Late Triassic Dinosaur Tracks Reinterpreted at Gettysburg National Military Park

Total Page:16

File Type:pdf, Size:1020Kb

Late Triassic Dinosaur Tracks Reinterpreted at Gettysburg National Military Park LATE TRIASSIC DINOSAUR TRACKS REINTERPRETED AT GETTYSBURG NATIONAL MILITARY PARK BY VINCENT L. SANTUCCI AND ADRIAN P. H UNT fossil tracks has advanced signifi- ONG BEFORE THE FOOTSTEPS OF UNION cantly over the past two decades and confederate soldiers traversed and we are now able to offer a Lsouth-central Pennsylvania, early di- different interpretation of the nosaurs left their footprints in ancient mud. Gettysburg tracks. The fossil Fossilized tracks preserve evidence that di- tracks represent the ichnogenus nosaurs existed in the Gettysburg area over Atreipus which was first de- 200 million years ago during a time period scribed by Olsen and Baird in called the Triassic. The tracks also illustrate 1986. The tracks can be further another example of a NPS unit, primarily identified to the ichnospecies A. focused on cultural resources, that must face mil-fordensis. the challenges of managing and interpret- Atreipus milfordensis repre- ing paleontological resources. sents, as of yet, an undescribed The dinosaur tracks are preserved in dinosaur that exhibits a thero- blocks of mudstone that were quarried from podlike pes (foot) in combina- Figure 1. Fossil manus and pes tracks of Atreipus an area outside park boundaries. However, tion with a short-clawed and milfordensis from atop a stone bridge at Gettysburg the quarried blocks were transported to the functionally tridactyl (three- National Military Park, Pennsylvania. park and used in the construction of stone toed) manus (hand). The track bridges during the 1930s. In 1937, over 50 pattern indicates that this dinosaur habitu- Additionally, as with the Gettysburg fos- additional tracks were discovered in blocks ally used all four limbs in locomotion. The sils, tracks can yield information about ani- from another nearby quarry within Adams manus track is incompatible with any mals that are not yet known from skeletal County. The park superintendent at that known theropod (carnivorous, upright di- material. The presence of early dinosaur time was especially interested in the fossils nosaurs like Tyranosaurs, that usually have tracks at Gettysburg provides park rangers and placed some on display within the park. small forelimbs). Thero-pods have large with the opportunity to interpret the local He encouraged interpretation of the tracks trenchant manus claws that are designed history well before the fateful days in July and unofficially coordinated distribution of for grasping, not walking. This pattern of 1863. P some specimens to the Smithsonian Insti- manus and pes tracks is unusual and a con- S tution, Carnegie Museum of Natural His- dition not exhibited in any other described tory in Pittsburgh, and the State Museum dinosaur tracks. LITERATURE CITED of Pennsylvania in Harrisburg. Today, the The tracks are recognized as dinosau- Olsen, P.E., and D. Baird. 1986. The ichnogenus Atreipus tracks are informally monitored by park rian because of the birdlike tridactyl pat- and its significance for Triassic biostratigraphy. Pages 61-87 in K. Padian, editor. The beginning of the age of rangers and are interpreted by rangers and tern of the pes track (fig.1). This pattern, dinosaurs. Cambridge University Press, New York. concessioners alike. represented in the foot skeleton, is a de- Santucci, V.L., and A.P. Hunt. 1993. Late Triassic vertebrate Altogether, tracks are known from two rived character for dinosaurs. Olsen and tracks discovered at Petrified Forest National Park. Park localities in Gettysburg Basin, the Trostle Baird (1986) suggest that Atreipus may Science 13(4):14. Quarry in Adams County, and a smaller represent the track of a very early ornithis- quarry near Goldsboro in York County. All chian (bird-hipped) dinosaur. Vince Santucci is a former NPS Park were discovered in the Late Triassic Late Triassic tracks are also known from Ranger and resource manager now Gettysburg Shale, a rock formation that also Dinosaur National Monument and Petri- teaching parks & recreation management, occurs within the park. These deposits were fied Forest National Park (Santucci & Hunt interpretive methods, law enforcement, and general resource management in the laid down in a gradually deepening trough 1993). The Late Triassic was the phase of Department of Parks and Recreation at of sediments that comprise the Newark Su- vertebrate history in which the dinosaurs Slippery Rock University, Slippery Rock, pergroup. first originated. Research investigations re- PA 16047. Adrian Hunt is a Vertebrate The park files at Gettysburg National garding fossil tracks provide information Paleontologist in the Department of Military Park identify these fossil tracks as not available solely through the study of Geology, University of Colorado at Denver, Grallator and Anchisauripus. However, these fossil bones and teeth. Tracks and track- Denver, CO 80217. identifications are based upon interpreta- ways can yield information about behav- tions recognized in the 1930s. Research into ior, locomotion, and paleoecology. S PRING 1995 • 9.
Recommended publications
  • New Heterodontosaurid Remains from the Cañadón Asfalto Formation: Cursoriality and the Functional Importance of the Pes in Small Heterodontosaurids
    Journal of Paleontology, 90(3), 2016, p. 555–577 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.24 New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids Marcos G. Becerra,1 Diego Pol,1 Oliver W.M. Rauhut,2 and Ignacio A. Cerda3 1CONICET- Museo Palaeontológico Egidio Feruglio, Fontana 140, Trelew, Chubut 9100, Argentina 〈[email protected]〉; 〈[email protected]〉 2SNSB, Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental Sciences, LMU München, Richard-Wagner-Str. 10, Munich 80333, Germany 〈[email protected]〉 3CONICET- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), Cipolletti, Río Negro, Argentina 〈[email protected]〉 Abstract.—New ornithischian remains reported here (MPEF-PV 3826) include two complete metatarsi with associated phalanges and caudal vertebrae, from the late Toarcian levels of the Cañadón Asfalto Formation. We conclude that these fossil remains represent a bipedal heterodontosaurid but lack diagnostic characters to identify them at the species level, although they probably represent remains of Manidens condorensis, known from the same locality. Histological features suggest a subadult ontogenetic stage for the individual. A cluster analysis based on pedal measurements identifies similarities of this specimen with heterodontosaurid taxa and the inclusion of the new material in a phylogenetic analysis with expanded character sampling on pedal remains confirms the described specimen as a heterodontosaurid. Finally, uncommon features of the digits (length proportions among nonungual phalanges of digit III, and claw features) are also quantitatively compared to several ornithischians, theropods, and birds, suggesting that this may represent a bipedal cursorial heterodontosaurid with gracile and grasping feet and long digits.
    [Show full text]
  • Dinosauropodes
    REPRINT FROM THE ORIGINAL BOOKLET by CHARLES N. STREVELL Deseret News Press, Salt Lake City, 1932 DINOSAUROPODES This article first appeared in the 1932 Christmas edition of the Deseret News. It has been made into a more convenient form for distribution to my friends. It is given with the hope that it may prove as interesting to you as my hobby has been to me. Your friend, DINOSAUROPODES CHARLES N. STREVELL Dinosaurs in Combat NE of the most interesting chapters of the earth’s past history is that of the time when there were laid down the Triassic strata of the famed Connecticut Valley, interesting in the profusion of its indicated life and fascinating in the baffling obscurity which shrouds most of its former denizens, the only records of whose existence are ‘Footprints on the sands of time.’ “It is not surprising therefore, that geologists should have turned to the collecting and deciphering of such records with zeal; nor is it to be marveled at that, after exhaustive researches of the late President Edward Hitchcock, workers should have been attracted to other more productive fields, leaving the foot prints aside as of little moment compared with the wonderful discoveries in the great unknown west.” The remarks quoted above are by Dr. Richard Swann Lull of Yale University in the introduction to his “Triassic Life of the Connecticut Valley” and cannot be improved on for the beginning of an article on footprints, whether found in Connecticut or Utah. The now famous tracks In the brown stone of the Connecticut Valley seem to have first been found by Pliny Moody in 1802 when he ploughed up a specimen on his farm, showing small imprints which later on were popularly called the tracks of Noah’s raven.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • Examples from Dinosaur and Elephant Limb Imaging Studies John R
    3 The Anatomical Foundation for Multidisciplinary Studies of Animal Limb Function: Examples from Dinosaur and Elephant Limb Imaging Studies John R. Hutchinson1, Charlotte Miller1, Guido Fritsch2, and Thomas Hildebrandt2 3.1 Introduction all we have to work with, at first. Yet that does not mean that behavior cannot be addressed by indi- What makes so many animals, living and extinct, rect scientifific means. so popular and distinct is anatomy; it is what leaps Here we use two intertwined case studies from out at a viewer fi rst whether they observe a muse- our research on animal limb biomechanics, one on um’s mounted Tyrannosaurus skeleton or an ele- extinct dinosaurs and another on extant elephants, phant placidly browsing on the savannah. Anatomy to illustrate how anatomical methods and evi- alone can make an animal fascinating – so many dence are used to solve basic questions. The dino- animals are so physically unlike human observers, saur study is used to show how biomechanical yet what do these anatomical differences mean for computer modeling can reveal how extinct animal the lives of animals? limbs functioned (with a substantial margin of The behavior of animals can be equally or more error that can be addressed explicitly in the stunning- how fast could a Tyrannosaurus move models). The elephant study is used to show (Coombs 1978; Alexander 1989; Paul 1998; Farlow how classical anatomical observation and three- et al. 2000; Hutchinson and Garcia 2002; Hutchin- dimensional (3D) imaging have powerful synergy son 2004a,b), or how does an elephant manage to for characterising extant animal morphology, momentarily support itself on one leg while without biomechanical modeling, but also as a first ‘running’ quickly (Gambaryan 1974; Alexander step toward such modeling.
    [Show full text]
  • Breeding Birds of the Texas Coast
    Roseate Spoonbill • L 32”• Uncom- Why Birds are Important of the mon, declining • Unmistakable pale Breeding Birds Texas Coast pink wading bird with a long bill end- • Bird abundance is an important indicator of the ing in flat “spoon”• Nests on islands health of coastal ecosystems in vegetation • Wades slowly through American White Pelican • L 62” Reddish Egret • L 30”• Threatened in water, sweeping touch-sensitive bill •Common, increasing • Large, white • Revenue generated by hunting, photography, and Texas, decreasing • Dark morph has slate- side to side in search of prey birdwatching helps support the coastal economy in bird with black flight feathers and gray body with reddish breast, neck, and Chuck Tague bright yellow bill and pouch • Nests Texas head; white morph completely white – both in groups on islands with sparse have pink bill with Black-bellied Whistling-Duck vegetation • Preys on small fish in black tip; shaggy- • L 21”• Lo- groups looking plumage cally common, increasing • Goose-like duck Threats to Island-Nesting Bay Birds Chuck Tague with long neck and pink legs, pinkish-red bill, Greg Lavaty • Nests in mixed- species colonies in low vegetation or on black belly, and white eye-ring • Nests in tree • Habitat loss from erosion and wetland degradation cavities • Occasionally nests in mesquite and Brown Pelican • L 51”• Endangered in ground • Uses quick, erratic movements to • Predators such as raccoons, feral hogs, and stir up prey Chuck Tague other woody vegetation on bay islands Texas, but common and increasing • Large
    [Show full text]
  • Predator and Competitor Management Plan for Monomoy National Wildlife Refuge
    Appendix J /USFWS Malcolm Grant 2011 Fencing exclosure to protect shorebirds from predators Predator and Competitor Management Plan for Monomoy National Wildlife Refuge Background and Introduction Background and Introduction Throughout North America, the presence of a single mammalian predator (e.g., coyote, skunk, and raccoon) or avian predator (e.g., great horned owl, black-crowned night-heron) at a nesting site can result in adult bird mortality, decrease or prevent reproductive success of nesting birds, or cause birds to abandon a nesting site entirely (Butchko and Small 1992, Kress and Hall 2004, Hall and Kress 2008, Nisbet and Welton 1984, USDA 2011). Depredation events and competition with other species for nesting space in one year can also limit the distribution and abundance of breeding birds in following years (USDA 2011, Nisbet 1975). Predator and competitor management on Monomoy refuge is essential to promoting and protecting rare and endangered beach nesting birds at this site, and has been incorporated into annual management plans for several decades. In 2000, the Service extended the Monomoy National Wildlife Refuge Nesting Season Operating Procedure, Monitoring Protocols, and Competitor/Predator Management Plan, 1998-2000, which was expiring, with the intent to revise and update the plan as part of the CCP process. This appendix fulfills that intent. As presented in chapter 3, all proposed alternatives include an active and adaptive predator and competitor management program, but our preferred alternative is most inclusive and will provide the greatest level of protection and benefit for all species of conservation concern. The option to discontinue the management program was considered but eliminated due to the affirmative responsibility the Service has to protect federally listed threatened and endangered species and migratory birds.
    [Show full text]
  • The First Possible Choristoderan Trackway from the Lower
    www.nature.com/scientificreports OPEN The frst possible choristoderan trackway from the Lower Cretaceous Daegu Formation of South Korea and its implications on choristoderan locomotion Yuong‑Nam Lee1*, Dal‑Yong Kong2 & Seung‑Ho Jung2 Here we report a new quadrupedal trackway found in the Lower Cretaceous Daegu Formation (Albian) in the vicinity of Ulsan Metropolitan City, South Korea, in 2018. A total of nine manus‑pes imprints show a strong heteropodous quadrupedal trackway (length ratio is 1:3.36). Both manus and pes tracks are pentadactyl with claw marks. The manus prints rotate distinctly outward while the pes prints are nearly parallel to the direction of travel. The functional axis in manus and pes imprints suggests that the trackmaker moved along the medial side during the stroke progressions (entaxonic), indicating weight support on the inner side of the limbs. There is an indication of webbing between the pedal digits. These new tracks are assigned to Novapes ulsanensis, n. ichnogen., n. ichnosp., which are well‑matched not only with foot skeletons and body size of Monjurosuchus but also the fossil record of choristoderes in East Asia, thereby N. ulsanensis could be made by a monjurosuchid‑like choristoderan and represent the frst possible choristoderan trackway from Asia. N. ulsanensis also suggests that semi‑aquatic choristoderans were capable of walking semi‑erect when moving on the ground with a similar locomotion pattern to that of crocodilians on land. South Korea has become globally famous for various tetrapod footprints from Cretaceous strata1, among which some clades such as frogs2, birds3 and mammals4 have been proved for their existences only with ichnological evidence.
    [Show full text]
  • Dwergstern3.Pdf
    99 PRIMARY MOULT, BODY MASS AND MOULT MIGRATION OF LITTLE TERN STERNAALBIFRONS IN NE ITALY GIUSEPPE CHERUBINI, LORENZO SERRA & NICOLA BACCETTI Cherubini G., L. Serra & N. Baccetti 1996. Primary moult, body mass and moult migration of Little Tern Sterna albifrons in NE Italy. Ardea 84: 99­ 114. Large post-breeding gatherings of Little Terns Sterna albifrons are regu­ larly observed in the Lagoon of Venice, Italy. Here, during five consecutive \ 1/ trapping seasons, 2956 birds were examined and ringed. Their breeding area, as indicated by 163 direct recoveries (mainly juveniles, ringed as chicks), spans over a broad sector of the Adriatic coasts, with colonies lo­ cated up to 133 km far. During their stay at the study area, adults undergo an almost complete moult. Two partial primary moult cycles can be ob­ \ served, the first of them being suspended when 2-4 outermost long primar­ ies have not yet been shed. Pre-migratory body mass build-up, enough for a ~/ flight longer than 1000 km, takes place during the very last days before de­ parture to the winter quarters, in most cases when the moult has reached a I suspended stage. Active primary moult and body mass increase do overlap in late moulting birds (after 27 August), indicating that the two processes are compatible, in case of time shortage. Post-breeding movements to the Lagoon of Venice seem to fit most requisites of moult migration. Key words: Sterna albifrons - Italy - biometrics - moult migration - ringing - fattening Istituto Nazionale per la Fauna Selvatica, via Ca' Fornacetta 9,1-40064 Oz­ zano Emilia BO, Italy.
    [Show full text]
  • A Case of a Tooth-Traced Tyrannosaurid Bone in the Lance Formation (Maastrichtian), Wyoming
    PALAIOS, 2018, v. 33, 164–173 Research Article DOI: http://dx.doi.org/10.2110/palo.2017.076 TYRANNOSAUR CANNIBALISM: A CASE OF A TOOTH-TRACED TYRANNOSAURID BONE IN THE LANCE FORMATION (MAASTRICHTIAN), WYOMING MATTHEW A. MCLAIN,1 DAVID NELSEN,2 KEITH SNYDER,2 CHRISTOPHER T. GRIFFIN,3 BETHANIA SIVIERO,4 LEONARD R. BRAND,4 5 AND ARTHUR V. CHADWICK 1Department of Biological and Physical Sciences, The Master’s University, Santa Clarita, California 2Department of Biology, Southern Adventist University, Chattanooga, Tennessee, USA 3Department of Geosciences, Virginia Tech, Blacksburg, Virginia, USA 4Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, California, USA 5Department of Biological Sciences, Southwestern Adventist University, Keene, Texas, USA email: [email protected] ABSTRACT: A recently discovered tyrannosaurid metatarsal IV (SWAU HRS13997) from the uppermost Cretaceous (Maastrichtian) Lance Formation is heavily marked with several long grooves on its cortical surface, concentrated on the bone’s distal end. At least 10 separate grooves of varying width are present, which we interpret to be scores made by theropod teeth. In addition, the tooth ichnospecies Knethichnus parallelum is present at the end of the distal-most groove. Knethichnus parallelum is caused by denticles of a serrated tooth dragging along the surface of the bone. Through comparing the groove widths in the Knethichnus parallelum to denticle widths on Lance Formation theropod teeth, we conclude that the bite was from a Tyrannosaurus rex. The shape, location, and orientation of the scores suggest that they are feeding traces. The osteohistology of SWAU HRS13997 suggests that it came from a young animal, based on evidence that it was still rapidly growing at time of death.
    [Show full text]
  • Roseate Tern Sterna Dougallii
    COSEWIC Assessment and Update Status Report on the Roseate Tern Sterna dougallii in Canada Roseate Tern. Diane Pierce © 1995 ENDANGERED 2009 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2009. COSEWIC assessment and update status report on the Roseate Tern Sterna dougallii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 48 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous reports: COSEWIC. 1999. COSEWIC assessment and update status report on the Roseate Tern Sterna dougallii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 28 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Whittam, R.M. 1999. Update COSEWIC status report on the Roseate Tern Sterna dougallii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-28 pp. Kirkham, I.R. and D.N. Nettleship. 1986. COSEWIC status report on the Roseate Tern Sterna dougallii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 49 pp. Production note: COSEWIC would like to acknowledge Becky Whittam for writing the status report on the Roseate Tern Sterna dougallii in Canada, prepared under contract with Environment Canada, overseen and edited by Richard Cannings and Jon McCracken, Co-chairs, COSEWIC Birds Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Sterne de Dougall (Sterna dougallii) au Canada – Mise à jour.
    [Show full text]
  • Common Tern Sterna Hirundo
    Common Tern Sterna hirundo Dick Young CURRENT STATUS: In Pennsylvania, the common tern is endangered and protected under the Game and Wildlife Code. In the northeastern United States, the U.S. Fish and Wildlife Service lists the common tern as a migratory bird of conservation concern in the lower Great Lakes region. Nationally, they are not listed as an endangered/threatened species. All migratory birds are protected under the federal Migratory Bird Treaty Act of 1918. POPULATION TREND: Common terns (Sterna hirundo) have not nested successfully in Pennsyl- vania for many years; however the potential for nesting still exists. The only location with suitable nest- ing habitat is their historic nest site at Presque Isle State Park in Erie County. They once nested in abun- dance on Gull Point at the east end of the park, where more than 100 pairs were recorded in the early 1930s. Frequent disturbances by recreational beach-goers led to abandonment of the site. In 1985, the common tern was determined to be “extirpated,” or absent as a nesting species, in the Pennsylvania Bio- logical Survey’s Species of Special Concern in Pennsylvania. In 1999 the species was upgraded to “endangered” after a nesting pair was found in the newly protected Gull Point Natural Area at Presque Isle. The vulnerable eggs were destroyed before hatching, however. More recently, there were unsuc- cessful nesting attempts in 2012 and 2014. Despite these disappointments, common terns are fairly common to abundant migrants along Lake Erie, offering hope that breeding birds will stay to nest once again in Pennsylvania.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]