Third Bodies Or Magentic Activity in Binary Stars ?

Total Page:16

File Type:pdf, Size:1020Kb

Third Bodies Or Magentic Activity in Binary Stars ? TMHMA FUSIKHS, PANEPISTHMIO PATRWN TOMEAS JEWRHTIKHS, UPOLOGISTIKHS FUSIKHS KAI ASTROFUSIKHS EIDIKH EREUNHTIKH ERGASIA GIA TO METAPTUQIAKO DIPLWMA EXEIDIKEUSHS « TrÐta S¸mata ή Μαγνητική Δραστηριόthta se διπλά αστρικά συστήματa ;» KwnstantÐnoc Zèrbac A.M.: 1050804 Epiblèpousa: E.-P. Qristοπούλου, EpÐkourh Καθηγήτρια PanepisthmÐou Patr¸n Πάτρα, 2018 Περιεχόμενα i Περιεχόμενα Katάλοgoc Σχημάτwn . iv Katάλοgoc Piνάκων . xi PerÐlhyh .................................. 1 Abstract ................................... 4 Κεφάλαιo 1 Troχιακά qarakthriστικά dipl¸n sustημάτwn . 6 1.1 To Πρόβλημα twn Δύο Σωμάτwn . 6 1.2 Μορφή Troχιάς . 10 1.2.1 Λύσειc twn Exis¸sewn KÐnhshc . 10 1.2.2 ExÐswsh Troχιάς . 11 1.3 ExÐswsh Kepler ............................. 17 1.3.1 EpÐlush ExÐswshc Kepler ................... 20 1.4 Troχιακά stoiqeÐa . 21 1.4.1 Troχιακή (Fwtομετρική) kai Γωνιακή Φάsh . 23 1.4.2 Kuklikèc kai 'Ekkentrec Troqièc . 24 1.4.3 Sqèsh troqiak¸n stoiqeÐwn me thn oλική sτροφορμή kai e- nèrgeia . 26 BibliografÐa KefalaÐou 1 . 29 Κεφάλαιo 2 Γεωμετρικά qarakthriστικά dipl¸n συστημάτwn 30 2.1 Ενεργό Βαρυτικό Δυναμικό - Δυναμικό Kopal . 31 2.2 Montèlo Roche ............................. 37 2.3 Morfoloγική Taxiνόμηση Dipl¸n Συστημάτwn . 42 2.4 Συστήματa Upeρεπαφής τύπου W UMa . 49 2.4.1 Γενικά Qarakthriστικά . 49 2.4.2 To παράδοξο tou tύπου W ................... 50 2.4.3 Δομή kai Εξελικτικά Σενάρια . 51 2.5 Antαλλαγή kai Metαφορά Μάζας . 55 2.5.1 DeÐkthc AktÐnac - Μάzac . 56 2.5.2 Metαφορά Μάζας (RLOF)................... 62 2.5.3 Ap¸leia Μάζας . 64 BibliografÐa KefalaÐou 2 . 70 Περιεχόμενα ii Κεφάλαιo 3 TrÐta s¸mata ή μαγνητική δραστηριόthta se διπλά αστρικά συστήματa .................... 74 3.1 Eiσαγωγή . 74 3.2 Metabolèc sto διάγραμμα O-C ..................... 76 3.2.1 Διόρθωση Astroνομικής EfhmerÐdac . 76 3.2.2 FusikoÐ mhqanismoÐ metaboλής περιόδου . 77 3.3 'Uparxh trÐtou s¸matoc γύρω από to διπλό σύστημα (Light-Time Effect).................................. 83 3.3.1 H exÐswsh tou Light-Time Effect (LITE) . 83 3.3.2 Kriτήρια iσχύος tou LITE ................... 89 3.3.3 Mèjodoi anÐqneushc pollapl¸n συστημάτwn . 90 3.3.4 H statiστική twn pollapl¸n συστημάτwn . 93 3.4 Μαγνητική δραστηριόthta sto διπλό σύστημα . 95 3.4.1 O mhqaniσμός Applegate .................... 95 3.4.2 Energeiakèc apaiτήσειc tou mhqaniσμού Applegate . 99 3.4.3 EpÐdrash tou mhqaniσμού Applegate sto διάγραμμα O-C . 102 BibliografÐa KefalaÐou 3 . 108 Κεφάλαιo 4 Teqnikèc efarmoγής thc μεθόδου elaqÐstwn tetrag¸nwn kai ektÐmhshc abebaiotήτwn . 113 4.1 Diaforikèc diorj¸seic (Differential Corrections) . 114 4.2 Mèjodoc Levenberg-Marquardt . 117 4.3 H mèjodoc Nelder-Mead Downhill Simplex . 120 4.4 Mèjodoi prosdioriσμού oλικού elaqÐstou kai abebaioτήtwn . 125 4.4.1 Σάρωση sto q¸ro twn λύσεων (Heuristic Scanning) kai Dia- tαραχή paramètrwn (Parameter Kicking) . 126 4.4.2 Mèjodoc Bootstrap . 128 4.4.3 Μαρκοβιανή alusÐda Monte Carlo kai o αλγόριjmoc Metropolis- Hastings .............................129 4.4.4 GenetikoÐ Αλγόριjmoi . 139 BibliografÐa KefalaÐou 4 . 146 Κεφάλαιo 5 Ανάλυση kai melèth metaboλής περιόδου dipl¸n ekleiptik¸n συστημάτwn . 150 5.1 To apoqwrismèno σύσthma NSVS 14256825 wc υποψήφιo gia thn ύπαρξη trÐtou s¸matoc (LITE) . 150 Περιεχόμενα iii 5.1.1 To profÐl tou astèra . 150 5.1.2 Ανάλυση tou διαγράμματoc O-C . 152 5.1.3 Συμπεράσματa . 162 5.2 H perÐptwsh tou apoqwrismènou συστήματoc NSVS 07826147 . 164 5.2.1 To profÐl tou astèra . 164 5.2.2 Ανάλυση tou διαγράμματoc O-C . 165 5.2.3 Συμπεράσματa . 174 5.3 To ainiγματικό σύστημa υπερεπαφής TZ Boo . 175 5.3.1 To profÐl tou astèra . 175 5.3.2 Ανάλυση tou διαγράμματoc O-C . 176 5.3.3 Συμπεράσματa . 191 BibliografÐa KefalaÐou 5 . 193 Παράρτημα ................................. ix PÐnakec χρόnwn elaqÐstou fwtός . ix Anaforèc Σχημάτwn . xi Katάλοgoc Σχημάτwn iv Katάλοgoc Σχημάτwn 1.1 Barukenτρικό σύσthma suntetagmènwn ενός διπλού susτήματoc sw- μάτwn. 6 1.2 Σχηματική αναπαράσtash βαρυκεντρικής troχιάς ενός διπλού susτήμα- toc. To βαρύκεντρο eÐnai shmeiwmèno kai brÐsketai sthn estÐa κάθε èlleiyhc. 13 1.3 Σχετική troχιά ενός diplού συστήματoc (me ton èna astèra sthn κύρια estÐa) kai βασικά stoiqeÐa thc èlleiyhc. 14 1.4 Qarakthristikèc gwnÐec ελλειπτικής troχιάς wc απόρροια twn gew- metrik¸n sqèsewn tou κύκλου kai thc eggegrammènhc èlleiyhc. H sqèsh metαξύ twn epifanei¸n κύκλου kai èlleiyhc pou sar¸nei to aktinikό διάνυσμα apoteleÐ kai thn ousÐa thc exÐswshc Kepler. 18 1.5 Απεικόnish tou troχιακού epipèdou se sqèsh me to epÐpedo tou oura- νού (epÐpedo xy). O άξοnac z antistoiqeÐ sthn eujeÐa παρατήρησης (me shmeÐo ekkÐnhshc to z = −∞) kai oi treic qarakthristikèc gwnÐec orÐzoun ton prosanatoliσμό tou troχιακού epipèdou. O θετικός άξοnac x orÐzei thn κατεύθυνση tou βόρεiou ouράνιou πόlou. 22 2.1 GewmetrÐa tou probλήματoc tri¸n σωμάτwn. H αρχή twn αξόnwn brÐsketai sto βαρύκεντρο tou διπλού συστήματoc en¸ to σύστημα suntetagmènwn peristrèfetai me γωνιακή συχνόthta w. 32 2.2 GewmetrÐa tou προβλήματoc tri¸n σωμάτwn me αρχή twn αξόnwn ston astèra μάζας m1............................. 34 2.3 Diatομή twn isodunamik¸n epifanei¸n sto troχιακό epÐpedo ενός διπλού susτήματoc astèrwn me λόgo μάζας q = 0.4. Ta shmeÐa Lagrange L1,L2,L3 brÐskontai sthn eujeÐa pou en¸nei ta kèntra twn astèrwn, en¸ ta L4,L5 brÐskontai sthn κορυφή iσόπλευρων trig¸nwn me βάσειc thn eujeÐa twn kèntrwn. 40 2.4 Isodunamikèc epiφάνeiec Roche. Ta kèntra twn astèrwn brÐskontai sta shmeÐa O kai S antÐstoiqa, en¸ to shmeÐo G antistoiqeÐ sto βαρύκεντρο. Ta shmeÐa L1,L2 eÐnai emfanèc όti antistoiχούν se shmeÐa tομής touc. 41 Katάλοgoc Σχημάτwn v 2.5 H τιμή tou barυτικού δυναμικού F συναρτήσει thc απόσtashc ka- tά μήκος thc eujeÐac pou en¸nei ta kèntra twn astèrwn. Βαθειά πηγάδια δυναμικού περιβάλλoun ton astèra O kai ton astèra S kai sth metαξύ touc απόσtash to δυναμικό laμβάνει mègisth τιμή sth jèsh x = L1. Stic άκρες υπάρχουν άλλα δύο mègista δυναμικού pou antistoiχούν stic jèseic L2,L3 kaj¸c o όρος tou φυγόκεντρου δυναμικού uperiσχύει stic μεγάλες apostάσειc. 41 3 2.6 H ενεργός aktÐna (1 < rL < 10 ) tou λοβού Roche συναρτήσει tou λόgou maz¸n q (0.01 < q < 10). EÐnai emfanèc όti to μικρόtero mègejoc λοβού Roche antistoiqeÐ se q = 1. 43 2.7 MorfologÐa apoqwrismènou susτήματoc (AD Boo) kai h καμπύλη (τύπου Algol) fwtometrÐac tou. Me mplè qr¸ma orÐzontai oi epi- φάνειες twn astèrwn, me κόκκιno qr¸ma h εσωτερική επιφάνεια La- grange kai me μαύρο qr¸ma h εξωτερική επιφάνεια Lagrange. Sthn ka- μπύλη fwtometrÐac to mplè qr¸ma antistoiqeÐ sth συνθετική καμπύλη kai to κόκκιno sta πειραματικά shmeÐa. Ta σχήματa dhmiουργήθηκαν me to logiσμικό Binary Maker 3.0 (Bradstreet and Steelman, 2002). 44 2.8 MorfologÐa hmiapoqwrismènou συστήματoc (DL Cyg) kai h καμπύλη (τύπου β Lyrae) fwtometrÐac tou. 45 2.9 MorfologÐa sυστήmatoc se υπερεπαφή (AW UMa) kai h καμπύλη (τύπου W UMa) fwtometrÐac tou. 46 2.10 MorfologÐa συστήματoc se διπλή επαφή (RZ Sct) kai h καμπύλη fwtometrÐac tou. 47 2.11 H sqèsh περιόδου - deÐkth qr¸matoc gia ta diplά susτήματa uperepa- φής τύπου W UMa. 'Oso μικρόterh h perÐodoc tou susτήματoc tόσο pio exeligmèna ta mèlh tou. EÐnai qarakthrisτικό όti ta susτήματa τύπου W, pou shmei¸nontai me ×, brÐskontai kurÐwc sthn κάτw arisτερά perioχή tou διαγράμματoc, h opoÐa antistoiqeÐ se μικρόterec περιόδους kai jermokrasÐec. Ta susτήματa τύπου A shmei¸nontai me κύκλο kai eÐnai pio exeligmèna kaj¸c emfanÐzontai se μεγαλύτε- rec περιόδους kai υψηλόterec jermokrasÐec. Ta dedomèna gia thn katασκευή tou διαγράμματoc sullèqjhkan από ton Mochnacki (1985). 52 Katάλοgoc Σχημάτwn vi 2.12 H sqèsh tou θερμικού (ζth.) kai δυναμικού (ζdyn.) deÐkth aktÐnac- μάζας gia astèrec ηλιακού τύπου sthn αρχή thc κύριας akoloujÐac (ZAMS). O δεξιά katακόρυφος άξοnac (q(ζ)) antistoiqeÐ ston krÐsimo λόgo maz¸n (μάζα astèra pou gemÐzei to λοβό Roche / μάza συνοδού) kai gia tic timèc tou opoÐou iσχύει ζL = ζ, me to ζ na antistoiqeÐ se perÐptwsh διατήρησης μάζας kai troχιακής stroformής katά th metαφορά μάζας. 59 3.1 Διάγραμμα O-C από dedomèna tou 1982 gia to σύσthma BW Vul.H mesaÐa perioχή antistoiqeÐ se μηδενική klÐsh eujeÐac kai epomènwc se swstό upologiσμό thc περιόδου tou susτήματoc. H πάνω pe- rioχή antistoiqeÐ se θετική klÐsh eujeÐac kai άρα h perÐodoc tou susτήματoc eÐnai μεγαλύτερη από thn perÐodo pou χρησιμοποιήθηκε gia thn kataskeuή tou διαγράμματoc, en¸ gia thn κάτw perioχή h αρνητική klÐsh upodhl¸nei th χρήση μεγαλύτerhc περιόδου από thn πραγματική. 78 3.2 Metabolèc sta διαγράμματa O-C tri¸n ekleiptik¸n susτημάτwn e- xaitÐac diaforetik¸n fusik¸n mhqanism¸n pou λαμβάνοun q¸ra sto σύσthma. 82 3.3 Ελλειπτική troχιά tou εκλειπτικού susτήματoc (E) exaitÐac thc ba- ρυτικής allhlepÐdrashc me trÐto s¸ma. Sto shmeÐo O brÐsketai to βαρύκεντρο twn tri¸n σωμάτwn από to opoÐo περνάει to epÐpedo tou ουρανού tèmnontac thn troχιά sta shmeÐa 1,3. H eujeÐa dCa apoteleÐ thn tομή tou troχιακού epipèdou me to παράλληλο epÐpedo proc tou ουρανού kai to opoÐo apèqei απόσtash αesinωsini.H klÐsh tou troχιακού epipèdou me to epÐpedo tou ουρανού eÐnai χάρin 0 eukolÐac Ðsh me i = 90o. Κάθε stiγμή h απόσtash z tou εκλειπτικού susτήματoc metαβάλλετai από ton paratηρητή me apotèlesma thn periοδική metaboλή twn χρόnwn elaqÐstou fwtός sto διάγραμμα O-C. 84 Katάλοgoc Σχημάτwn vii 3.4 Qarakthriσμός thc περιόδου se διάγραμμα lόgou maz¸n kai fasmati- κού τύπου δευτερεύοntoc astèra gia 101 διπλά εκλειπτικά susτήματa τύπου Algol. Me × apotup¸nontai όsa antikeÐmena qarakthrÐzontai από auxomeÐwsh thc περιόδου katά periοδικό τρόπο, en¸ ta σύμ- bola /, \ kai - upodhl¸noun αύξηση, meÐwsh kai stαθερή perÐodo antÐstoiqa. To σύμβοlo thc teleÐac antistoiqeÐ se όσα antikeÐmena den μπόρεσε na exaqjeÐ sumpèrasma wc proc th metaboλή thc peri- όδου. EÐnai emfanèc όti kuklikή metaboλή περιόδου emfanÐzoun μόno ta susτήματa me δευτερεύοnta astèra metagenèsterou φασματικού τύπου tou F5............................... 96 4.1 Pijanèc gewmetrikèc τροποποιήσειc ενός τετράεδρου simplex katά th διάρκεια miac επανάlhyhc. H katάλληλη allhlouqÐa epanalhptik¸n βημάτwn kai άρα gewmetrik¸n tropoποιήσεων ja èqei wc apotèlesma th surrÐknwsh tou simplex, dhlaδή, th σύγκλιsh thc μεθόδου sto ελάχιsto thc συνάρτησης elaqistopoÐhshc.
Recommended publications
  • Binary Star Modeling: a Computational Approach
    TCNJ JOURNAL OF STUDENT SCHOLARSHIP VOLUME XIV APRIL 2012 BINARY STAR MODELING: A COMPUTATIONAL APPROACH Author: Daniel Silano Faculty Sponsor: R. J. Pfeiffer, Department of Physics ABSTRACT This paper illustrates the equations and computational logic involved in writing BinaryFactory, a program I developed in Spring 2011 in collaboration with Dr. R. J. Pfeiffer, professor of physics at The College of New Jersey. This paper outlines computational methods required to design a computer model which can show an animation and generate an accurate light curve of an eclipsing binary star system. The final result is a light curve fit to any star system using BinaryFactory. An example is given for the eclipsing binary star system TU Muscae. Good agreement with observational data was obtained using parameters obtained from literature published by others. INTRODUCTION This project started as a proposal for a simple animation of two stars orbiting one another in C++. I found that although there was software that generated simple animations of binary star orbits and generated light curves, the commercial software was prohibitively expensive or not very user friendly. As I progressed from solving the orbits to generating the Roche surface to generating a light curve, I learned much about computational physics. There were many trials along the way; this paper aims to explain to the reader how a computational model of binary stars is made, as well as how to avoid pitfalls I encountered while writing BinaryFactory. Binary Factory was written in C++ using the free C++ libraries, OpenGL, GLUT, and GLUI. A basis for writing a model similar to BinaryFactory in any language will be presented, with a light curve fit for the eclipsing binary star system TU Muscae in the final secion.
    [Show full text]
  • TU Muscae and the Early-Type Overcontact Binaries Dirk Terrell Department of Space Studies, Southwest Research Institute, Boulde
    Exotic Stars as Challenges to Evolution ASP Conference Series, Vol. 279, 2002 C. A. Tout and W. Van Hamme, eds. TU Muscae and the Early-type Overcontact Binaries Dirk Terrell Department of Space Studies, Southwest Research Institute, Boulder, CO 80301, USA Abstract. A simultaneous photometric and spectroscopic analysis of the purported early-type overcontact binary TU Muscae is presented. With a well-behaved light curve and a mass ratio far from unity, if TU Mus is indeed an overcontact system, it presents an interesting chal­ lenge for 3-D stellar evolution codes, like the Djehuty code, that will be applied to early-type overcontact binaries. The analysis shows TU Mus is slightly overcontact and that a detailed treatment of the reflection effect is important for modeling the light curves. 1. Introduction One of the major unresolved issues in close binary star research is the structure and evolution of overcontact binaries.1 After approximately a decade of vigorous research from the late 1960's to the late 1970's, precipitated by Lucy's (1968) seminal paper on the subject, progress on understanding these stars has slowed. There are probably many reasons for this lack of progress, but the main one is that the necessary computing power to model these stars in three dimensions has only recently been developed. A full treatment of overcontact binaries will re­ quire a 3-D code capable of modeling the hydrodynamics, energy transport, and probably the magnetic fields present. Such a code, called Djehuty, is currently under development at the Lawrence Livermore National Laboratory by Peter Eggleton and his LLNL colleagues, and will be applied to modeling overcontact binaries.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • A\St Ronomia B Oletín N° 46 La Plata, Buenos Aires, 2003
    A sociacion AJrgent ina de ~A\st ronomia Boletín N° 46 La Plata, Buenos Aires, 2003 AsociaciónArgentina, de Astronomía - Boletín 46 i Asociación Argentina de Astronomía Reunión Anual La Plata, Buenos Aires, 22 al 25 de septiembre Organizada por: Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata EDITORES Stella Maris Malaroda Silvia Mabel Galliani 2003 ISSN 0571^3285 AsociaciónArgentina, de Astronomía - Boletín 46 íi Asociación Argentina de Astronomía Fundada en 1958 Personería Jurídica 1421, Prov. de Buenos Aires Asociación Argentina de Astronomía - Boletín 46 iii Comisión Directiva Presidente: Dra. Marta Rovira Vicepresidente: Dr. Diego García Lambas Secretario: Dr. Andrés Piatti Tesorero: Dra. Cristina Cappa Vocal 1: Dr. Sergio Cellone Vocal 2: Dra. Lilia Patricia Bassino Vocal Sup. 1: Dra. Zulema González de López García Vocal Sup. 2: Lie. David Merlo Comisión Revisora de Cuentas Titulares: Dra. Mirta Mosconi Dra. Elsa Giacani Dra. Stella Malaroda Suplentes: Dra. Irene Vega Comité Nacional de Astronomía Secretario: Dr. Adrián Brunini Miembros: Dr. Diego García Lambas Dra. Olga Inés Pintado Lie. Roberto Claudio Gamen Lie. Guillermo Federico Hágele Asociación Argentina de Astronomía - Boletín 46 IV Comité Científico de la Reunión Dr. Roberto Aquilano Dr. Adrián Brunini Dr. Juan José Clariá Dra. Cristina Cappa Dr. Juan Carlos Forte (Presidente) Dr. Daniel Gómez Lie. Carlos López Dra. Stella Malaroda Dra. Mirta Mosconi Comité Organizador Local Lie. María Laura Arias Dr. Pablo Cincotta (Presidente) Lie. Roberto
    [Show full text]
  • Tez.Pdf (5.401Mb)
    ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÖRTEN DEĞİŞEN YILDIZLARDA DÖNEM DEĞİŞİMİNİN YILDIZLARIN FİZİKSEL PARAMETRELERİNE BAĞIMLILIĞININ ARAŞTIRILMASI Uğurcan SAĞIR ASTRONOMİ VE UZAY BİLİMLERİ ANABİLİM DALI ANKARA 2006 Her hakkı saklıdır TEŞEKKÜR Tez çalışmam esnasında bana araştırma olanağı sağlayan ve çalışmamın her safhasında yakın ilgi ve önerileri ile beni yönlendiren danışman hocam Sayın Yrd.Doç.Dr. Birol GÜROL’a ve maddi manevi her türlü desteği benden esirgemeyen aileme teşekkürlerimi sunarım. Uğurcan SAĞIR Ankara, Şubat 2006 iii İÇİNDEKİLER ÖZET………………………………………………………………….......................... i ABSTRACT……………………………………………………………....................... ii TEŞEKKÜR……………………………………………………………...................... iii SİMGELER DİZİNİ…………………………………………………….................... vii ŞEKİLLER DİZİNİ...................................................................................................... x ÇİZELGELER DİZİNİ.............................................................................................. xiv 1. GİRİŞ........................................................................................................................ 1 1.1 Çalışmanın Kapsamı................................................................................................ 1 1.2 Örten Çift Sistemlerin Türleri ve Özellikleri........................................................ 1 2. KURAMSAL TEMELLER................................................................................... 3 2.1 Örten Değişen Yıldızlarda Dönem Değişim Nedenleri..................................
    [Show full text]
  • A Radial Velocity Analysis of the Binary Star Tu Muscae
    TCNJ JOURNAL OF STUDENT SCHOLARSHIP VOLUME XIV APRIL 2012 A RADIAL VELOCITY ANALYSIS OF THE BINARY STAR TU MUSCAE Author: Christian Schmitt Faculty Sponsor: R. J. Pfeiffer, Department of Physics ABSTRACT Several papers provide conflicting results for the radial velocities and mass ratios of the binary star TU Muscae; this paper intends to shed light on this issue. A radial velocity analysis was done by fitting Gaussian curves to the absorption lines of helium II (He II) and silicon IV (Si IV). The corresponding red and blue Doppler shifts of these absorption lines were measured and the radial velocities of the stars at each orbital phase were then computed. The radial velocity diagram for the system was then constructed and best fits to the data were obtained by the method of least squares to minimize the standard deviation. The best fits to the data yielded the gamma velocity (γ-velocity) of the system as well as the orbital velocities of the two stars. This then led to the calculation of the mass ratio for the system. The results for He II gave a mass ratio equal to 0.65±0.07 and a γ-velocity equal to -16±7 km/s, while for Si IV the mass ratio is 0.61±0.02 and a γ-velocity equal to -18±5 km/s. These results for both the mass ratio and the γ- velocity agree with those found in an earlier paper written by Stickland et al. (1995, hereafter S95). INTRODUCTION TU Muscae is an over-contact binary star with an orbital plane inclined by 78 degrees to Earth’s line of sight.
    [Show full text]
  • Astronomy at the University of Canterbury Department of Physics & Astronomy and at the Mt John University Observatory
    Department of Physics & Astronomy and Mt John University Observatory - William Tobin Astronomy at the University of Canterbury Department of Physics & Astronomy and at the Mt John University Observatory Observatory Director: Dr M.D. Albrow Report 2002–3 Report compiled by Dr William Tobin Report for the period 2002 January 1 to 2003 December 31 Staff director on the SALT Foundation Board, attending two Board meetings in Cape Town during 2003. At the begining of 2002 the Observatory directorship rotated to Dr Michael Albrow who continued as Mt John Dr William Tobin was on study leave 2002 April– director throughout the period covered by this report. In July, and devoted most of his effort to completing his bi- 2003 his permanent half-time position was extended to a ography of the 19th-century French physicist Leon´ Fou- full-time appointment for a period of three years. cault. The French version of this work, entitled ‘Leon´ Alan Gilmore continued as Resident Superintendent Foucault: Le miroir et le pendule’ was published in Oc- at Mt John. Stephen Barlow, Nigel Frost and Pam Kil- tober to coincide with the exhibition of the same name martin continued as other Mt John staff. which was held at the Paris Observatory (where Foucault Turning to Christchurch staff, Professor John Hearn- was ‘physicist’ from 1855). This exhibition was organ- shaw continued on the Board of IAU Division IX and as ised by Dr James Lequeux of the Paris Observatory (Er- chair of the Royal Society of New Zealand’s Committee skine Visitor to Canterbury in 1997), who also adapted on Astronomical Sciences.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Mnassa October 2020 Astronomical Observatory
    Volume 79 Nos 9-10 October 2020 In this issue: Bi-Centenary of SAAO SAAO200 Symposium Abstracts News notes – New Comet, Physics Nobel Prize, SALT Brochure, SAAO Annual Report Eclipsing Binaries Fireball Observations Streicher Asterisms EDI TORIAL Mr Case Rijsdijk (Editor, MNASSA ) BOARD Mr Auke Slotegraaf (Editor, Sky Guide Africa South ) Mr John Gill (Webmaster) Mr James Smith (Web Manager) Dr I.S. Glass (Member, S A Astronomical Observatory) Dr V. McBride (Member, OAD-IAU) Mr Maciej Soltynski (Book Review Editor) Prof B. Warner (Member, University of Cape Town) MNASSA Mr Case Rijsdijk (Editor, MNASSA ) PRODUCTION Dr Ian Glass (Assistant Editor) Mr Willie Koorts (Publication on Web) EDITORIAL MNASSA, PO Box 9, Observatory 7935, South Africa ADDRESSES Email: [email protected] Web Manager: [email protected] MNASSA Download Page: www.mnassa.org.za SUBSCRIPTIONS MNASSA is available for free on the Internet ADVERTISING Advertisements may be placed in MNASSA at the following rates per insertion: full page R400, half page R200, quarter page R100. Small advertisements R2 per word. Enquiries should be sent to the editor at [email protected] CONTRIBUTIONS MNASSA mainly serves the Southern African astronomical community. Articles may be submitted by members of this community or by those with strong connections. Else they should deal with matters of direct interest to the community . MNASSA is published on the first day of every second month and articles are due one month before the publication date. RECOGNITION Articles from MNASSA appear in the NASA/ADS data system. Cover caption The LOGO of the SAAO200 Symposium mnassa Vol 79 Nos 9-10 October 2020 Bi-Centenary of the South African Astronomical Observatory (SAAO) On the morning of 20th October 2020, the 200 th anniversary to the day of the official establishment of the Royal Observatory/SAAO, a ceremony was held in front of the main entrance of the historic building.
    [Show full text]
  • Appendix a Brief Review of Mathematical Optimization
    Appendix A Brief Review of Mathematical Optimization Ecce signum (Behold the sign; see the proof) Optimization is a mathematical discipline which determines a “best” solution in a quantitatively well-defined sense. It applies to certain mathematically defined prob- lems in, e.g., science, engineering, mathematics, economics, and commerce. Opti- mization theory provides algorithms to solve well-structured optimization problems along with the analysis of those algorithms. This analysis includes necessary and sufficient conditions for the existence of optimal solutions. Optimization problems are expressed in terms of variables (degrees of freedom) and the domain; objective function1 to be optimized; and, possibly, constraints. In unconstrained optimization, the optimum value is sought of an objective function of several variables without any constraints. If, in addition, constraints (equations, inequalities) are present, we have a constrained optimization problem. Often, the optimum value of such a problem is found on the boundary of the region defined by inequality constraints. In many cases, the domain X of the unknown variables x is X = IR n. For such problems the reader is referred to Fletcher (1987), Gill et al. (1981), and Dennis & Schnabel (1983). Problems in which the domain X is a discrete set, e.g., X = IN o r X = ZZ, belong to the field of discrete optimization ; cf. Nemhauser & Wolsey (1988). Dis- crete variables might be used, e.g., to select different physical laws (for instance, different limb-darkening laws) or models which cannot be smoothly mapped to each other. In what follows, we will only consider continuous domains, i.e., X = IR n. In this appendix we assume that the reader is familiar with the basic concepts of calculus and linear algebra and the standard nomenclature of mathematics and theoretical physics.
    [Show full text]
  • Ar 2003Fr.Pdf
    1 Rapport Annuel 2003 ISSN 0531–4496 RapportRapport AnnuelAnnuel 20032003 présenté au Conseil par la Directrice Générale Dr. Catherine Cesarsky EUROPEAN SOUTHERN OBSERVATORY Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral ESO. Astronomy made in Europe Table des matières PRÉFACE . 5 INTRODUCTION . 7 LES FAITS MARQUANTS DE LA RECHERCHE . 11 PARANAL . 23 LA SILLAILLA . 28 CHAJNANTOR . 32 TÉLESCOPE EXTRÊMEMENT GRAND (ELT) . 36 L’ORGANISATION Le Personnel de l’ESO . 38 Développements Techniques . 40 Instrumentation . 41 L’Observatoire Astrophysique Virtuel . 43 Les Archives Scientifiques . 44 ST-ECF . 44 Relations Publiques . 46 Communiqués de Presse . 48 La Collaboration EIROforum . 50 Relations avec l’UE . 51 Le Comité des Utilisateurs . 52 Le Comité Scientifique et Technique (STC) . 52 Le Conseil . 54 Le Comité des Finances . 55 Finances . 55 Personnel . 58 Résumé de l’utilisation des télescopes par disciplines . 59 AU FILIL DES SAISONS . 62 PUBLICATIONS . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 69 PréfacePréface 5 l est souvent d’usage que de découvertes scientifiques ont eu lieu; cer- l’avant-propos d’un rapport taines ont donné lieu à des communiqués de annuel commence par déclarer presse, mais d’autres furent tout aussi impor- que l’année écoulée a été inhabituelle ou essen- tantes pour les progrès en astronomie. Le nom- tielle pour l’organisation concernée. bre d’articles issus de données provenant de IManifestement, le regard sur l’année passée Paranal et de La Silla est en constante augmenta- donne l’impression que celle-ci a été exception- tion et les télescopes de l’ESO sont devenus une nelle et les réalisations particulièrement impres- source essentielle de citations dans la littérature sionnantes.
    [Show full text]
  • Newslet T Er De Sochias
    N EWSLET T ER DE SOCHIAS Newsletter dedicado a todos los aspectos de la Sociedad Chilena de Astronom´ıa editado por Doug Geisler Issue No. 3 9 de Diciembre 2005 EDITORIAL Junto con saludarles, tengo el agrado de presentar esta tercera edici´on del Newsletter de SOCHIAS. La comunidad astron´omica profesional y acad´emica Chilena est´a en un per´ıodo de gran crecimiento, y este Newsletter sirve para divulgar las varias actividades de la Sociedad, la comunidad, los observa- torios, las distintas instituciones de educaci´on superior, etc. En esta edici´on inclu´ımos varias noticias, un informe sobre la reuni´on de LARIM en Puc´on, anuncio de otra reunion, un Science Highlight, anuncio de un puesto disponible, y un perfil detallado de una de nuestras instituciones, presentando al Grupo de Astrof´ısica de la Universidad de La Serena. Esperamos sus contribuciones para la pr´oxima edici´on. Pueden mandar noticias, anuncios de reuniones pertinentes, science highlights, etc. Por favor, enviar toda la corespondencia sobre el Newsletter (preferentemente en formato latex - vea la pagina web de SOCHIAS) a Doug Geisler: [email protected]. Pueden mandarmelo en cualquier momento. Doug Geisler Universidad de Concepci´on 1 CONTENTS INFORMES Y ANUNCIOS DE REUNIONES CIENTIFICAS . 2 SCIENCE HIGHLIGHT . 3 VARIOS . 5 PUESTOS DE TRABAJO . 8 CONOCIENDONOS UNOS A OTROS . 9 . INFORMES Y ANUNCIOS DE REUNIONES CIENTIFICAS XI REUNION´ REGIONAL LATINOAMERICANA DE ASTRONOMIA M´onica Rubio Universidad de Chile COMUNICADO DE PRENSA: Chile, capital de la astronom´ıa mundial: La presidenta de la Sociedad Chilena de Astronom´ıa (SOCHIAS), Doctora M´onica Rubio, anunci´o que Chile ser´a sede de la XI Reuni´on Regional Latinoamericana de Astronom´ıa.
    [Show full text]