Answers and Hints to the Exercises

Total Page:16

File Type:pdf, Size:1020Kb

Answers and Hints to the Exercises Answers and Hints to the Exercises Chapter 1 2 a) transitivity fails; b) the three equivalence classes are 3Z,1 + 3Z,2 + 3Z;c) reflexivity fails for 0; d) transitivity fails; e) symmetry fails. Chapter 2 2. Add (k + 1)3 to both sides of P(k), then show that k(k + 1) (k + 1)(k + 2) ( )2 +(k + q)3 =( )2. 2 2 5. Write + + xk 1 − 1 =(xk 1 − x)+(x − 1)=x(xk − 1)+(x − 1) and substitute for xk − 1usingP(k) 8. (k + 1)! =(k + 1)k! > (k + 1)2k > 2 · 2k = 2k+1. 9. First show that for k ≥ 4, (k + 1)4 = k4 + 4k3 + 6k2 +(4k + 1) ≤ 4k4. 10.Forc)usethat 1 = 1 < 1 . 2 (2n + 1) 8tn + 1 8tn 11. Use Exercise 5 with x = a. 13. 16n − 16 = 16(16n−1 − 1): can use Exercise 5 with x = 16. 14. Can use Exercise 5 with x = 8/3. 15. Can use Exercise 5 with x = 34. 569 570 Answers and Hints to the Exercises 16. Write 4k+2 = 4k(52 − 9). 17. Write 22k+3 = 22k+1 · (3 + 1). 20. First observe a1 = a (why?). Then for each m, prove P(n) : am+n = aman for n ≥ 1 by induction on n. 21. If N(n) is the number of moves needed to move n disks from one pole to another, show N(n + 1)=N(n)+1 + N(n). 22. For 4 disks, the answer is 80. 23. If r2 < n ≤ (r + 1)2,then(r + 1)2 < 2n? 24. Check the argument for n = 1. 26. See the proof of Theorem 6. 27. Adapt the proof of Proposition 4. 28. Divide the polygon into two polygons by an edge connecting two non-adjacent vertices. 29. Let P(n) be “For some k ≥ 1, f (k)(n)=1,” and prove that P(n) is true for all n ≥ 1. 30. See Section 3A, Example 1. + 5 < ( 5 )2 31. Show that 1 3 3 . 32. Try observing that c(n + 1)=1 + c(1)+c(2)+...+ c(n). 33. Let S be the set of numbers a > 0 for which there is a number b with 2a2 = b2. 35. Given a non-empty descending chain of natural numbers, let S be the set of numbers in the chain. 37. Set x = y = 1 in the Binomial Theorem. 38. Fix s and do it by induction on n ≥ s, using Corollary 13. 39. Write (x+y)2n =(x+y)n(x+y)n, expand (x+y)n and (x+y)2n by the Binomial Theorem and collect the coefficients of xnyn. Chapter 3 1. a) If a is a least element of S,thena ≤ s for all s in S;ifb is a least element of S, then b ≤ s for all s in S,sob ≤ a. But since b is in S, a ≤ b. b) ris the least element of S = {b − aq | q in N}.Sor is unique. = b r = b 2. q a , a a . 3. a = ds,b = dt implies r = b − aq = dt − qds = d(t − qs). 4. Use Exercise 3. 5. Let d = ay + bz.Divided into a:ifa = dq+t,thena =(ay + bz)q +t,sot is in J.Ift > 0, then d is not the least element of J. Then repeat, dividing d into b. 7. (11111000011)2 =(3,7,0,3)8 . 10. 7855 seconds = 2 hrs, 10 mins, 55 seconds. 11. This problem involves distance in base 1760 and time in base 60. 15. With n = 4, adding the five products of “digits” <104 can exceed 108.So10n with n = 3 is the largest possible base if you do both addition and multiplication on the calculator. Answers and Hints to the Exercises 571 19. a): 5; c): 1 . 20. 17, but see Exercise 33. 22. See Exercise 35. 23. Use (or redo) Exercise 3. 25. If d divides a and b,thend divides ar + bs, so.... (See also Corollary 6 of Section D.) 30. Let the m consecutive integers be a,a + 1,...,a +(m − 1).Ifa ≥ 0, then a = mq+r,andifr = 0, then m divides q.Ifr > 0thena+(m−r) ≤ a+(m−1) and is divisible by m.Ifa < 0 write −a = mq+s with 0 ≤ s < m.Ifs = 0thenm divides a. If s > 0, then a + s < b and a + s is divisible by m. (See also Section 6D.) 31. See Section 5B, Proposition 4. 32. Let m − n = d.Thenn,n + 1,...,n + d are d consecutive integers–apply Exercise 30. 35. e) 1. 37. Show that every common divisor of a and b is a divisor of r, hence a common divisor of a and r. Then show that every common divisor of a and r is a common divisor of a and b. 38. Try induction on the number of divisions in Euclid’s Algorithm. 40. One example is: 6 divides 2 · 3. 41. Generalize the examples in Exercise 40. 44. If ar + ms = 1andbt + mw = 1, then 1 =(ar + ms)(bt + mw)=aby + mz for y = rt and z = .... 46. Factor d from ra + sb and use Corollary 6. 48. Let d =(a,b).Thenmd divides ma and mb,somd ≤ (ma,mb). Also, let d = ar + bs,thenmd = mar + mbs,so(ma,mb) divides md. 49. If e =(ab,m),thene divides m and (m,b)=1, so (e,b)=1. Since e divides ab, Corollary 7 yields that e divides a. Thus e ≤ (a,m).Also,(a,m) ≤ (ab,m)=e. 51. Use Corollary 6. 52. Can assume r,s are integers with (r,s)=1. Try to show that s = 1. 57. b) x = 19 + 45k,y = −8 − 19k. 59. a) x = 13 + 31k,y = 7 + 17k with k ≥ 0 b) x = 18 + 31k,y = 10 + 17k with k ≥ 0. 61. d = 1, r = 731 + 1894k,s = −1440 − 3731k for all k in Z. 63. Find integer solutions of 5 f = 9c + 160. 65. Observe that 5 = 16 · 6 − 13 · 7. 69. Let b = aq1 + r1,a = r1q2 + r2 with r1 < a and q2 ≥ 1, and assume a < Fn.If r1 < Fn−1, then by induction, N(r,a) ≤ n − 4. If r1 ≥ Fn−1,then Fn−1 + Fn−2 = Fn > a ≥ r1 + r2 ≥ Fn−1 + r2, so r2 < Fn−2, hence by induction, N(r2,r1) ≤ n − 5. In either case, N(a,b) ≤ n − 3. 70. a) Do n = 0,1, then check that if the formula is true for n = k − 2andfor n = k − 1, then it is true for n = k. 572 Answers and Hints to the Exercises Chapter 4 2. For the induction step, let c = a1a2 · ...· an−1 and d = an and apply Lemma 3 to cd. 4. Since (n,q) ≤ (n,qr) in general, it suffices to show that if (n,q)=1then (n,qr)=1, or equivalently, if (n,qr) > 1then(n,q) > 1. If (n,qr) > 1, let p be a prime divisor of (n,qr).Thenp divides qr,sobyExercise2,p divides q.Sincep also divides n, p ≤ (n,q) so (n,q) = 1. √ 5. Show that n cannot factor into n = ab where both a and b are > n 6. Use Exercise 5 and note that 2021 < 452. 8. a) m in 3N is irreducible iff n = 3q with q not a multiple of 3. c) 30 · 3 =√6 · 15. √ √ + − = + − = − = a−c 9a)Ifa b 23 c d 23 with b d,then 23 d−b would be a ratio- nal number. But then the negative number −23 would be the square of a rational number, impossible.√ d) If a + b −23 divides 3, then there are integers c and d so that √ √ (a + b −23)(c + d −23)=3. This is true iff ac + 23bd = 3andad + bc = 0byparta),andthisinturnistrueiff √ √ (a − b −23)(c − d −23)=3. Multiplying the two equations together yields (a2 + 23b2)(c2 + 23d2)=9. The only solutions of this equation must have b = d = 0. 13. If 1001/5 = a/b,thenb5 · 22 · 52 = a5.If2e a and 2 f b,then5e + 2 = 5 f , impossible. 14 b) “integers” can be negative. 15. First show that for each prime p dividing c,ifpe c then per cr.Ifpg a,thenp does not divide b,sog = er.Soifa > 0, then a is an r-th power. Similarly for b. r r Finally, if a = −a0 where a0 > 0anda0 = d ,thena =(−d) because r is odd. 17. Be sure to check your answer! 19. Write a = 2r f ,b = 2sg where f ,g are odd and coprime. Then check the various possibilities for min{4r,5s} given that min{r,s} = 3. 21. Use Lemma 3 or Chapter 3, Corollary 6. 27. Write ar + bs = c and review the proof of Chapter 3, Corollary 8. 28. Let q be the product of all primes p dividing c such that (p,a)=1. Show that (a + bq,c)=1. 35. See Section 3E. 37. See Exercise 17. 39. Observe that if a divides bk then bk is a common multiple of a and b. 42. Look for examples where [a,b,c] < abc/(a,b,c). Answers and Hints to the Exercises 573 43. Note that if p1 = 4k1 + 1, p2 = 4k2 + 1, then p1 p2 = 4l + 1forsomel. 44. Every odd prime has the form p = 6k + 1orp = 6k − 1. 50. Show that every prime that divides n! + 1mustbe>n. Chapter 5 1. For a > 0 use Proposition 1. For a < 0 show there is a smallest k > 0sothat r = a + km ≥ 0, then show that 0 ≤ r < m.
Recommended publications
  • FACTORING COMPOSITES TESTING PRIMES Amin Witno
    WON Series in Discrete Mathematics and Modern Algebra Volume 3 FACTORING COMPOSITES TESTING PRIMES Amin Witno Preface These notes were used for the lectures in Math 472 (Computational Number Theory) at Philadelphia University, Jordan.1 The module was aborted in 2012, and since then this last edition has been preserved and updated only for minor corrections. Outline notes are more like a revision. No student is expected to fully benefit from these notes unless they have regularly attended the lectures. 1 The RSA Cryptosystem Sensitive messages, when transferred over the internet, need to be encrypted, i.e., changed into a secret code in such a way that only the intended receiver who has the secret key is able to read it. It is common that alphabetical characters are converted to their numerical ASCII equivalents before they are encrypted, hence the coded message will look like integer strings. The RSA algorithm is an encryption-decryption process which is widely employed today. In practice, the encryption key can be made public, and doing so will not risk the security of the system. This feature is a characteristic of the so-called public-key cryptosystem. Ali selects two distinct primes p and q which are very large, over a hundred digits each. He computes n = pq, ϕ = (p − 1)(q − 1), and determines a rather small number e which will serve as the encryption key, making sure that e has no common factor with ϕ. He then chooses another integer d < n satisfying de % ϕ = 1; This d is his decryption key. When all is ready, Ali gives to Beth the pair (n; e) and keeps the rest secret.
    [Show full text]
  • Rational Root Theorem and Synthetic Division Worksheet
    Rational Root Theorem And Synthetic Division Worksheet Executory Geoffry approximate milkily or stodged tattily when Chaddie is unpastoral. Abaxial and Armenoid Garth nitrogenizes manneristically and gunges his Kaliyuga tremendously and availingly. Ivory-towered Wallas sometimes window his chechakoes recollectedly and ceres so underarm! In this section, we are discuss the variety of tools for writing polynomial functions and solving polynomial equations. This section we can find a quick foray into math help, use cookies to find all wikis and dirty test these theorems. Using synthetic division and rational root theorems. First look into factoring polynomials. How is my work scored? By the Factor Theorem, these zeros have factors associated with them. Rational Root Theorem Displaying top worksheets found for faith concept. Then determine the list of a synthetic division because if the! 23 Obj Students will that long division and synthetic division to divide polynomials. Solution because we can solve the original deed as follows. Work examples Homework: Pg. The resulting polynomial is now reduced to a quadratic equation so we can stop with the synthetic division and solve for the remaining zeros by either factoring or the quadratic formula. C Use the Rational Root Theorem to cellar the nostril of an possible rational roots it. For understanding the theorem and their uses cookies off or zero positive and rational root theorem and synthetic division worksheet if the. Very subtle but accuracy and synthetic division because if a root theorems and update to do not. Zero Theorem in party list further possible fractions can. End Encrypted Data After Losing Private Key? Rational Root Theorem Worksheet Kalmia.
    [Show full text]
  • The Pseudoprimes to 25 • 109
    MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a.
    [Show full text]
  • A Clasification of Known Root Prime-Generating
    Special properties of the first absolute Fermat pseudoprime, the number 561 Marius Coman Bucuresti, Romania email: [email protected] Abstract. Though is the first Carmichael number, the number 561 doesn’t have the same fame as the third absolute Fermat pseudoprime, the Hardy-Ramanujan number, 1729. I try here to repair this injustice showing few special properties of the number 561. I will just list (not in the order that I value them, because there is not such an order, I value them all equally as a result of my more or less inspired work, though they may or not “open a path”) the interesting properties that I found regarding the number 561, in relation with other Carmichael numbers, other Fermat pseudoprimes to base 2, with primes or other integers. 1. The number 2*(3 + 1)*(11 + 1)*(17 + 1) + 1, where 3, 11 and 17 are the prime factors of the number 561, is equal to 1729. On the other side, the number 2*lcm((7 + 1),(13 + 1),(19 + 1)) + 1, where 7, 13 and 19 are the prime factors of the number 1729, is equal to 561. We have so a function on the prime factors of 561 from which we obtain 1729 and a function on the prime factors of 1729 from which we obtain 561. Note: The formula N = 2*(d1 + 1)*...*(dn + 1) + 1, where d1, d2, ...,dn are the prime divisors of a Carmichael number, leads to interesting results (see the sequence A216646 in OEIS); the formula M = 2*lcm((d1 + 1),...,(dn + 1)) + 1 also leads to interesting results (see the sequence A216404 in OEIS).
    [Show full text]
  • On Types of Elliptic Pseudoprimes
    journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N.
    [Show full text]
  • Finding Roots of Polynomials SHOW ALL WORK and JUSTIFY ALL ANSWERS
    Name: Math 1314 College Algebra Finding Roots of Polynomials SHOW ALL WORK AND JUSTIFY ALL ANSWERS. Find all zeroes of P(x) = 2x6 − 3x5 − 13x4 + 29x3 − 27x2 + 32x − 12. 1. Make sure all terms of P(x) are written in descending order. 2. Can we factor out a greatest common factor from each term? 3. Is 0 a zero? 0 is a zero if P(0) = 0: 4. Look for sign changes in P(x): P(x) = 2x6 − 3x5 − 13x4 + 29x3 − 27x2 + 32x − 12 There are sign changes in P(x). Summary of Descartes’ Rule of Signs: For potential positive real zeroes: Count sign changes in P(x). Take that number and continue to subtract 2 until you get 0 or 1: The original value and each result of the subtraction could be the number of positive real zeroes. Using Descartes’ Rule of Signs, we could have or or positive real zeroes. 5. Find P(−x) To find P(−x), change signs of all coefficients of xodd power P(−x) = There are sign changes in P(−x). Summary of Descartes’ Rule of Signs: For potential negative real zeroes: Count sign changes in P(−x). Take that number and continue to subtract 2 until you get 0 or 1: The original value and each result of the subtraction could be the number of negative real zeroes. Using Descartes’ Rule of Signs, we will have negative real zero. 6. Fill in the values for possible zeroes. I have started for you. Remember that every row must add up to the degree of the polynomial, which is 6 in this example.
    [Show full text]
  • The Complexity of Prime Number Tests
    Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng The Complexity of Prime Number Tests Diplomarbeit Ausgeführt am Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien unter der Anleitung von Univ.Prof. Dipl.-Ing. Dr.techn. Michael Drmota durch Theres Steiner, BSc Matrikelnummer: 01025110 Ort, Datum Unterschrift (Student) Unterschrift (Betreuer) The problem of distinguishing prime numbers from composite numbers and of re- solving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss, Disquisitiones Arithmeticae, 1801 Ron and Hermione have 2 children: Rose and Hugo. Vogon poetry is the 3rd worst in the universe. Acknowledgements First, I would like to thank my parents, Rudolf and Doris Steiner, without them I would not be where I am now. I would also like to thank my professor Michael Drmota for supporting me and helping me with my thesis. Throughout the writing process he was always there for me and his input was always helpful. I would also like to thank my colleagues who made this stage of my life truly amazing. Also, a special thanks to the people that gave me valuable input on my thesis, mathematically or grammatically. 4 5 is the 5th digit in π. Abstract Prime numbers have been a signicant focus of mathematics throughout the years.
    [Show full text]
  • POLYNOMIALS Gabriel D
    POLYNOMIALS Gabriel D. Carroll, 11/14/99 The theory of polynomials is an extremely broad and far-reaching area of study, having applications not only to algebra but also ranging from combinatorics to geometry to analysis. Consequently, this exposition can only give a small taste of a few facets of this theory. However, it is hoped that this will spur the reader’s interest in the subject. 1 Definitions and basic operations First, we’d better know what we’re talking about. A polynomial in the indeterminate x is a formal expression of the form n n n 1 i f(x) = cnx + cn 1x − + + c1x + x0 = cix − ··· X i=0 for some coefficients ci. Admittedly this definition is not quite all there in that it doesn’t say what the coefficients are. Generally, we take our coefficients in some field. A field is a system of objects with two operations (generally called “addition” and “multiplication”), both of which are commutative and associative, have identities, and are related by the distributive law; also, every element has an additive inverse, and everything except the additive identity has a multiplicative inverse. Examples of familiar fields are the rational numbers Q, the reals R, and the complex numbers C, though plenty of other examples exist, both finite and infinite. We let F [x] denote the set of all polynomials “over” (with coefficients in) the field F . Unless otherwise stated, don’t worry about what field we’re working over. n i A few more terms should be defined before we proceed. First, if f(x) = i=0 cix with cn = 0, we say n is the degree of the polynomial, written deg f.
    [Show full text]
  • Fermat Pseudoprimes
    1 TWO HUNDRED CONJECTURES AND ONE HUNDRED AND FIFTY OPEN PROBLEMS ON FERMAT PSEUDOPRIMES (COLLECTED PAPERS) Education Publishing 2013 Copyright 2013 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599732572 ISBN: 978-1-59973-257-2 1 INTRODUCTION Prime numbers have always fascinated mankind. For mathematicians, they are a kind of “black sheep” of the family of integers by their constant refusal to let themselves to be disciplined, ordered and understood. However, we have at hand a powerful tool, insufficiently investigated yet, which can help us in understanding them: Fermat pseudoprimes. It was a night of Easter, many years ago, when I rediscovered Fermat’s "little" theorem. Excited, I found the first few Fermat absolute pseudoprimes (561, 1105, 1729, 2465, 2821, 6601, 8911…) before I found out that these numbers are already known. Since then, the passion for study these numbers constantly accompanied me. Exceptions to the above mentioned theorem, Fermat pseudoprimes seem to be more malleable than prime numbers, more willing to let themselves to be ordered than them, and their depth study will shed light on many properties of the primes, because it seems natural to look for the rule studying it’s exceptions, as a virologist search for a cure for a virus studying the organisms that have immunity to the virus.
    [Show full text]
  • X3 + 9X + 6 Is Irreducible in Q[X]. Let Θ Be a Root of P(X)
    Ma5c HW 1, Spring 2016 3 Problem 1. Show that p(x) = x + 9x + 6 is irreducible in Q[x]. Let θ be a root of p(x). Find the inverse of 1 + θ in Q(θ). Proof. The polynomial p(x) = x3 + 9x + 6 is such that p = 3 divides each of the non-leading coefficients (0,9 and 6), but p2 does not divide 6 and p does not divide the leading coefficient, 1. It is thus irreducible by Eisenstein's criterion. Multiplying θ + 1 by an arbitrary element of Q(θ) and setting the product equal to 1 gives (1 + θ)(a + bθ + cθ2) = a + θ(a + b) + θ2(b + c) + cθ3 = 1 but θ3 = −9θ − 6, giving (1 + θ)(a + bθ + cθ2) = (a − 6c) + θ(a + b − 9c) + θ2(b + c) We solve a − 6c = 1, a + b − 9c = 0 and b + c = 0. 0 1 0 1 0 1 1 0 −6 a 1 B C B C B C B1 1 −9C BbC = B0C @ A @ A @ A 0 1 1 c 0 giving c = 1=4, b = −1=4 5 θ θ2 (1 + θ)−1 = − + : 2 4 4 3 Problem 2. Prove that x − nx + 2 2 Z[x] is irreducible for n 6= −1; 3; 5. Proof. If p were reducible, then it would have to factor into a linear a quadratic factor (or three linear factors). In either case, p would have a rational root α. By the rational root theorem, α would be an integer dividing 2, hence α 2 {±1; ±2g.
    [Show full text]
  • Grained Integers and Applications to Cryptography
    poses. These works may not bemission posted of elsewhere the without copyright the holder. explicit (Last written update per- 2017/11/29-18 :20.) . Grained integers and applications to cryptography Rheinischen Friedrich-Willhelms-Universität Bonn Mathematisch-Naturwissenschaftlichen Fakultät ing any of theseeach documents will copyright adhere holder, to and the in terms particular and use constraints them invoked only by for noncommercial pur- Erlangung des Doktorgrades (Dr. rer. nat.) . Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Daniel Loebenberger Bonn, Januar 2012 Dissertation vorgelegt von Nürnberg aus der der zur are maintained by the authors orthese by works other are copyright posted holders, here notwithstanding electronically. that It is understood that all persons copy- http://hss.ulb.uni-bonn.de/2012/2848/2848.htm Grained integers and applications to cryptography (2012). OEBENBERGER L ANIEL D Friedrich-Wilhelms-Universität Bonn. URL This document is provided as aand means to technical ensure work timely dissemination on of a scholarly non-commercial basis. Copyright and all rights therein Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Joachim von zur Gathen 2. Gutachter: Prof. Dr. Andreas Stein Tag der Promotion: 16.05.2012 Erscheinungsjahr: 2012 iii Οἱ πρῶτοι ἀριθμοὶ πλείους εἰσὶ παντὸς τοῦ προτένθος πλήθους πρώτων ἀριθμῶν.1 (Euclid) Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac ultissima totius arithmeticae pertinere [...] tam notum est, ut de hac re copiose loqui superfluum foret. [...] Praetereaque scientiae dignitas requirere videtur, ut omnia subsidia ad solutionem problematis tam elegantis ac celibris sedulo excolantur.2 (C.
    [Show full text]
  • Elementary Number Theory and Its Applications
    Elementary Number Theory andlts Applications KennethH. Rosen AT&T Informotion SystemsLaboratories (formerly part of Bell Laborotories) A YY ADDISON-WESLEY PUBLISHING COMPANY Read ing, Massachusetts Menlo Park, California London Amsterdam Don Mills, Ontario Sydney Cover: The iteration of the transformation n/2 if n T(n) : \ is even l Qn + l)/2 if n is odd is depicted.The Collatz conjectureasserts that with any starting point, the iteration of ?"eventuallyreaches the integer one. (SeeProblem 33 of Section l.2of the text.) Library of Congress Cataloging in Publication Data Rosen, Kenneth H. Elementary number theory and its applications. Bibliography: p. Includes index. l. Numbers, Theory of. I. Title. QA24l.R67 1984 512',.72 83-l1804 rsBN 0-201-06561-4 Reprinted with corrections, June | 986 Copyright O 1984 by Bell Telephone Laboratories and Kenneth H. Rosen. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,photocopying, recording, or otherwise,without prior written permission of the publisher. printed in the United States of America. Published simultaneously in Canada. DEFGHIJ_MA_8987 Preface Number theory has long been a favorite subject for studentsand teachersof mathematics. It is a classical subject and has a reputation for being the "purest" part of mathematics, yet recent developments in cryptology and computer science are based on elementary number theory. This book is the first text to integrate these important applications of elementary number theory with the traditional topics covered in an introductory number theory course. This book is suitable as a text in an undergraduatenumber theory courseat any level.
    [Show full text]