Sieve theory and small gaps between primes: Introduction Andrew V. Sutherland MASSACHUSETTS INSTITUTE OF TECHNOLOGY (on behalf of D.H.J. Polymath) Explicit Methods in Number Theory MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH July 6, 2015 A quick historical overview pn+m − pn ∆m := lim inf Hm := lim inf (pn+m − pn) n!1 log pn n!1 Twin Prime Conjecture: H1 = 2 Prime Tuples Conjecture: Hm ∼ m log m 1896 Hadamard–Vallee´ Poussin ∆1 ≤ 1 1926 Hardy–Littlewood ∆1 ≤ 2=3 under GRH 1940 Rankin ∆1 ≤ 3=5 under GRH 1940 Erdos˝ ∆1 < 1 1956 Ricci ∆1 ≤ 15=16 1965 Bombieri–Davenport ∆1 ≤ 1=2, ∆m ≤ m − 1=2 ········· 1988 Maier ∆1 < 0:2485. 2005 Goldston-Pintz-Yıldırım ∆1 = 0, ∆m ≤ m − 1, EH ) H1 ≤ 16 2013 Zhang H1 < 70; 000; 000 2013 Polymath 8a H1 ≤ 4680 3 4m 2013 Maynard-Tao H1 ≤ 600, Hm m e , EH ) H1 ≤ 12 3:815m 2014 Polymath 8b H1 ≤ 246, Hm e , GEH ) H1 ≤ 6 H2 ≤ 398; 130, H3 ≤ 24; 797; 814,... The prime number theorem in arithmetic progressions Define the weighted prime counting functions1 X X Θ(x) := log p; Θ(x; q; a) := log p: prime p ≤ x prime p ≤ x p ≡ a mod q Then Θ(x) ∼ x (the prime number theorem), and for a ? q, x Θ(x; q; a) ∼ : φ(q) We are interested in the discrepancy between these two quantities. −x x x Clearly φ(q) ≤ Θ(x; q; a) − φ(q) ≤ q + 1 log x, and for any Q < x, X x X 2x log x x max Θ(x; q; a) − ≤ + x(log x)2: a?q φ(q) q φ(q) q ≤ Q q≤Q 1 P One can also use (x) := n≤x Λ(n), where Λ(n) is the von Mangoldt function.
    [Show full text]
  • Explicit Counting of Ideals and a Brun-Titchmarsh Inequality for The
    EXPLICIT COUNTING OF IDEALS AND A BRUN-TITCHMARSH INEQUALITY FOR THE CHEBOTAREV DENSITY THEOREM KORNEEL DEBAENE Abstract. We prove a bound on the number of primes with a given split- ting behaviour in a given field extension. This bound generalises the Brun- Titchmarsh bound on the number of primes in an arithmetic progression. The proof is set up as an application of Selberg’s Sieve in number fields. The main new ingredient is an explicit counting result estimating the number of integral elements with certain properties up to multiplication by units. As a conse- quence of this result, we deduce an explicit estimate for the number of ideals of norm up to x. 1. Introduction and statement of results Let q and a be coprime integers, and let π(x,q,a) be the number of primes not exceeding x which are congruent to a mod q. It is well known that for fixed q, π(x,q,a) 1 lim = . x→∞ π(x) φ(q) A major drawback of this result is the lack of an effective error term, and hence the impossibility to let q tend to infinity with x. The Brun-Titchmarsh inequality remedies the situation, if one is willing to accept a less precise relation in return for an effective range of q. It states that 2 x π(x,q,a) , for any x q. ≤ φ(q) log x/q ≥ While originally proven with 2 + ε in place of 2, the above formulation was proven by Montgomery and Vaughan [16] in 1973. Further improvement on this constant seems out of reach, indeed, if one could prove that the inequality holds with 2 δ arXiv:1611.10103v2 [math.NT] 9 Mar 2017 in place of 2, for any positive δ, one could deduce from this that there are no Siegel− 1 zeros.
    [Show full text]
  • An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M
    Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information An Introduction to Sieve Methods and Their Applications © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information LONDON MATHEMATICAL SOCIETY STUDENT TEXTS Managing editor: Professor J. W. Bruce, Department of Mathematics, University of Hull, UK 3 Local fields, J. W. S. CASSELS 4 An introduction to twistor theory: Second edition, S. A. HUGGETT & K. P. TOD 5 Introduction to general relativity, L. P. HUGHSTON & K. P. TOD 8 Summing and nuclear norms in Banach space theory, G. J. O. JAMESON 9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON & S. BLEILER 11 Spacetime and singularities, G. NABER 12 Undergraduate algebraic geometry, MILES REID 13 An introduction to Hankel operators, J. R. PARTINGTON 15 Presentations of groups: Second edition, D. L. JOHNSON 17 Aspects of quantum field theory in curved spacetime, S. A. FULLING 18 Braids and coverings: selected topics, VAGN LUNDSGAARD HANSEN 20 Communication theory, C. M. GOLDIE & R. G. E. PINCH 21 Representations of finite groups of Lie type, FRANCOIS DIGNE & JEAN MICHEL 22 Designs, graphs, codes, and their links, P. J. CAMERON & J. H. VAN LINT 23 Complex algebraic curves, FRANCES KIRWAN 24 Lectures on elliptic curves, J. W. S CASSELS 26 An introduction to the theory of L-functions and Eisenstein series, H. HIDA 27 Hilbert Space: compact operators and the trace theorem, J.
    [Show full text]
  • A Friendly Intro to Sieves with a Look Towards Recent Progress on the Twin Primes Conjecture
    A FRIENDLY INTRO TO SIEVES WITH A LOOK TOWARDS RECENT PROGRESS ON THE TWIN PRIMES CONJECTURE DAVID LOWRY-DUDA This is an extension and background to a talk I gave on 9 October 2013 to the Brown Graduate Student Seminar, called `A friendly intro to sieves with a look towards recent progress on the twin primes conjecture.' During the talk, I mention several sieves, some with a lot of detail and some with very little detail. I also discuss several results and built upon many sources. I'll provide missing details and/or sources for additional reading here. Furthermore, I like this talk, so I think it's worth preserving. 1. Introduction We talk about sieves and primes. Long, long ago, Euclid famously proved the in- finitude of primes (≈ 300 B.C.). Although he didn't show it, the stronger statement that the sum of the reciprocals of the primes diverges is true: X 1 ! 1; p p where the sum is over primes. Proof. Suppose that the sum converged. Then there is some k such that 1 X 1 1 < : pi 2 i=k+1 Qk Suppose that Q := i=1 pi is the product of the primes up to pk. Then the integers 1 + Qn are relatively prime to the primes in Q, and so are only made up of the primes pk+1;:::. This means that 1 !t X 1 X X 1 ≤ < 2; 1 + Qn pi n=1 t≥0 i>k where the first inequality is true since all the terms on the left appear in the middle (think prime factorizations and the distributive law), and the second inequality is true because it's bounded by the geometric series with ratio 1=2.
    [Show full text]
  • Which Polynomials Represent Infinitely Many Primes?
    Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 1 (2018), pp. 161-180 © Research India Publications http://www.ripublication.com/gjpam.htm Which polynomials represent infinitely many primes? Feng Sui Liu Department of Mathematics, NanChang University, NanChang, China. Abstract In this paper a new arithmetical model has been found by extending both basic operations + and × into finite sets of natural numbers. In this model we invent a recursive algorithm on sets of natural numbers to reformulate Eratosthene’s sieve. By this algorithm we obtain a recursive sequence of sets, which converges to the set of all natural numbers x such that x2 + 1 is prime. The corresponding cardinal sequence is strictly increasing. Test that the cardinal function is continuous with respect to an order topology, we immediately prove that there are infinitely many natural numbers x such that x2 + 1 is prime. Based on the reasoning paradigm above we further prove a general result: if an integer valued polynomial of degree k represents at least k +1 positive primes, then this polynomial represents infinitely many primes. AMS subject classification: Primary 11N32; Secondary 11N35, 11U09,11Y16, 11B37. Keywords: primes in polynomial, twin primes, arithmetical model, recursive sieve method, limit of sequence of sets, Ross-Littwood paradox, parity problem. 1. Introduction Whether an integer valued polynomial represents infinitely many primes or not, this is an intriguing question. Except some obvious exceptions one conjectured that the answer is yes. Example 1.1. Bouniakowsky [2], Schinzel [35], Bateman and Horn [1]. In this paper a recursive algorithm or sieve method adds some exotic structures to the sets of natural numbers, which allow us to answer the question: which polynomials represent infinitely many primes? 2 Feng Sui Liu In 1837, G.L.
    [Show full text]
  • There Are Infinitely Many Mersenne Primes
    Scan to know paper details and author's profile There are Infinitely Many Mersenne Primes Fengsui Liu ZheJiang University Alumnus ABSTRACT From the entire set of natural numbers successively deleting the residue class 0 mod a prime, we retain this prime and possibly delete another one prime retained. Then we invent a recursive sieve method for exponents of Mersenne primes. This is a novel algorithm on sets of natural numbers. The algorithm mechanically yields a sequence of sets of exponents of almost Mersenne primes, which converge to the set of exponents of all Mersenne primes. The corresponding cardinal sequence is strictly increasing. We capture a particular order topological structure of the set of exponents of all Mersenne primes. The existing theory of this structure allows us to prove that the set of exponents of all Mersenne primes is an infnite set . Keywords and phrases: Mersenne prime conjecture, modulo algorithm, recursive sieve method, limit of sequence of sets. Classification: FOR Code: 010299 Language: English LJP Copyright ID: 925622 Print ISSN: 2631-8490 Online ISSN: 2631-8504 London Journal of Research in Science: Natural and Formal 465U Volume 20 | Issue 3 | Compilation 1.0 © 2020. Fengsui Liu. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncom-mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. There are Infinitely Many Mersenne Primes Fengsui Liu ____________________________________________ ABSTRACT From the entire set of natural numbers successively deleting the residue class 0 mod a prime, we retain this prime and possibly delete another one prime retained.
    [Show full text]
  • Eureka Issue 61
    Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42).
    [Show full text]
  • Every Sufficiently Large Even Number Is the Sum of Two Primes
    EVERY SUFFICIENTLY LARGE EVEN NUMBER IS THE SUM OF TWO PRIMES Ricardo G. Barca Abstract The binary Goldbach conjecture asserts that every even integer greater than 4 is the sum of two primes. In this 2 paper, we prove that there exists an integer Kα such that every even integer x>pk can be expressed as the sum of two primes, where pk is the kth prime number and k > Kα. To prove this statement, we begin by introducing a type of double sieve of Eratosthenes as follows. Given a positive even integer x> 4, we sift from [1,x] all those elements that are congruents to 0 modulo p or congruents to x modulo p, where p is a prime less than √x. Therefore, any integer in the interval [√x,x] that remains unsifted is a prime q for which either x q = 1 or x q is also a prime. − − Then, we introduce a new way of formulating a sieve, which we call the sequence of k-tuples of remainders. By means of this tool, we prove that there exists an integer Kα > 5 such that pk/2 is a lower bound for the sifting 2 2 function of this sieve, for every even number x that satisfies pk <x<pk+1, where k > Kα, which implies that 2 x>pk (k > Kα) can be expressed as the sum of two primes. 1 Introduction 1.1 The sieve method and the Goldbach problem In 1742, Goldbach wrote a letter to his friend Euler telling about a conjecture involving prime numbers.
    [Show full text]