Jarvis Heavy Launch Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Jarvis Heavy Launch Vehicle JARVIS HEAVY LAUNCH VEHICLE By Forum Orbiter Italia Version 2.62 – October 2012 USER MANUAL Disclaimer and credits This add-on is provided “as is”, without any kind of warranty; it is compatible with Orbiter 2006-P1 (build 060929) and with Orbiter 2010-P1 (build 100830). Many thanks to Dr. Martin Schweiger, for the Orbiter Space Simulator. For the others developers: You are free to use parts of our work, eg sound and texture, but you must credit us as the original source of your work. FOI Credits - Andrew: add-on conception; rocket textures, meshes and configuration; documentation editing. - Fausto: new launch pad textures, meshes and configuration. - Pete Conrad: engine meshes and textures; Shuttle SRB meshes and textures; “dummy” payload meshes and textures. - FedeX: beta testing. - Dany: “Forum Orbiter Italia” logo. - Ripley: D3D9/D3D11 documentation. Forum Orbiter Italia: http://orbiteritalia.forumotion.com/ Introduction In the mid-eighties, the "Jarvis" project was the last serious attempt to revive the glorious Saturn V rocket, and at the same time, one of the first ideas of an alternative use for the Space Shuttle hardware, many years before the current "Ares", "Direct" and “SLS” projects. The Jarvis rocket combines the powerful Apollo-era F-1 and J-2 engines with Space Shuttle electronics and 8.4 m stages (the same size of the Shuttle External Tank). Later versions, with Space Shuttle Main Engines (SSME) and/or Solid Rocket Boosters (SRB), were proposed, but never realized. Forum Orbiter Italia has developed a complete and versatile family of heavy launchers around these original ideas and projects. The versions included in this package are: Jarvis S (“Single engine” version): the smallest and cheapest version of the rocket. The first stage is a scaled-down version of the standard JS-1 stage utilized in all the other versions of the Jarvis, with a diameter of 6.49 meters and only one F-1 engine instead of two. The second stage is the new HES-3 with three cryogenic “Vinci” engines. This version has a payload capacity of 20,700 Kg to LEO. Jarvis L ("Light" version): the second smallest version of the rocket, with a standard JS-1 stage and 8.38 meter fairings. This version has a capacity of 27,900 Kg to LEO. Jarvis C ("Commercial" version): basically, a Jarvis L optimized for GTO commercial launches, with a small cryogenic third stage and a dual-payload carrying system. This version has a capacity of 34,100 Kg to LEO and 13,400 Kg to GTO. Jarvis B ("Basic" version): the original (improved) two-stage configuration of the Jarvis rocket, with a J-2S powered second stage and a payload capacity of 44,400 Kg to LEO. Jarvis E ("Enhanced" version): a Jarvis B with a third stage powered by four RL-10 engines, for a payload capacity of 55,400 Kg to LEO. Jarvis H ("Heavy" version): the most powerful version of the rocket (in terms of liftoff thrust). It is a Jarvis E with longer fairing and two Shuttle Solid Rocket Boosters, for a large payload capacity of 80,700 Kg to LEO. Jarvis M ("Moon" version): the largest version of the rocket, specifically designed for manned circumlunar flights, with the following features: a new, more efficient cryogenic core stage powered by five RS-25E engines; HES-5 third stage with five cryogenic “Vinci” engines; two Jarvis S first stages as liquid boosters. The payload capacity is in the same class of the Saturn V rocket: 128,800 Kg to LEO and 48,700 Kg to TLI. The updated Jarvis family of launch vehicles. Colors represents the common parts. Installation and requirements Unzip the content of the new add-on in your Orbiter directory. As always, it's better to delete the previous Jarvis package prior to install the new version. The following add-ons are required: Vinka’s Multistage2 Vinka’s Spacecraft3 (with Orbiter 2006-P1 patch, included in the package). Orbiter 2010-P1 requires the “stage.dll” patch (included in the package). http://users.swing.be/vinka/ For the Capo Passero scenarios, is also required the ASVI base - Capo Passero, v1.0 or higher, by Orbiter Forum Italia. http://www.orbithangar.com/searchid.php?ID=5172 For the "Verrazzano Moon Mission" scenario, is required the Antares Manned Spacecraft, v2.1 or higher, by Orbiter Forum Italia. http://www.orbithangar.com/searchid.php?ID=4682 Payload management The 6.5, 8.4 and 10 meter fairings atop the Jarvis launch vehicle can easily accommodate a large variety of payloads. The "Heavy" and “Moon” versions (Jarvis-H and Jarvis-M) has enough payload capacity to match the performances of the Soviet N-1 and the Saturn V rocket, and can hypothetically put into orbit a new Skylab-class space station in a single launch. Launching of very large spacecraft/payloads to the moon or distant planets is also possible. Configuration of the payloads must be managed by the Jarvis_x.ini file located in the Config/Jarvis directory. Open the .ini file and locate the following text: [PAYLOAD_1] off=(0.,0.00,60) speed=(0.0,0.0,0.0) rot_speed=(0.,0.,0.0) MeshName="jarvis\cargo" Module="spacecraft\spacecraft3" name="cargo_jarvis" Diameter=2.9 Height=5.6 Mass=55400 Jarvis rockets come with a dummy cargo: a non-operational module filled with ballast. When setting your custom payload, be careful not to exceed the maximum payload capacity of the rocket and the dimensional limits of the fairings. You can use an adapter for your payloads: some adapters are available directly in the config file. Open the .ini file and locate the following text: ;[SEPARATION_23] Height=3 Diameter=6 Emptymass=300 Meshname="jarvis\adapterLBEH" OFF=(0,0,54.595) ROT_SPEED=0 Then, just remove the semicolon on "Separation" string for utilize the adapter. Jarvis S and Jarvis M have the possibility of choice between two size of payload fairing. Open the .ini file and locate the following text: ;[FAIRING] N=2 MeshName="jarvis\Jfairing2" Diameter=8.4 Height=25 angle=0 off=(2.0883,0.0,77.666) SPEED=(4.6,0.0,1.8) ROT_SPEED=(0.0,-12,0.0) emptymass=4040 Then, just remove the semicolon on "Fairing" string for utilize the specific fairing. Special payloads In this version of the addon, the logistic spacecraft / space tug “Giovanni da Verrazzano” and a special DoD payload, the KH-11 spy satellite, are included in the package: the scenarios are in the Jarvis/Verrazzano and Jarvis/DoD folders. Read the Verrazzano and KH-11 documentations for further details. “Nosecone Art” In the “Extras” folder are included the .bmp files of the payload fairings: the one used in the “standard” versions of the rocket (S, L, B, and E) and the one used in the “heavy” versions (H, M). Also, an empty fairing (without logo) is included. You can modify these images, then convert it in dds format (various converters are available out there) and, finally, copy the new file in the Textures/Jarvis folder for customize the rocket for your needs. Make a backup of the original files. Thanks to Phantom Cruiser, who give us the idea. Launch procedures Pre-launch settings After the payload configuration, the next step is, possibly, setting the azimuth for the automatic launch. This parameter must be edited directly in the guidance_Jarvis_x.txt located in the Config/Jarvis directory. Open the .txt file and locate the line of the “roll” program: roll(init_pitch_time,init_pitch_angle,heading_target,pitch_target,pitch_mode). For example: 7=roll(5,90,90,84,1) The launcher is pitched in the direction indicated by “pitch_mode” (1=pitch up, -1=pitch_down) until it reaches the “init_pitch_angle”(in °), then the pitch guidance loop is closed and the pitch is controlled in order to reach the pitch target. When the “init_pitch_time” has elapsed, the roll and yaw guidance are terminated to reach the proper heading target. This is a complex manoeuvre and inputting bad parameters can lead to a catastrophic roll. For manual launch, this step can be skipped. For more details about the configuration of the guidance file, see the Vinka’s multistage documentation. The date of the launch must be managed by editing the scenario file. Open the file and locate the correct string: Date MJD 62415.7029763416 The string indicates the Modified Julian Day. If you want modify this parameter, you must insert a new date. A converter from MM-DD-YYYY to MJD can be useful; for example, you can utilize the “Date.exe” converter, located in the Utils folder of Orbiter, or this one: http://www.fourmilab.ch/documents/calendar/ Launch The launch is automatic. The scenarios starts at about T-80 seconds. The launch pad animations are also automatic. At T-30 seconds, the speaker begin his comment of the launch; at T-5, the main engines are ignited. The launcher is configured for automatic orbital insertion. For a manual ascent, press P key a second time immediately after the liftoff. The autopilot cannot be reactivated. After the MECO, you have full control of the spacecraft. In orbit, press J to release the payload. “Quicklaunch” In the Scenarios/Jarvis/Quicklaunch folder you have some launch scenarios without autopilots and other automatic launch procedures. You can use these scenarios for enjoy the challenge of a fully manual flight. External graphic clients For the D3D9 and D3D11 external graphic clients, some specific procedures can be needed. See this guide for further details: http://www.orbithangar.com/searchid.php?ID=5854 Technical description Engines F-1M The famed F-1 engine, developed for the Saturn V lunar rocket, still remains today the most powerful single-chamber rocket engine ever utilized in an operational spacecraft.
Recommended publications
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • Variations of Solid Rocket Motor Preliminary Design for Small TSTO Launcher
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Space Propulsion 2012 – ID 2394102 Variations of Solid Rocket Motor Preliminary Design for Small TSTO launcher Etienne Dumont Space Launcher Systems Analysis (SART), DLR, Bremen, Germany [email protected] NGL New/Next Generation Launcher Abstract SI Structural Index (mdry / mpropellant) Several combinations of solid rocket motors and ignition SRM Solid Rocket Motor strategies have been considered for a small Two Stage to TSTO Two Stage To Orbit Orbit (TSTO) launch vehicle based on a big solid rocket US Upper Stage motor first stage and cryogenic upper stage propelled by VENUS Vega New Upper Stage the Vinci engine. In order to reach the target payload avg average during the flight performance of about 1400 kg into GTO for the clean s.l. sea level version and 2700 to 3000 kg for the boosted version, the vac vacuum influence of the selected solid rocket motors on the upper 2 + 2 P23 4 P23: two ignited on ground and two with a stage structure has been studied. Preliminary structural delayed ignition designs have been performed and the thrust histories of the solid rocket motor have been tweaked to limit the upper stage structural mass. First stage and booster 1. Introduction combinations with acceptable general loads are proposed. Solid rocket motors (SRM) are commonly used for boosters or launcher first stage. Indeed they can provide high thrust levels while being compact, light and Nomenclature relatively simple compared to a liquid rocket engine Isp specific impulse s providing the same thrust level.
    [Show full text]
  • Basic Analysis of a LOX/Methane Expander Bleed Engine
    DOI: 10.13009/EUCASS2017-332 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Basic Analysis of a LOX/Methane Expander Bleed Engine ? ? ? Marco Leonardi , Francesco Nasuti † and Marcello Onofri ?Sapienza University of Rome Via Eudossiana 18, Rome, Italy [email protected] [email protected] [email protected] · · †Corresponding author Abstract As present trends in rocket engine development recommend overall simplicity and reliability as the main design driver, while preserving high performance, expander cycle engines based on the oxygen-methane pair have been considered as a possible upper stage option. A closed expander cycle is considered for Vega Evolution upper stage, while there are no studies published in the literature on methane-based expander bleed cycles. A basic cycle analysis is presented to evaluate the performance of an oxygen/methane ex- pander bleed cycle for an engine of 100 kN thrust class. Results show the feasibility of the system and its peculiarities with respect to the better known expander bleed cycle based on hydrogen. 1. Introduction The high chamber pressure required to achieve high specific impulse in liquid propellant rocket engines (LRE), has been efficiently obtained by pump-fed systems. Different solutions have been proposed since the beginning of space age and just a few of them has found its own field of application. In these systems the pumps are driven by gas turbines whose power comes from two possible sources: combustion or cooling system. The different needs for the specific applications (booster, sustainer or upper stage of different classes of rockets) led to classify pump-fed LRE systems in open and closed cycles, which differ because of turbine discharge pressure.14, 16 Closed cycles are those providing the best performance because the whole propellant mass flow rate is exploited in the main chamber.
    [Show full text]
  • Exploring Space
    EXPLORING SPACE: Opening New Frontiers Past, Present, and Future Space Launch Activities at Cape Canaveral Air Force Station and NASA’s John F. Kennedy Space Center EXPLORING SPACE: OPENING NEW FRONTIERS Dr. Al Koller COPYRIGHT © 2016, A. KOLLER, JR. All rights reserved. No part of this book may be reproduced without the written consent of the copyright holder Library of Congress Control Number: 2016917577 ISBN: 978-0-9668570-1-6 e3 Company Titusville, Florida http://www.e3company.com 0 TABLE OF CONTENTS Page Foreword …………………………………………………………………………2 Dedications …………………………………………………………………...…3 A Place of Canes and Reeds……………………………………………….…4 Cape Canaveral and The Eastern Range………………………………...…7 Early Missile Launches ...……………………………………………….....9-17 Explorer 1 – First Satellite …………………….……………………………...18 First Seven Astronauts ………………………………………………….……20 Mercury Program …………………………………………………….……23-27 Gemini Program ……………………………………………..….…………….28 Air Force Titan Program …………………………………………………..29-30 Apollo Program …………………………………………………………....31-35 Skylab Program ……………………………………………………………….35 Space Shuttle Program …………………………………………………..36-40 Evolved Expendable Launch Program ……………………………………..41 Constellation Program ………………………………………………………..42 International Space Station ………………………………...………………..42 Cape Canaveral Spaceport Today………………………..…………………43 ULA – Atlas V, Delta IV ………………………………………………………44 Boeing X-37B …………………………………………………………………45 SpaceX Falcon 1, Falcon 9, Dragon Capsule .………….........................46 Boeing CST-100 Starliner …………………………………………………...47 Sierra
    [Show full text]
  • Spacewalk Database
    Purchaser First Inscribed First ID Name Purchaser Last Name Name Inscribed Last Name Biographic_Infomation 01558 Beth / Forrest Goodwin Ron & Margo Borrup In 1957 CURTISS S. (ARMY) ARMSTRONG became a member of America's Space Team. His career began with the launch of Explorer I and Apollo programs. His tireless dedication has contributed to America's future. He is truly 00022 Cheryl Ann Armstrong Curtiss S. Armstrong an American Space Pioneer. Science teacher and aerospace educator since 00023 Thomas J. Sarko Thomas J. Sarko 1975. McDonnell Douglas 25 Years, AMF Board of 00024 Lowell Grissom Lowell Grissom Directors Joined KSC in 1962 in the Director's Protocol Office. Responsible for the meticulous details for the arrival, lodging, and banquets for Kings, Queens and other VIP worldwide and their comprehensive tours of KSC with top KSC 00025 Major Jay M. Viehman Jay Merle Viehman Personnel briefing at each poi WWII US Army Air Force 1st Lt. 1943-1946. US Civil Service 1946-1972 Engineer. US Army Ballistic Missile Launch Operations. Redstone, Jupiter, Pershing. 1st Satellite (US), Mercury 1st Flight Saturn, Lunar Landing. Retired 1972 from 00026 Robert F. Heiser Robert F. Heiser NASA John F. Kennedy S Involved in Air Force, NASA, National and Commercial Space Programs since 1959. Commander Air Force Space Division 1983 to 1986. Director Kennedy Space Center - 1986 to 1 Jan 1992. Vice President, Lockheed Martin 00027 Gen. Forrest S. McCartney Forrest S. McCartney Launch Operations. Involved in the operations of the first 41 manned missions. Twenty years with NASA. Ten years 00028 Paul C. Donnelly Paul C.
    [Show full text]
  • Apollo Rocket Propulsion Development
    REMEMBERING THE GIANTS APOLLO ROCKET PROPULSION DEVELOPMENT Editors: Steven C. Fisher Shamim A. Rahman John C. Stennis Space Center The NASA History Series National Aeronautics and Space Administration NASA History Division Office of External Relations Washington, DC December 2009 NASA SP-2009-4545 Library of Congress Cataloging-in-Publication Data Remembering the Giants: Apollo Rocket Propulsion Development / editors, Steven C. Fisher, Shamim A. Rahman. p. cm. -- (The NASA history series) Papers from a lecture series held April 25, 2006 at the John C. Stennis Space Center. Includes bibliographical references. 1. Saturn Project (U.S.)--Congresses. 2. Saturn launch vehicles--Congresses. 3. Project Apollo (U.S.)--Congresses. 4. Rocketry--Research--United States--History--20th century-- Congresses. I. Fisher, Steven C., 1949- II. Rahman, Shamim A., 1963- TL781.5.S3R46 2009 629.47’52--dc22 2009054178 Table of Contents Foreword ...............................................................................................................................7 Acknowledgments .................................................................................................................9 Welcome Remarks Richard Gilbrech ..........................................................................................................11 Steve Fisher ...................................................................................................................13 Chapter One - Robert Biggs, Rocketdyne - F-1 Saturn V First Stage Engine .......................15
    [Show full text]
  • A Survey of Automatic Control Methods for Liquid-Propellant Rocket Engines
    A survey of automatic control methods for liquid-propellant rocket engines Sergio Pérez-Roca, Julien Marzat, Hélène Piet-Lahanier, Nicolas Langlois, Francois Farago, Marco Galeotta, Serge Le Gonidec To cite this version: Sergio Pérez-Roca, Julien Marzat, Hélène Piet-Lahanier, Nicolas Langlois, Francois Farago, et al.. A survey of automatic control methods for liquid-propellant rocket engines. Progress in Aerospace Sciences, Elsevier, 2019, pp.1-22. 10.1016/j.paerosci.2019.03.002. hal-02097829 HAL Id: hal-02097829 https://hal.archives-ouvertes.fr/hal-02097829 Submitted on 12 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A survey of automatic control methods for liquid-propellant rocket engines Sergio Perez-Roca´ a,c,∗, Julien Marzata,Hel´ ene` Piet-Lahaniera, Nicolas Langloisb, Franc¸ois Faragoc, Marco Galeottac, Serge Le Gonidecd aDTIS, ONERA, Universit´eParis-Saclay, Chemin de la Huniere, 91123 Palaiseau, France bNormandie Universit´e,UNIROUEN, ESIGELEC, IRSEEM, Rouen, France cCNES - Direction des Lanceurs, 52 Rue Jacques Hillairet, 75612 Paris, France dArianeGroup SAS, Forˆetde Vernon, 27208 Vernon, France Abstract The main purpose of this survey paper is to review the field of convergence between the liquid-propellant rocket- propulsion and automatic-control disciplines.
    [Show full text]
  • Materials for Liquid Propulsion Systems
    CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned.
    [Show full text]
  • IAF Committee Briefs
    IAF Committee Briefs July 2021 IAF SPACE PROPULSION TECHNICAL COMMITTEE 1. Introduction/Summary The Space Propulsion Committee addresses sub-orbital, earth to orbit, and in-space propulsion. The general areas considered include both chemical and non-chemical rocket propulsion, and air-breathing propulsion. Typical specific propulsion categories of interest are liquid, solid and hybrid rocket systems, electric, nuclear, solar and other advanced rocket systems, ramjet, scramjet, and various combinations of air-breathing and rocket propulsion. (Copyright SpaceX) The Committee deals with component technologies, propulsion system aspects, the implementation and In China, a project of heavy-lift launch vehicle, for future application of overall propulsion systems and dedicated important missions such as deep-space exploration and test facilities. The Committee is also examining the manned landing on the Moon, has been carried out. A feasibility of new missions made possible by new 500 ton- thrust-class LOX/kerosene rocket engine will propulsion systems and how combinations of pro- be used for the first stage and boosters of the launch pulsion technologies, such as chemical and electrical vehicle, which is also the next generation of large thrust technologies, can be optimized for this purpose. rocket engine in China. The engine employs oxidizer-rich staged-combustion cycle system and after-pump gimbal 2. Latest Developments configuration. The first engine has been manufactured and the sub-systems have been successfully hot-fire Right now, all over the world, a lot of new launchers tested. are appearing with new engines, with first flights just completed or planned for this year or in the next few On the coming first flights, we can underline the arrival years.
    [Show full text]
  • Investigations of Future Expendable Launcher Options
    IAC-11-D2.4.8 Investigations of Future Expendable Launcher Options Martin Sippel, Etienne Dumont, Ingrid Dietlein [email protected] Tel. +49-421-24420145, Fax. +49-421-24420150 Space Launcher Systems Analysis (SART), DLR, Bremen, Germany The paper summarizes recent system study results on future European expendable launcher options investigated by DLR-SART. In the first part two variants of storable propellant upper segments are presented which could be used as a future evolvement of the small Vega launcher. The lower composite consisting of upgraded P100 and Z40 motors is assumed to be derived from Vega. An advanced small TSTO rocket with a payload capability in the range of 1500 kg in higher energy orbits and up to 3000 kg supported by additional strap-on boosters is further under study. The first stage consists of a high pressure solid motor with a fiber casing while the upper stage is using cryogenic propellants. Synergies with other ongoing European development programs are to be exploited. The so called NGL should serve a broad payload class range from 3 to 8 tons in GTO reference orbit by a flexible arrangement of stages and strap-on boosters. The recent SART work focused on two and three-stage vehicles with cryogenic and solid propellants. The paper presents the promises and constraints of all investigated future launcher configurations. Nomenclature TSTO Two Stage to Orbit VEGA Vettore Europeo di Generazione Avanzata D Drag N VENUS VEGA New Upper Stage Isp (mass) specific Impulse s (N s / kg) cog center of gravity M Mach-number - sep separation T Thrust N W weight N g gravity acceleration m/s2 1 INTRODUCTION m mass kg Two new launchers, Soyuz and Vega, are scheduled to q dynamic pressure Pa enter operation in the coming months at the Kourou v velocity m/s spaceport, increasing the range of missions able to be α angle of attack - launched by Western Europe.
    [Show full text]
  • Investigation of a Radial Turbines Compatibility for Small Rocket Engine
    E3S Web of Conferences 197, 11009 (2020) https://doi.org/10.1051/e3sconf/202019711009 75° National ATI Congress Investigation of a Radial Turbines Compatibility for Small Rocket Engine Angelo Leto * CIRA Italian Aerospace Research Center, via Maiorise, 81043 Capua (CE), Italy Abstract. In the radial turbine preliminary design for an expander rocket engine, a comparison was made with axial turbine used in Pratt & Whitney RL10 engine. One of the primary requirements of a liquid propellant rocket engine is the generation of a high thrust, which depends on both the mass flow rate of the propellant and the pressure in the thrust chamber. In expander-cycle engines, which are the subject of the present study, the liquid propellant is first compressed using centrifugal turbo-pumps, then it is used to cool the combustion chamber and the nozzle and, once vaporized, it flows through the turbines used to drive the turbo-pumps. The aim was to demonstrate the greater efficiency of the radial turbine with a reduction of the pressure ratio with respect to the axial turbine. Nomenclature c Absolute Flow Velocity – Chord r Radius h Enthalpy - Rotor Height T Temperature Lms Mean Surface Length u Impeller Tangential Velocity M Mach Number w Relative Velocity Ns Specific Speed Y Young’s Modulus O Mean Throat Width z Number Blades p Pressure Zr Rotor Axial Length q Mean Blade Pitch Greek Letters α Flow angle σr Rotor Blades Elastic Stress β Relative Flow Angle φ Flow Coefficient ƞ Efficiency ψ Loading Coefficient ν Poisson’s ratio ω Frequency ρ Density Subscripts 0 Total h hub 1 Rotor Inlet s shroud 2 Rotor Outlet 1 Introduction The turbine design was carried out in two phases, implementing a meanline analysis model that uses an approximation one-dimensional for the flow through the machine and empirical correlations to estimate the losses, necessary for performance calculation.
    [Show full text]
  • Time-Expanded Decision Networks: a Framework for Designing Evolvable Complex Systems*
    Regular Paper Time-Expanded Decision Networks: A Framework for Designing Evolvable Complex Systems* Matthew R. Silver and Olivier L. de Weck† Department of Aeronautics & Astronautics, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 TIME-EXPANDED DECISION NETWORKS Received 10 October 2006; Accepted 13 February 2007, after one or more revisions Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/sys.20069 ABSTRACT This paper describes the concept of Time-Expanded Decision Networks (TDNs), a new methodology to design and analyze flexibility in large-scale complex systems. This includes a preliminary application of the methodology to the design of Heavy Lift Launch Vehicles for NASA’s space exploration initiative. Synthesizing concepts from Decision Theory, Real Op- tions Analysis, Network Optimization, and Scenario Planning, TDN provides a holistic frame- work to quantify the value of system flexibility, analyze development and operational paths, and identify designs that can allow managers and systems engineers to react more easily to exogenous uncertainty. TDN consists of five principle steps, which can be implemented as a software tool: (1) Design a set of potential system configurations; (2) quantify switching costs to create a “static network” that captures the difficulty of switching among these configurations; (3) create a time-expanded decision network by expanding the static network in time, including chance and decision nodes; (4) evaluate minimum cost paths through the network under plausible operating scenarios; and (5) modify the set of initial design configurations to exploit high-leverage switches and repeat the process to convergence. Results can inform decisions about how and where to embed flexibility in order to enable system evolution along various development and operational paths.
    [Show full text]