Univalve.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MI Amplification
MI Amplification Owner’s Manual 1 1. Welcome ....................................................................................................................................... 4 2. Precautions................................................................................................................................... 5 3. Amp Overview .............................................................................................................................. 6 3.1. Preamp.............................................................................................................................................. 6 3.2. Power Amp ....................................................................................................................................... 6 3.3. FX Loops .......................................................................................................................................... 7 3.4. Operating Modes ............................................................................................................................. 7 4. Getting Started ............................................................................................................................. 8 5. The Channels ............................................................................................................................... 9 5.1. Introduction ..................................................................................................................................... 9 5.2. Channel 1 ......................................................................................................................................... -
The 88-50—A Low-Distortion 50-Watt Amplifier
Fig. 1. External view of amplifier and preamplifier described by the author. This installment covers only the 50-watt power am p lifie r. The 88-50—a Low-Distortion 50-Watt Amplifier With harmonic distortion of less than 0.5 per cent throughout most of the audio spectrum, this 50-watt amplifier is comparatively simple in construction and requires only ordinary care in wiring. W. I. HEATH" and C. R. WOODVILLE* or audio amplifiers of medium from a pair of KTSS’s is slightly over the biggest gremlins of high-fi apparatus power, the KT66 output tube be 50 watts with a supply voltage of 500 a rumble filler using an attractively F came well known with the Williamson volts. This article describes the design simple circuit is incorporated in the pre amplifier, and its reputation for reliabil and construction of such an amplifier; amplifier. ity has made it much sought after in a second article will give similar details “off-the-shelf” high-fidelity amplifiers, as of a matching preamplifier. They are The Power Amplifier well as in home-built kits. shown together in Fig. 1. From the same stable there now fol The complete amplifier, the “88-50,” The circuit of the power amplifier is lows a new tube, the KTS8, a pentode has been designed to give a high per shown in Fig. 2. A pair of KTSS’s is with a higher platc-plus-screeu dissipa formance and a complete range of input connected in an ultralinear output stage. tion of 40 watts, and a higher mutual and control facilities without compli- They are driven by a push-pull double lows' a new tube," tne' JVi'so, a pentode has been designed to give a high per knwdri TU7'fknr:'ox -j.ixoo‘A is with a higher plate-plus-scrceu dissipa formance and a complete range of input connected in an ultralinear output stage. -
Mixed Classes Amplifiers
<< Prev TUBE CAD JOURNAL Next >> Mixed-Class & Mixed-Topology Amplifiers If only we could save our cake and eat it at the same time. The aim of a mixed class amplifier is to provide the high quality sound of Class-A Class-B Class-A operation with the greater efficiency and power output of Class-B operation. An additional aim might be to further the listener’s ability to tune the amplifier’s sound by means of a single potentiometer...but let’s not get to far ahead of ourselves. Just as push-pull operation doubled the single- At first, all new amplifier topologies are hard ended solo output tube, mixed class operation to understand. Imagine when all amplifiers were doubles push-pull’s double output tubes; thus at single-ended how difficult it must have been to least four output tubes are needed. One pair runs explain push-pull operation. What is “phase” in Class-A push-pull and the second pair runs in and why does it need to be split? If the output Class-AB or Class-B (or even Class-C) push- transformer isn’t partially magnetized and pull. Thus, the first pair are always conducting, doesn't have an air gap, how can it work? These while the second pair can be completely turned and other questions would require careful off (or run at a much lower current) at idle. answering, as push-pull operation also brought As the signal level increases, the second pair the possibility and the complication of Class-AB is activated, unburdening the first pair and and Class-B operation of the output tubes, which greatly increasing the output power. -
Bias-Easy 1200™ Bias Tester Instructions
Bias-Easy 1200™ Bias Tester Instructions 1. Turn off your amp, and allow to cool down. The Bias-Easy 1200™ is primarily for amplifiers using four 8-pin power tubes with a bias adjustment potentiometer available inside or on the chassis underside or back panel of the amp. 2. Remove one of the power tubes (6L6, EL34, 5881, 6550, 6V6, KT66, KT77, etc) 3. Insert a Bias-Easy™ probe into the power tube socket, making sure to line up the key on the probe post with the key in the center hole of the socket. Repeat for the second, third and fourth power tubes with each of the remaining probes. If your amp only has two power tubes, we suggest using the A and B probes. The C and D probes may be unplugged from the Bias-Easy™ in that case. 4. Insert each tube you removed into each socket of the Bias-Easy™. Make sure the key on the tube base is properly lined up with the key on the center hole of the socket. All power tube(s) must be in place in their sockets during testing. 5. Make certain that a speaker is connected to the amp. If this is an amp head, connect a cable between the speaker jack and the speaker cabinet. 6. Make sure all bias probes to be used in the testing are connected to the jacks at the top of the Bias-Easy™. Connect the power supply cord to the jack on the bottom of the Bias-Easy™, and connect the USB connector on the cord to the power supply. -
Optomized Electron Stream Web Pages
Web: http://www.pearl-hifi.com 86008, 2106 33 Ave. SW, Calgary, AB; CAN T2T 1Z6 E-mail: [email protected] Ph: +.1.403.244.4434 Fx: +.1.403.244.7134 Precision Electro-Acoustic Research Laboratory ❦ Hand-Builders of Fine Music-Reproduction Equipment Please note that the links in the PEARL logotype above are “live” and can be used to direct your web browser to our site or to open an e-mail message window addressed to ourselves. To view our item listings on eBay, click here. To see the feedback we have left for our customers, click here. This document has been prepared as a public service . Any and all trademarks and logotypes used herein are the property of their owners. It is our intent to provide this document in accordance with the stipulations with respect to “fair use” as delineated in Copyrights - Chapter 1: Subject Matter and Scope of Copyright; Sec. 107. Limitations on exclusive rights: Fair Use. Public access to copy of this document is provided on the website of Cornell Law School ( http://www4.law.cornell.edu/uscode/17/107.html ) and is here reproduced below:: Sec. 107. - Limitations on exclusive rights: Fair Use Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, includ- ing such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for class- room use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include: 1 - the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; 2 - the nature of the copyrighted work; 3 - the amount and substantiality of the portion used in relation to the copy righted work as a whole; and 4 - the effect of the use upon the potential market for or value of the copy- righted work. -
GOLD LION KT88 Made in England
GOLD LION KT88 Made in England Draft of new spec sheet 4/30/2002 BEAM TETRODE 6-3V INDIRECTLY HEATED The KT88 has an absolute maximum anode dissipation rating of 42W and is designed for use in the output stage of an a.f. amplifier. Two valves in Class AB1 give a continuous output of up to 100W. The KT88 is also suitable for use as a series valve in a stabilized power supply. The KT88 is a commercial version of the CV5220 and is similar to the 6550. BASE CONNECTIONS AND VALVE DIMENSIONS Base: Metal shell wafer octal Bulb: Tubular Max. Overall length: 125 mm Max. Seated length: 110 mm Max.Diameter: 52 mm HEATER Vh 6.3 V Ih 1.6 (approx) A MAXIMUM RATINGS Absolute Design Maximum Units Va 800 800 V Vg2 600 600 V Va, g 2 600 600 V Vg 1 200 200 V Pa 42 35 W Pg2 8 6 W Pa+g2 46 40 W I k 230 230 ma Vh-k 250 200 V Tbulb 250 250 degrees C Rg1-k (cathode bias) Pa|g2 < 135W 470 k ohm Pa|g2 > 35W 270 k ohm Rg1-k (fixed bias) Pa|g2 < 135W 220 k ohm Pa|g2 > 35W 100 k ohm CAPACITANCES (Measured on a cold unscreened valve) Triode Connection Cg1-a.g.2: 7.9pF Cg1-all less a.g2: 9.3pF Ca.g2 -all less g1 : 17pF Tetrode Connection Cg1-a: 1.2pF Cal -all less a: 16pF Ca -all less g1 : 12pF CHARACTERISTICS Tetrode Connected Triode Connected Va 250 V Va,g2 250 V Vg2 250 V Ia+ g2 143 mA Ia 140 mA -Vg1 15 approx V Ig2 3 (approx) mA gm 12 mA/V Vg1 15 (approx) V ra 670 ohms gm 11.5 mA/V µ 8 -- ra 12 ohms µg1-g2 8 -- Page 2 of 7 TYPICAL OPERATION Push-Pull. -
The Williamson Amplifier of 1947, by P.R. Stinson
1 THE WILLIAMSON AMPLIFIER OF 1947. An account of D.T.N. Williamson's quality audio amplifier design as published in 1947: Background, development, and fortunes. by P. R. Stinson. Author’s revised edition - September 2020. 2 Advertisement Australasian Radio World March 1948 Swales & Swann were prominent Melbourne makers of P.A. & audio equipment. 1951. Advertisement from the W.W. ‘Williamson Amplifier’ booklet.Vortexion Ltd were pre-eminent U.K. makers of very high quality audio compoments. 3 THE WILLIAMSON AMPLIFIER OF 1947. An account of D.T.N. Williamson's quality audio amplifier design as published in 1947: Background, development, and fortunes. by P. R. Stinson. ************************************************************** 1. INTRODUCTION. 2. AMPLIFIER TECHNOLOGY. 1908-1939. 3. D.T.N. WILLIAMSON. 4. THE QUALITY AMPLIFIER. 1944-5. 5. THE POSTWAR AUDIO SCENE. 1945-7. 6. EARLY REACTION TO THE QUALITY AMPLIFIER. 1947-8. 7. THE PROGRESS OF THE WILLIAMSON. 1948-51. 8. THE WILLIAMSON IN AMERICA. 1948-51. 9. THE ULTRALINEAR ERA. 1951. 10. CONCLUSIONS. Postscripts & Appendices. ************************************************************* Author's Preface. I recognise that this paper is a very selective ramble through the history of audio, and an incomplete account of the contribution of D.T.N. Williamson, but I discovered that trying to describe the ‘Williamson’ amplifier out of context was quite difficult, and I suspect, somewhat less interesting than the story which resulted. The quest for high fidelity sound reproduction is a good story and perhaps this paper will encourage more interest in the subject. I hope it will also encourage the rescue and restoration of the surviving Williamson amplifiers. P.R.S. -
EAT KT88 Vacuum Tube Review
From the Editor nthusiasts of all ages can appreciate the artistry of the band The Grateful Dead, and many find it tempting to adopt frag- ments of the Dead's song lyrics as mottos. My personal favorite is this one: "Every once in while you get shown the light / Ein the strangest of places if you look at it right." How true, especially in the worlds of audio and home theater. In this issue, AVguide Monthly reviewers have gone searching for insights in what may at first seem strange places-posing intriguing "what if?" questions like these: • What if you used an Apple iPod backed by a small headphone amp and a killer pair of headphones as your high-end audio system?" • What if you bought "full-range speakers" in two parts-choosing nearly full-range speakers to handle everything from the mid-bass on up, and a highly specialized subwoofer to handle the lowest frequencies? • What if you discovered one of the best places to enjoy HD home theater was your desktop? • What if you could get "big" home-theater sound from downright tiny speakers? • What if you could transform the sound of your vacuum-tube amplifier, just by installing a better set of tubes? • What if you could get a big improvement in system sound quality through a not-so-big investment in better speaker cables? The point is to keep an open mind when experimenting with non-traditional components and system configurations. Experimentation, after all, is the road that leads to those unexpected moments where you "get shown the light" and discover new products and approaches that really work, and can really make a difference in how your system performs. -
Easy Wire Secondary 1608A-1650A Series Push-Pull - HI-FI
9/6/2021 Tube Output (10 - 280 Watts) Easy Wire Secondary (1608A-1650A Series) - Hammond Mfg. Quality Products. Service Excellence. Tube Output (10 - 280 Watts) Easy Wire Secondary 1608A-1650A Series Push-Pull - HI-FI Features NEW & improved version of our 1608-1650 Series multiple secondary output transformers (re-designed secondaries for easy hook-up of secondary loads). Designed for push-pull tube output circuits. Units are designed to provide ample "headroom" at bass frequencies (note the weight of each transformer). All models have a secondary tapped for 4, 8 or 16 ohm outputs. Enclosed (shielded), 4 slot, above chassis Type "X" mounting. Manufactured with plastic coil forms for coil support and insulation. Frequency response 30 Hz. to 30 Khz. at full rated power (+/- 1 db max. - ref. 1 Khz) minimum. Insulated flexible leads 8" min. All units (except the 1650G) include 40% screen taps for Ultra-Linear operation (if desired). Typical applications - Push-Pull: triode, Ultra-Linear pentode, pentode and tetrode connected audio output. The 1650G does NOT have primary screen taps and will not support "Ultra-Linear" applications. Gallery Audio Primary Maximum Secondary Dimensions Watts Impedance DC Impedance E G Weight Part No. (RMS) (Ohms) Per Side (Ohms) A B C D +/- 1/16" Slot (lbs.) 1608A 10 8,000 ct 100 ma. 4-8-16 2.50 2.75 3.06 2.00 1.69 0.20 x 0.38 2.5 1609A 10 10,000 ct 100 ma. 4-8-16 2.50 2.75 3.06 2.00 1.69 0.20 x 0.38 2.5 1615A 15 5,000 ct 100 ma. -
Real-Time Simulation of a Guitar Power Amplifier Ivan Cohen, Thomas Hélie
Real-time simulation of a guitar power amplifier Ivan Cohen, Thomas Hélie To cite this version: Ivan Cohen, Thomas Hélie. Real-time simulation of a guitar power amplifier. 13th Int. Conference on Digital Audio Effects (DAFx-10), Sep 2010, Graz, Austria. hal-00631752 HAL Id: hal-00631752 https://hal.archives-ouvertes.fr/hal-00631752 Submitted on 13 Oct 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010 REAL-TIME SIMULATION OF A GUITAR POWER AMPLIFIER Ivan Cohen Thomas Helie Orosys / Two Notes, Ircam - CNRS - STMS UMR 9912, Ircam - CNRS - STMS UMR 9912, Analysis/Synthesis Team Montpellier, France Paris, France [email protected] [email protected] ABSTRACT Vp Vout Rg2 Rg1 Vg2 Vb1 T This paper deals with the real time simulation of a class A single Vin Vg1 ended guitar power amplifier. Power tubes and triode models are RL compared, based on Norman Koren’s work. Beam tetrodes and 6L6GC pentodes characteristics are discussed, and displayed as Norman Vk Vb2 Koren’s model parameters. A simple output transformer model is Rk Ck considered, with its parameters calculated from datasheets speci- fications. -
The Ultra-Linear Power Amplifier
The Ultra-Linear Power Amplifier An adventure between triode and pentode Rudolf Moers 1 Introduction In 95, David Hafler and Herbert Keroes introduced a pentode power amplifier, in which a tap of the primary transformer winding was connected to the screen grid of the power pentode [2]. They called this the Ultra-Linear power amplifier. This power amplifier shows the advantages of a triode, low anode AC internal resistance and low distortion, as well as the advantages of a pentode, large deliv - ered anode AC power and good efficiency. The narrative given by David Hafler and Herbert Keroes is good and substantiated in practice; this is very important. What I personally missed in their narration is a theoretical explanation of the operation of the ultra- linear circuit. I have several electronics books including the well known seven parts of the electron tube book range, written by scientists of the Philips Gloeilampenfabrieken Company at Eindhoven in the Netherlands. I also have all the electronics books of the company school written by A.J. Sietsma. In none of these books did I find a theoretical explanation of the operation of the ultra- linear circuit. I do not suggest that such an explanation does not exist ; I just have not been able to find it. Therefore I went on an adventure between triode and pentode myself. In this adventure, the - ory will be checked against practice. Figure 1. Homework exercise from the great book from 1959 by A.J. Sietsma [3]. posted with permission from Linear Audio www.linearaudio.net Rudolf Moers When doing research for my book [], I was pleasantly surprised to find the homework exercise of fig - ure 1 . -
The Williamson Amplifier
THE WILLIAMSON AMPLIFIER Experimental audio amplifiers were first made about 75 years ago. Since then, a vast amount of work and research has gone into improvements. A major advance came in 1947, when a new design that raised standards of performance considerably was described in the British magazine Wireless World. Although during the period prior to but without a lot of care, the beam tet- plifiers had similar performances and in 1950, there were luxury receivers using rode was hard to stabilise against para- operation would have produced indistin- elaborate audio systems, few qualified sitic oscillations. Fig.2 is an example of guishable results. The deterioration at as being genuinely 'High Fidelity'. As a well designed beam tetrode equivalent low frequencies in the triode amplifier professional equipment was neither af- of the amplifier in Fig.1, again from can be attributed to an inadequate out- fordable nor readily available to the pri- AWV. put transformer rather than the basic vate user, enthusiasts and small manu- The test curves show that the two am- design. facturers usually 'rolled their own', often using designs that appeared in Wireless Weekly and later Radio & RADIOT RON 13.5 WATT AMPLIFIER Hobbies, A.W.V's Radiotronics , Wire- 6J7-G 6V6-G 2A3 less World from the UK and numerous American magazines. Two philosophies Pentode and beam tetrode output valves with their advantages of high sensitivity and efficiency had become standard in receivers, but they had the serious shortcomings of high distortion and the inability to damp down bass RADIO TUNER resonances in loudspeakers, due to high 250 V.