Octocorallia: Gorgoniidae) from Ecuador, with a Description of a New Species

Total Page:16

File Type:pdf, Size:1020Kb

Octocorallia: Gorgoniidae) from Ecuador, with a Description of a New Species SCIENTIA MARINA 80(3) September 2016, 000-000, Barcelona (Spain) ISSN-L: 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04392.14A New records of the genera Leptogorgia, Pacifigorgia and Eugorgia (Octocorallia: Gorgoniidae) from Ecuador, with a description of a new species María del Mar Soler-Hurtado 1,2, Annie Machordom 1, Jesús Muñoz 3,4, Pablo J. López-González 2 1 Dpto. Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain. E-mail: [email protected]; [email protected] 2 Biodiversidad y Ecología de Invertebrados Marinos, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain. E-mail: [email protected] 3 Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain. E-mail: [email protected] 4 Centro de Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador. Summary: New records of the genera Leptogorgia, Pacifigorgia and Eugorgia (Octocorallia: Gorgoniidae) on the coast of Ecuador are reported. These new records redefine the current known limit of distribution of these species on the eastern Pacific coast (from southern California to Chile). Some of these species are reported for the first time since their original description. The newly collected specimens allow for the measurement of the variability of several morphological characters, from colonial to sclerite levels. Additionally, Pacifigorgia machalilla n. sp. is described and compared with its closest rela- tives. Morphological differentiation among related species is supported by genetic divergence estimated from an extended barcode of MutS + Igr + COI. Keywords: Gorgoniidae; eastern Pacific; distribution; mtMutS; COI; barcode; Igr. Nuevos registros de los géneros Leptogorgia, Pacifigorgia y Eugorgia (Octocorallia: Gorgoniidae) en Ecuador, con la descripción de una especie nueva Resumen: Se han obtenido nuevos registros para los géneros Leptogorgia, Pacifigorgia y Eugorgia (Octocorallia: Gorgo- niidae) en la costa de Ecuador. Estos nuevos registros redefinen el límite actual conocido en la distribución de estas especies en la costa del Pacífico Oriental (desde el sur de California hasta Chile). Algunas de estas especies han sido registradas por primera vez desde su descripción original. Las nuevas muestras recogidas permiten medir la variabilidad de los caracteres morfológicos, desde el nivel de colonia hasta el de esclerito. Además, se describe la especie Pacifigorgia machalilla n. sp., y se compara con sus congéneres más relacionados. Las diferenciaciones morfológicas encontradas entre estas especies, están apoyadas por la divergencia genética estimada a partir del “código de barras” ampliado, formado por los genes MutS + Igr + COI. Palabras clave: Gorgoniidae; este del Pacífico; distribución; mtMutS; COI; “código de barras”; Igr. Citation/Como citar este artículo: Soler-Hurtado M.M., Machordom A., Muñoz J., López-González P.J. 2016. New re- cords of the genera Leptogorgia, Pacifigorgia and Eugorgia (Octocorallia: Gorgoniidae) from Ecuador, with a description of a new species. Sci. Mar. 80(3): 000-000. doi: http://dx.doi.org/10.3989/scimar.04392.14A LSID: urn:lsid:zoobank.org:pub:A6373513-5FFE-4D2E-B130-98C239C0EDF3 Editor: X. Turon. Received: December 18, 2015. Accepted: June 1, 2016. Published:September 25, 2016. Copyright: © 2016 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-by) Spain 3.0 License. INTRODUCTION gorgonian octocorals are one of the best-represented taxonomic groups in sublittoral marine ecosystems, The octocorals are found in marine habitats rang- are ecologically important and are the dominant mac- ing from intertidal to abyssal waters and are distributed rofaunal group on many tropical reefs (Sánchez et al. from the Arctic to the Antarctic (Bayer 1961). The 2003, Williams and Breedy 2004). The study of the 2 • M.M. Soler-Hurtado et al. eastern Pacific gorgonian octocorals, specifically in Ecuador, has not matched the intensity and number of publications dedicated to Caribbean species (see Bayer 1981). Despite important contributions by authors such as Breedy and Guzmán (2002, 2007), Williams and Breedy (2004) and Breedy et al. (2009) in the east- ern Pacific, the knowledge on the gorgonian fauna of Ecuador is far from complete (but see Bielschowsky 1929 and Soler-Hurtado and López-González 2012). Four gorgoniid genera (Gorgoniidae) were previously reported in the eastern Pacific, Phycogorgia Milne-Ed- wards and Haime, 1850, Leptogorgia Milne-Edwards and Haime, 1857, Eugorgia Verrill, 1868 and Paci- figorgia Bayer, 1951. The genus Leptogorgia, with about 60 valid species (27 species in the eastern Pa- cific) is one of the most frequent genera in the shallow Fig. 1. – Station map in Ecuadorian waters where gorgonians octoc- water communities of the eastern Pacific (Breedy and orals were sampled from February 2010 to June 2014. Guzmán 2007), with a wide distribution from southern California to Chile. This genus is also present in the took colour photographs of the living specimens in Caribbean, western and eastern South African coasts, their environment; specimens were also photographed the eastern Atlantic and the Mediterranean Sea, and one outside the water, just after collection to ensure the species is known from the sub-Antarctic (Williams and accuracy of our colour descriptions. Subsamples were Lindo 1997). The genus Pacifigorgia is geographically fixed in either absolute ethanol for further molecular confined to the Pacific coast of tropical America, with analyses, or in 4% buffered formalin (after previous the exception of Pacifigorgia elegans (Milne-Edwards relaxation with menthol crystals for a few hours) for and Haime, 1857) from the tropical western Atlantic. the morphological study; the rest of the colonies were Pacifigorgia includes about 36 recognized species dis- allowed to air dry. Buffered formalin-fixed subsamples tributed throughout the eastern tropical Pacific region were subsequently transferred to 70% ethanol (Soler- (Breedy and Guzmán 2002, 2003, 2004, Williams and Hurtado and López-González 2012). Breedy 2004, Guzmán and Breedy 2011). The genus Eugorgia, which includes 16 species, is considered ex- External morphology and SEM study clusive to the eastern Pacific (from southern California to Peru) (Breedy and Guzmán 2013). Finally, the ge- Fragments from different parts of the colony were nus Phycogorgia, with only one species, Phycogorgia prepared for study by SEM according to standard fucata (Valenciennes, 1846), is distributed along the methods (Bayer and Stefani 1989, Alderslade 1998). west coast of Central and South America (Bayer 1953). Additionally, permanent mounts were made for light The aim of this report is to present new informa- microscopy observation. The colonies are described tion derived from material of the genera Eugorgia, and illustrated according to standard terminology Leptogorgia and Pacifigorgia collected in Ecuador. (Bayer et al. 1983, Breedy and Guzmán 2003, 2007). We expand the known distribution of some species in For either morphological and molecular compari- the eastern Pacific and describe new morphological sons, we studied types and additional materials depos- variability for several taxa. Finally, using morphologi- ited in the Museum of Comparative Zoology, Harvard cal and genetic data, we describe one new species of University (MCZ); Muséum National d’Histoire Na- Pacifigorgia, emphasizing the set of morphological turelle, Paris (MNHN); the Natural History Museum, characters considered to be of taxonomic importance London (NHM); the Yale Peabody Museum of Natural for this genus (Breedy and Guzmán 2002, 2003, 2004, History, New Haven (YPM); and the National Museum Williams and Breedy 2004, Guzmán and Breedy of Natural History, Smithsonian, Washington (MNH). 2011). We include the sequence analysis of the barcode Museum specimens were revised for morphological of mtMutS plus COI with a short, adjacent intergenic comparative purposes and, in some cases, for molecular region (Igr1) proposed by McFadden et al. (2011), analysis. These samples are listed in the text after the with its closest congeners and available sequences in newly collected material of each species. Additional GenBank. museum specimens of species revised but not found in Ecuador were the following: MATERIALS AND METHODS Eugorgia ampla (Verrill, 1864): NHM 69.4.15.53, Baja California (Mexico), no further data. YPM 399, Study area and sampling methodology Baja California, 11-15 m depth, 1865. MCZ 65167, Mexico, no depth given, date unknown. Eleven stations in Ecuadorian waters were sampled Eugorgia aurantica (Horn, 1860): YPM (4051), from February 2010 to June 2014 (Fig. 1). Gorgonians Baja California (Mexico), no depth given, 1867-1870. were collected by SCUBA diving in a depth range of NHM 40.8.22.8, Baja California (Mexico), no depth between 5 and 30 m. Substrata in these habitats mainly given, date unknown. MCZ 36185, Baja California include sand and rocky bottoms. During sampling, we (Mexico), no depth given, date unknown. SCI. MAR. 80(3), September 2016, 000-000. ISSN-L 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04392.14A Gorgoniidae from Ecuador • 3 Table 1. – Pacifigorgia species involved in the molecular comparisons carried out in this paper. Materials in bold are species sequenced for this study. Note that all GenBank sequences are considered here with the names as they appear in GenBank and their original publications (including numbers or letters).
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • A Mass Mortality of <I>Gorgonia Ventalina</I>
    BULLETIN OF MARINE SCIENCE, 50(3): 522-526. 1992 A MASS MORTALITY OF GORGONIA VENT ALINA (CNIDARIA: GORGONIIDAE) IN THE SANTA MARTA AREA, CARIBBEAN COAST OF COLOMBIA Jaime Garzon-Ferreira and Sven Zea The steep, rocky shores of the Santa Marta area (including the Tayrona Natural Park) in the Colombian Caribbean (11012'N and 74°14'W to 11°18'N and 73°54'W) comprise more than 90 km of irregular shoreline (Fig. 1). Hard substrata continue below the sea surface usually down to a maximum depth of 30 m, supporting rich communities of reef associated organisms (Garzon-Ferreira and Cano, 1990). Gorgonaceans are common and can dominate the sessile biocoenosis at some sites. The sea fan, Gorgonia ventalina Linnaeus (Cnidaria, Gorgoniidae), was known as one of the most conspicuous and abundant of the 39 living species of gorgonaceans in the area (Botero, 1987a, 1987b; pers. observ.). In September 1988, one of us (J.G.-F.) started to dive intensively in the area to map marine communities, and noted the absence of live individuals of sea fans. By the end of 1990, J.G.-F. had surveyed most of the coast to a depth of 20-30 m, and was able to recognize the dramatic mortality suffered by sea fans around Santa Marta. This note documents this mass mortality, compares it with other similar events and discusses its possible date of occurrence and causes. There are a few reports of octocoral mass mortalities in the tropical western Atlantic, all of which involved mainly sea fans and occurred along the southern Caribbean during the 1980's (Fig.
    [Show full text]
  • Gonian Eunicella Singularis (Esper, 1791) (Anthozoa Gorgoni - Idae) of Paloma Island, Algeria
    Biodiversity Journal , 2019, 10 (3): 185–194 https://doi.org/ 10.31396/Biodiv.Jour.2019.10.3.185.194 Morphometric data and allometric relationships of the gor - gonian Eunicella singularis (Esper, 1791) (Anthozoa Gorgoni - idae) of Paloma Island, Algeria Mouloud Benabdi 1, Lalla A. T. Cherif-Louazani 1, Alae Eddine Belmahi 1, Samir Grimes 2, Yassine G.E. Khames 3, Billel Boufekane 3, Salim Mouffok 1 & Mohamed Bouderbala 1 1Laboratoire Réseau de Surveillance Environnementale, Faculté SNV, Université Oran1, Algeria 2École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral Alger, Algeria 3Faculté des Sciences Biologiques, USTHB, Alger, Algeria *Corresponding author, email: [email protected] ABSTRACT The gorgonian Eunicella singularis (Esper, 1791) (Anthozoa Gorgoniidae) is abundant on rocky bottoms at Paloma Island (Algeria) in the south-western of the Mediterranean basin. In this study area, 150 gorgonian colonies of E. singularis were collected randomly using SCUBA diving and the following morphometric macro-features were measured (maximum height, maximum width, total branch length, rectangular surface area, height to width ratio and dry weight). Allometric growth was examined using the relationships between the dry weight and the five morphometric macro-features. The power equation of the simple allometry applied was y=ax b and the parameters of the linear regression a and b were estimated after the logarithmic transformation log (y)=log( a)+ b*log(x). The allometric relationships between the dry weight and the morphometric macro-features studied show that the growth of the gor - gonian E. singularis in the study area is correlated positively and significantly with the five macro-features and that both the macro-features total branch length and the maximum width are the most appropriate parameter applied to the gorgonian E.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Symbionts and Environmental Factors Related to Deep-Sea Coral Size and Health
    Symbionts and environmental factors related to deep-sea coral size and health Erin Malsbury, University of Georgia Mentor: Linda Kuhnz Summer 2018 Keywords: deep-sea coral, epibionts, symbionts, ecology, Sur Ridge, white polyps ABSTRACT We analyzed video footage from a remotely operated vehicle to estimate the size, environmental variation, and epibiont community of three types of deep-sea corals (class Anthozoa) at Sur Ridge off the coast of central California. For all three of the corals, Keratoisis, Isidella tentaculum, and Paragorgia arborea, species type was correlated with the number of epibionts on the coral. Paragorgia arborea had the highest average number of symbionts, followed by Keratoisis. Epibionts were identified to the lowest possible taxonomic level and categorized as predators or commensalists. Around twice as many Keratoisis were found with predators as Isidella tentaculum, while no predators were found on Paragorgia arborea. Corals were also measured from photos and divided into size classes for each type based on natural breaks. The northern sites of the mound supported larger Keratoisis and Isidella tentaculum than the southern portion, but there was no relationship between size and location for Paragorgia arborea. The northern sites of Sur Ridge were also the only place white polyps were found. These polyps were seen mostly on Keratoisis, but were occasionally found on the skeletons of Isidella tentaculum and even Lillipathes, an entirely separate subclass of corals from Keratoisis. Overall, although coral size appears to be impacted by 1 environmental variables and location for Keratoisis and Isidella tentaculum, the presence of symbionts did not appear to correlate with coral size for any of the coral types.
    [Show full text]
  • Cnidaria: Octocorallia: Gorgoniidae) from Mesophotic Reefs in the Eastern Pacific
    BULLETIN OF MARINE SCIENCE. 89(3):735–743. 2013 NEW TAXA PAPER http://dx.doi.org/10.5343/bms.2013.1014 http://zoobank.org/urn:lsid:zoobank.org:pub:E62C6099-A6E3-43E0-8F43-014ED71DA0D5 A NEW SPECIES OF THE GENUS EUGORGIA (CNIDARIA: OCTOCORALLIA: GORGONIIDAE) FROM MESOPHOTIC REEFS IN THE EASTERN PACIFIC Odalisca Breedy and Hector M Guzman ABSTRACT Our knowledge of octocoral diversity in the eastern Pacific has been focused on shallow reef habitats, while the fauna occurring in the mesophotic zone from 40 to 150 m is poorly known. A new species of the gorgoniid Eugorgia was recently obtained with a submersible from the Hannibal Bank, a coastal seamount 60 km off mainland Panama and 15 km from Coiba Island. The morphological characters were analyzed and illustrated by light and scanning electron microscopy. Eugorgia siedenburgae sp. nov. can be distinguished from the other species in the genus by its bushy, multiplanar, bicolored colony, and the sclerites colors, composition, and sizes. This new species increases the number in the genus to 13 and contributes to our understanding of the fragile mesophotic biodiversity. Octocoral diversity surveys in the eastern Pacific region have been focused mainly on shallow environments to 40 m depth (e.g., Williams and Breedy 2004, Breedy et al. 2009, Breedy and Guzman 2012). Consequently, the fauna inhabiting mesophotic habitats from 40 m to >150 m is poorly described and may be at risk due to intensive fishing (see Lesser et al. 2009, Clark et al. 2010). Here, we describe a new species of the gorgoniid Eugorgia recently collected from the Hannibal Bank seamount, Pacific Panama.
    [Show full text]
  • California State University, Northridge an Ecological
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE AN ECOLOGICAL AND PHYSIOLOGICAL ASSESSMENT OF TROPICAL CORAL REEF RESPONSES TO PAST AND PROJECTED DISTURBANCES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology By Elizabeth Ann Lenz May 2014 The thesis of Elizabeth A. Lenz is approved by: Robert C. Carpenter, Ph.D. Date: Eric D. Sanford, Ph.D. Date: Mark A. Steele, Ph.D. Date: Peter J. Edmunds, Ph.D., Chair Date: California State University, Northridge ii ACKNOWLEDGEMENTS I would like to thank Dr. Peter J. Edmunds first and foremost for being my fearless leader and advisor - for the incredible opportunities and invaluable mentorship he has provided to me as a graduate student in the Polyp Lab. I am ever so grateful for his guidance, endless caffeinated energy, constructive critiques, and dry British humor. I would also like to thank my loyal committee members Drs. Robert Carpenter and Mark Steele at CSUN for their availability and expert advise during this process. Their suggestions have greatly contributed to my thesis. I would not only like to acknowledge Dr. Eric Sanford from UC Davis for serving on my committee, but thank him for his incessant support throughout my career over the last 7 years. I will always admire his contagious enthusiasm for invertebrates, passion for scientific research, and unlimited knowledge about marine ecology. My research would not have been possible without the technical support and assistance from my colleagues in Moorea, French Polynesia and St. John, USVI. I am grateful to Dr. Lorenzo Bramanti, Dr. Steeve Comeau, Vince Moriarty, Nate Spindel, Emily Rivest, Christopher Wall, Darren Brown, Alexandre Yarid, Nicolas Evensen, Craig Didden, the VIERS staff, and undergraduate assistants: Kristin Privitera-Johnson and Amanda Arnold.
    [Show full text]
  • Spatial and Temporal Trends of Southeastern Florida's Octocoral Comunity
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 12-6-2019 Spatial and Temporal Trends of Southeastern Florida's Octocoral Comunity Alexandra Hiley Nova Southeastern University Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Alexandra Hiley. 2019. Spatial and Temporal Trends of Southeastern Florida's Octocoral Comunity. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (522) https://nsuworks.nova.edu/occ_stuetd/522. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Alexandra Hiley Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography December 2019 Approved: Thesis Committee Major Professor: David Gilliam, Ph.D. Committee Member: Rosanna Milligan, Ph.D. Committee Member: Charles Messing, Ph.D. This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/522 Spatial and temporal trends in Southeastern Florida’s octocoral community By Alexandra Hiley Submitted to the Faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University Halmos College of Natural Science and Oceanography Committee Members: David Gilliam, Ph.D. Charles Messing, Ph.D.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (V
    Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (v. 2020) by Thomas F. Hourigan1, Stephen D. Cairns2, John K. Reed3, and Steve W. Ross4 1. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD 2. National Museum of Natural History, Smithsonian Institution, Washington, DC 3. Cooperative Institute of Ocean Exploration, Research, and Technology, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 4. Center for Marine Science, University of North Carolina, Wilmington This annex to the U.S. Southeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems in the United States” provides a list of deep-sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in U.S. waters from Cape Hatteras to the Florida Keys (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is an update of the peer-reviewed 2017 list (Hourigan et al. 2017) and includes taxa recognized through 2019, including one newly described species. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Figure 1. U.S. Southeast region delimiting the geographic boundaries considered in this work. The region extends from Cape Hatteras to the Florida Keys and includes the Jacksonville Lithoherms (JL), Blake Plateau (BP), Oculina Coral Mounds (OC), Miami Terrace (MT), Pourtalès Terrace (PT), Florida Straits (FS), and Agassiz/Tortugas Valleys (AT).
    [Show full text]