Production Practice

Total Page:16

File Type:pdf, Size:1020Kb

Production Practice LABORATORY MANUAL J E C GROUP OF COLLEGES PREFACE This laboratory is aimed at providing an introduction to the Know-how of common processes used in industries for manufacturing parts by removal of material in a controlled manner. Auxiliary methods for machining to desired accuracy and quality will also be covered. The emphasis throughout the laboratory course will be on understanding the basic features of the processes rather than details of constructions of machine, or common practices in manufacturing or acquiring skill in the operation of machines. Evidently, acquaintance with the machine is desirable and the laboratory sessions will provide adequate opportunity for this. - HEAD OF DEPARTMENT DEPARTMENT OF MECHANICAL ENGINEERING LABORATORY MANUAL J E C GROUP OF COLLEGES INDEX S. No. List of Experiments Page No. 1. To study of single point cutting tool geometry and to grind the tool asp er given 1-4 tool geometry. 2. T o study the milling machine, milling cutters, indexing head sand i n d e x i n g 5-14 methods and to prepare a gear on milling machine. 3. T o machine a hexagonal / octagonal nut using indexing head on milling 15-18 machine. 4. To cut BSW/Metric internal threads on lathe machine. 19-22 5. T o cut multi-start Square/Metric threads on lathe machine. 23-26 6. Boring using a boring bar in a centre lathe. 27-28 7. Study of capstan lathe and its tooling and prepare a tool layout & jobas per 29-34 given drawing. 8. Demonstration on milling machine for generation of plane surfaces anduse of 35-38 end milling cutters. 9. Grinding of milling cutters and drills. 39-42 10. Cylindrical grinding using grinding attachment in a centre lathe. 43-48 11. To determine the coefficient of permeability of a soil using constant head 49-54 method. 12. To study lathe machine construction and various parts including 55-64 attachments,lathe tools cutting speed, feed and depth of cut. DEPARTMENT OF MECHANICAL ENGINEERING LABORATORY MANUAL J E C GROUP OF COLLEGES Experiment No. 1 Object Study of single point cutting tool geometry and grind the tool as per given tool geometry. Apparatus Mild Steel Job Piece, Grinding machine etc. Theory Both material and geometry of the cutting tools play very important roles on their performances in achieving effectiveness, efficiency and overall economy of machining. Tool Surfaces and Elements The design components of the cutting tool are defined as follows: Rake face is the surface over which the chip, formed in the cutting process,slides. Flank face is the surface(s) over which the surface, produced on the workpiece, passes Cutting edge is a theoretical line of intersection of the rake and the flank surfaces Cutting wedge is the tool body enclosed between the rake and the flank faces Shank is the part of the tool by which it is held Cutting tools may be classified according to the number of major cutting edges (points) involved as follows: Single point: e.g., turning tools, shaping, planning and slotting tools and boring tools Double (two) point: e.g., drills Multipoint (more than two): e.g., milling cutters, broaching tools, hobs, gear shaping cutters etc. Fig. 1.1 DEPARTMENT OF MECHANICAL ENGINEERING 01 LABORATORY MANUAL J E C GROUP OF COLLEGES The terminology used to designate the surfaces, angles and radii of single-point tools is shown below. The tool shown in Figure (a) and (b) is a single-point cutting tool, but the same definitions apply to index able tools as well. Fig. 1.2 Figure.1.2 (A)Three views of a typical HSS (High Speed Steel tool) showing the various angles and their values with abbreviations. (b) Designations and symbols for the right-hand cutting tool with the tool signature Terminology Face The flat surface of a single-point tool into which the workpiece rotates during a turning operation. On a typical turning set-up, the tool face is positioned upwards. Feed The rate at which the cutting tool and the workpiece move in relation to each other. For turning, “feed” is the DEPARTMENT OF MECHANICAL ENGINEERING 02 LABORATORY MANUAL J E C GROUP OF COLLEGES rate that the single-point tool is passed along the outer surface of the rotating workpiece. Flank A flat surface of a single-point tool that is adjacent to the face of the tool. The side flank faces the direction that the tool is fed into the workpiece, and the end flank passes over the newly machined surface. Lead angle A common name for the side cutting edge angle. If a tool holder is built with dimensions that shift the angle of an insert, the lead angle takes this change into consideration. Nose radius The rounded tip on the cutting edge of a single-point tool. The greater the nose radius, the greater is the degree of roundness at the tip. A zero degree nose radius creates a sharp point. Rake angle (γ): Angle of inclination of rake surface from reference plane Clearance angle (α): Angle of inclination of clearance or flank surface from the finished surface . Positive rake – helps reduce cutting force and thus cutting power requirement. Negative rake – to increase edge-strength and life of the tool Zero rake – to simplify design and manufacture of the form tools. Clearance angle is essentially provided to avoid rubbing of the tool (flank) with the machined surface which causes loss of energy and damages of both the tool and the job surface. Hence, clearance angle is a must and must be positive (3 ~ 15 degree) depending upon tool-work materials and type of the machining operations like turning, drilling, boring etc.) Procedure 1. Job is fixed in hand for proper alignment. 2. Start the grinding machine and grind the job as per given specification. 3. A rough cut is used to grind the outer periphery. 4. Final grinding operation is completed in sequence. 5. The compound slide is set at the angle as per calculation and grinding operation is completed Precautions · Work piece should be firmly gripped in the hand. · Coolant is to be used. · Hand gloves and apron must be used while working. · Proper rpm should be selected before the operation Result Thus we successfully study the geometry of single point cutting tool and grind the single point cutting tool on the grinding tool according to the tool geometry. Viva- Voce 1. What is single point and multi point cutting tool? 2. Explain tool geometry? 3. What is tool face and tool rake? 4. What is negative and positive rake? DEPARTMENT OF MECHANICAL ENGINEERING 03 LABORATORY MANUAL J E C GROUP OF COLLEGES 5. What is grinding and drilling? DEPARTMENT OF MECHANICAL ENGINEERING 04 LABORATORY MANUAL J E C GROUP OF COLLEGES Experiment No. 2 Object Study the milling machine, milling cutters, indexing heads and indexing methods. Milling machine Introduction The milling machine removes metal with a revolving cutting tool called a milling cutter. With various attachments, milling machines can be used for boring, slotting, circular milling dividing, and drilling. This machine can also be used for cutting keyways, racks and gears and for fluting taps and reamers. Types of Milling Machines Milling machines are basically classified as being horizontal or vertical to indicate the axis of the milling machine spindle. Milling operation is broadly classified as peripheral milling and face milling. Peripheral Milling This operation is also called plain milling operation. In this operation axis of rotating tool is always kept parallel to the surface being machined. This operation is done by the cutting edges on outside periphery of the milling cutter. Different type of peripheral milling operations are possible as described below. Slab Milling In this milling operation the cutter width extends beyond the workpiece on both sides. Slotting It is also a type of milling operation, also called as slot milling operation. In this case width of the cutter is less than the width of workpiece. It is used to make slot in the workpiece. Thin slots can be made by using very thin milling cutters. The workpiece can be cut into two pieces by making a very thin slot throughout the depth of workpiece. Cutting the workpiece this way be slot milling is called saw milling. Side Milling The cutter is used for milling of sides of a workpiece. Straddle Milling It is just like side milling with difference that cutting (milling operation) takes place simultaneously on both the sides of workpiece. Face Milling In the operation of face milling, axis of the milling cutter remains perpendicular to the surface being milled. In this case cutting action is done by cutting edges of both sides (end and outside) periphery of the milling cutter. Depending upon the relative geometry of workpiece and milling cutter face milling is different types as described below. DEPARTMENT OF MECHANICAL ENGINEERING 05 LABORATORY MANUAL J E C GROUP OF COLLEGES Conventional Face Milling In this case diameter of milling cutter is greater than the width of workpiece. The milling cutter remains over hanging on both sides of workpiece. Partial Face Milling In this case the milling cutter overhangs on the workpiece on one side only. End Milling In case of end milling thin (low diameter) cutter are used as compared to workpiece width. It is used to make slot in the workpiece. Knee-type Milling Machines Knee-type milling machines are characterized by a vertical adjustable worktable resting on a saddle supported by a knee. The knee is a massive casting that rides vertically on the milling machine column and can be clamped rigidly to the column in a position where the milling head and the milling machine spindle are properly adjusted vertically for operation.
Recommended publications
  • Milling Machine Operations
    SUBCOURSE EDITION OD1644 8 MILLING MACHINE OPERATIONS US ARMY WARRANT OFFICER ADVANCED COURSE MOS/SKILL LEVEL: 441A MILLING MACHINE OPERATIONS SUBCOURSE NO. OD1644 EDITION 8 US Army Correspondence Course Program 6 Credit Hours NEW: 1988 GENERAL The purpose of this subcourse is to introduce the student to the setup, operations and adjustments of the milling machine, which includes a discussion of the types of cutters used to perform various types of milling operations. Six credit hours are awarded for successful completion of this subcourse. Lesson 1: MILLING MACHINE OPERATIONS TASK 1: Describe the setup, operation, and adjustment of the milling machine. TASK 2: Describe the types, nomenclature, and use of milling cutters. i MILLING MACHINE OPERATIONS - OD1644 TABLE OF CONTENTS Section Page TITLE................................................................. i TABLE OF CONTENTS..................................................... ii Lesson 1: MILLING MACHINE OPERATIONS............................... 1 Task 1: Describe the setup, operation, and adjustment of the milling machine............................ 1 Task 2: Describe the types, nomenclature, and use of milling cutters....................................... 55 Practical Exercise 1............................................. 70 Answers to Practical Exercise 1.................................. 72 REFERENCES............................................................ 74 ii MILLING MACHINE OPERATIONS - OD1644 When used in this publication "he," "him," "his," and "men" represent both
    [Show full text]
  • Manufacuting Technology
    ME 6402 -Manufacturing Technology - II IV Sem / II Year B.E. (Mechanical Engineering) Department of Mechanical Engineering R.M.K.ENGINEERINGCOLLEGE R.S.M. Nagar, Kavaraipettai – 601 206. UNIT I - THEORY OF METAL CUTTING INTRODUCTION: CUTTING TOOL: SINGLE POINT CUTTING TOOL: NOMENCLATURE SINGLE POINT TOOL: MECHANICS OF METAL CUTTING: TYPES OF CHIPS: COOLANT OR CUTTING FLUIDS OR EMULSIONS: FUNCTIONS OR USES OF COOLANTS OR CUTTING FLUIDS: TYPICAL PROPERTIES OF TOOL MATERIALS: ------------------------------X-------------------------------- UNIT-II - CENTRE LATHE AND SPECIAL PURPOSE LATHE INTRODUCTION: TYPES OF LATHE: SPEED LATHE: CENTRE LATHE OR ENGINE LATHE: BENCH LATHE: TOOL ROOM LATHE: CAPSTAN AND TURRET LATHE: SPECIAL PURPOSE LATHE: AUTOMATIC LATHE: CONSTRUCTION OF LATHE MACHINE: BED: HEAD STOCK: TAIL STOCK: CARRIAGE: THREAD CUTTING MECHANISM: ACCESSORIES AND ATTACHMENTS OF LATHE: SPECIFICATION OF LATHE: LATHE OPERATIONS: TAPERS AND TAPER TURNING: TAPER TURNING BY SWIVELLING THE COMPOUND REST: TAPER TURNING ATTACHMENT METHOD: TAPER TURNING WITH TAILSTOCK SET OVER METHOD: FORM TOOL METHOD: TAPER TURNING WITH DOUBLE HEADS: THREAD CUTTING: DRILLING ON A LATHE: CUTTING SPEED: FEED: ---------------------------X------------------------------ UNIT-III, OTHER MACHINE TOOLS DRILLING INTRODUCTION: CONSTRUCTION OF DRILLING MACHINE: TYPES OF DRILLING MACHINE: PORTABLE DRILLING MACHINE: SENSITIVE DRILLING MACHINE: UPRIGHT DRILLING MACHINE: RADIAL DRILLING MACHINE: GANG DRILLING MACHINE: MULTIPLE-SPINDLE DRILLING MACHINE: TYPES OF DRILLS: TWIST DRILL
    [Show full text]
  • Manufacturing Processes
    Module 7 Screw threads and Gear Manufacturing Methods Version 2 ME, IIT Kharagpur Lesson 31 Production of screw threads by Machining, Rolling and Grinding Version 2 ME, IIT Kharagpur Instructional objectives At the end of this lesson, the students will be able to; (i) Identify the general applications of various objects having screw threads (ii) Classify the different types of screw threads (iii) State the possible methods of producing screw threads and their characteristics. (iv) Visualise and describe various methods of producing screw threads by; (a) Machining (b) Rolling (c) Grinding (i) General Applications Of Screw Threads The general applications of various objects having screw threads are : • fastening : screws, nut-bolts and studs having screw threads are used for temporarily fixing one part on to another part • joining : e.g., co-axial joining of rods, tubes etc. by external and internal screw threads at their ends or separate adapters • clamping : strongly holding an object by a threaded rod, e.g., in c-clamps, vices, tailstock on lathe bed etc. • controlled linear movement : e.g., travel of slides (tailstock barrel, compound slide, cross slide etc.) and work tables in milling machine, shaping machine, cnc machine tools and so on. • transmission of motion and power : e.g., lead screws of machine tools • converting rotary motion to translation : rotation of the screw causing linear travel of the nut, which have wide use in machine tool kinematic systems • position control in instruments : e.g., screws enabling precision movement of the work table in microscopes etc. • precision measurement of length : e.g., the threaded spindle of micrometers and so on.
    [Show full text]
  • AUTOMATIC LATHES • These Are Machine Tools in Which Components Are Machined Automatically
    AUTOMATIC LATHES • These are machine tools in which components are machined automatically. • The working cycle is fully automatic that is repeated to produce duplicate parts with out participation of operator. • All movements of cutting tools, their sequence of operations, applications, feeding of raw material, parting off, un loading of finished parts all are done on machine. • All working & idle operations are performed in definite sequence by control system adopted in automatic which is set up to suit a given work. • Only operation reqd to be performed manually is loading of bar stock/ individual casting/ forged blanks. • These machines are used when production requirements are too high for turret lathes to produce economically. Advantages • Greater production over a given period. • More economy in floor space. • More consistently accurate work than turrets. • More constant flow of production. • Scrap loss is reduced by reducing operator error. • During machine operation operator is free to operate another machine/ can inspect completed parts. SEMI AUTOMATICS • These are turning machines used for chucking work. • In this type of lathes although all movements of w/p (or) tools are automatically controlled, but w/p has to be loaded into & removed from chuck at beginning & end of each cycle of operation. • Machine cycle is automated, but direct participation of operator is reqd to start subsequent cycle, i.e., to machine each w/p. • Operator work is to load w/p or blank into machine, start the ma/c, checks the work, & removes the completed part by hand. AUTOMATICS & SEMI AUTOMATICS are designed to perform following operations: • Centering, cylindrical turning, tapered, formed surfaces, drilling, boring, reaming, facing, knurling, thread cutting, facing, milling, grinding, cut off.
    [Show full text]
  • Asset Sales, Inc. Corporate Headquarters European Headquarters Asset Sales (Canada) Inc
    EVERYTHING MUST SELL! SURPLUS EQUIPMENT Public Auction EQUIPMENT SURPLUS TO THE CONTINUING OPERATIONS OF PLANO MACHINE & INSTRUMENT INC. LATE MODEL & HIGH END MAZAK CNC TURNING, VERTICAL & HORIZONTAL MACHINING, BORING & MANUAL MACHINES Sale Starts at: 4807 E. Hwy 82 - Gainesville, TX 76240 * Loc. 2 Location: 2720 S. I-35 * 7 Miles Apart TUESDAY, DECEMBER 8TH @ 10:00 A.M. CST Inspection: Monday, December 7th, From 8:00 A.M. - 4:00 P.M. CST 5 5 2011 AVAIL. AXIS 2012 MAZAK NEXUS HCN5000-II CNC HORIZONTAL MACHINING LEADWELL MCV-1500i 5-AXIS CNC VERTICAL MACHINING CENTERS CENTER AS 4 8 LATE AS AVAIL. AVAIL. 2012 WARNER & SWASEY #4A SQUARE HEAD TURRET LATHE MAZAK QTN350-IIM CNC TURNING CENTERS WITH 48"/60" sset TRAVELS ur A s in o to Y D g o in ll n a r r u s T Asset Sales, Inc. Corporate Headquarters European Headquarters Asset Sales (Canada) Inc. 301 Post Office Drive, Suite C 6 Hill End Close, Norwood Green 4310 Prospect Road Indian Trail, NC 28079 Halifax, West Yorkshire, HX3 8RH Bayside, Nova Scotia, Canada B3Z 1L5 Toll Free 888.800.4442 704.821.4315 Fax 704.821.4325 Tel / Fax 07836.347880 Tel 902.852.5331 Fax 704.821.4325 www.asset-sales.com [email protected] [email protected] [email protected] 103183_Plano.indd 1 11/12/15 10:12 AM MACHINERY INSPECTION DATE & TIME – MONDAY, DECEMBER 7TH FROM 8:00 A.M. - 4:00 P.M. CST 2012 MAZAK QTN-350-II CNC TURNING CENTER 4 AVAIL. AS LATE AS 2006 (4) MAZAK NEXUS QTN-350-IIM CNC TURNING / MILLING CENTERS 4 AVAIL.
    [Show full text]
  • Week2: Technologies and Devices Employed in CNC Machines
    24/07/2018 Computer numerical control (CNC) of machine tools and processes - - Unit 3 - Week2: Technologies and devices e… X [email protected] ▼ Courses » Computer numerical control (CNC) of machine tools and processes Announcements Course Ask a Question Progress Mentor Unit 3 - Week2: Technologies and devices employed in CNC machines Course outline Assignment-2 How to access the The due date for submitting this assignment has passed. Due on 2016-09-23, 22:00 IST. portal ? Submitted assignment Week1- Computer Numerical Control Machines : Introduction and Classification 1) Advantage(s) of stepper motor over permanent magnet Direct current (PMDC) motor is / are (within specified 1 point operating limits) Week2: Technologies and devices No power is required to drive the stepper motor, whereas power is required to drive PMDC motor employed in CNC The extent of rotation of output shaft of stepper motor can be controlled precisely without feedback while it is not so machines in case of PMDC motor Lecture 07: Stepper Stepper motors can rotate in both directions but PMDC motors can only rotate in one direction motors, Permanent None of the others magnet DC motors No, the answer is incorrect. Lecture 08: Binary Score: 0 circuits and decoders Accepted Answers: The extent of rotation of output shaft of stepper motor can be controlled precisely without feedback while it Lecture 09: Tachogenerator, is not so in case of PMDC motor printed circuit motors, Encoders 2) A PMDC motor starts up from rest in response to a step voltage V applied across its terminals at time t=0.If 1 point angular velocity of motor shaft ω is related to V as (k and τ are constants) Lecture 10: Programming Practice - I Lecture 11: Programming Practice - 11 Quiz : Assignment-2 Solution to will be sinusoidal with time Assignment-2 Variation of ω ω will be equal to V/k at steady state ( t = ∞) Week 3: Computer ω will reach a constant value at t = τ aided offline programming None of the others practice, Linear and curvilinear No, the answer is incorrect.
    [Show full text]
  • New Processes and Machine Tools for Advanced Metal Alloys
    metals Editorial New Processes and Machine Tools for Advanced Metal Alloys Luis Norberto López de Lacalle 1,* and Ainhoa Celaya 2,* 1 Centre of Advanced Manufacturing Technologies for Aeronautics CFAA, Department of Mechanical Engineering, University of the Basque Country (UPV/EHU), Parque Tecnológico de Zamudio 202, 48170 Bilbao, Spain 2 Department of Mechanical Engineering (High Performance Manufacturing Group), University of the Basque Country (UPV/EHU), EIB, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain * Correspondence: [email protected] (L.N.L.d.L.); [email protected] (A.C.) Received: 5 February 2020; Accepted: 5 February 2020; Published: 6 February 2020 Advanced materials are crucial for the development of many industrial sectors such as aerospace, automotive, energy, among others. These materials show superior mechanical characteristics of strength, hardness, toughness, and durability in comparison to conventional materials. However, these materials are also characterized by their complicated primary processes (e.g., casting or forge) and the secondary processes (e.g., machining) because of their low machinability. In addition, the development of new advanced materials requires the use of advanced manufacturing technologies supported on new and high-quality machine tools. In this decade, machine tools are becoming multitasking systems, that is, a combination of milling centers, lathes, and even grinding machines. Thanks to computer numerical control (CNC), users are able to interpolate and synchronize several machine axes, as well as find new mechanical solutions for transmissions based on direct hollow motors, or linear guided ones, including lineal motors. Machine tools are particularly stiff spatial manipulators, in order to achieve tolerances reaching an order of magnitude in the hundredths.
    [Show full text]
  • Gear Hobbing Indexing Gear Calculation Manual 2018
    Gear Hobbing Indexing Gear Calculation Manual 2018 If you are searching for a ebook Gear hobbing indexing gear calculation manual 2018 in pdf form, then you have come on to correct website. We presented full version of this ebook in PDF, DjVu, ePub, doc, txt formats. You may reading Gear hobbing indexing gear calculation manual 2018 online either downloading. Besides, on our site you may reading the instructions and diverse artistic eBooks online, either downloading them as well. We like draw on your note that our website not store the book itself, but we grant reference to site whereat you may download either reading online. So if have must to load Gear hobbing indexing gear calculation manual 2018 pdf, in that case you come on to loyal site. We own Gear hobbing indexing gear calculation manual 2018 ePub, txt, PDF, doc, DjVu formats. We will be happy if you will be back to us anew. home | gleason - Plastic Gears - Gleason K2 Plastics; Bevel Gear Solutions. Cutting; Genesis 210H Hobbing Machine; P90G Gear CNC Gear Grinding and Gleason Unveils New Gear gear hobbing machine design - practical machinist - Gear hobbing machine design He alluded to a gear hobbing machine 'with some modification' if I understood the He explained to me that the index manek - gear hobbing machine model: ghb-750 - - Jan 04, 2018 Universal Gear Hobbing Machines Fresadora de Engranajes / Fresa Madre Generadora de Engranajes universal gear gear train calculation for gear cutting? | yahoo - Oct 22, 2018 i want to cut a gear on manual gear hobbing machine. gear no. of teeth = 28, Module = 2.5, Helix angle = 20, Please tell me calculation method for gear train.
    [Show full text]
  • Workshop Technology - Iii
    WORKSHOP TECHNOLOGY - III Chapter 1- Milling Syllabus Specification and working principle of milling machine Classification, brief description and applications of milling machine Main parts of column and knee type milling machine Milling machine accessories and attachment – Arbors, adaptors, collets, vices, circular table, indexing head and tail stock, vertical milling attachment Milling methods - up milling and down milling Identification of different milling cutters and work mandrels Work holding devices Milling operations – face milling, angular milling, form milling, straddle milling and gang milling. Cutting parameters Indexing on dividing heads, plain and universal dividing heads. Indexing methods: direct, Plain or simple, compound, differential and angular indexing, numerical problems on indexing. Milling is the most common form of machining, a material removal process, which can create a variety of features on a part by cutting away the unwanted material. The milling process requires a milling machine, workpiece, fixture, and cutter. The workpiece is a piece of pre-shaped material that is secured to the fixture, which itself is attached to a platform inside the milling machine. The cutter is a cutting tool with sharp teeth that is also secured in the milling machine and rotates at high speeds. By feeding the workpiece into the rotating cutter, material is cut away from this workpiece in the form of small chips to create the desired shape. Milling is typically used to produce parts that are not axially symmetric and have many features, such as holes, slots, pockets, and even three dimensional surface contours. Parts that are fabricated completely through milling often include components that are used in limited quantities, perhaps for prototypes, such as custom designed fasteners or brackets.
    [Show full text]
  • Capstan and Turret Lathe
    SUBJECT:-PRODUCTION TECHNOLOGY (MECH. 2ND YEAR) NAME:-ABHAY SUNDRIYAL DATE:-07/04/2020 Capstan and Turret Lathe A capstan and turret lathe is a production lathe. It is used to manufacture any number of identical pieces in the minimum time. In semi-automatic lathes machining operations are done automatically. Functions other than machining like loading and unloading of a job, the positioning of tools coolant operations are done manually. The turret head is mounted on the ram fitted with turret slides longitudinally on the saddle. Turret head has a hexagonal block having six faces with a bore for mounting six or more than six tools at a time. The threaded hole on these faces is used to hold the tools. In the case of a Capstan Lathe, the hexagonal turret is mounted on a short slide or ram which again fitted with a saddle. The saddle can be move accordingly throughout the bed ways and can be fixed to the bed if necessary. It is specially used for bar type jobs. But in the case of Turret Lathe, the hexagonal turret directly mounted on the saddle. The saddle can be move through the bed ways. Turret lathe is generally used for chucking type work. Diagram of a Capstan Lathe: Diagram of a Turret Lathe: The workpiece is held in collet or chucks which are actuated hydraulically or pneumatically. All the needed tools are held in the respective holes on the turret head. According to the sequence of operation, the tool is moved with the help of a turret head. Drilling, boring, turning, reaming, threading tools are mounted on the turret head.
    [Show full text]
  • Glossary Definitions
    TC 9-524 GLOSSARY ACRONYMS AND ABBREVIATIONS TC - Training Circular sd - small diameter TM - Technical Manual Id - large diameter AR - Army Regulation ID - inside diameter DA - Department of the Army TOS- Intentional Organization for Standardization RPM - revolutions per minute LH - left hand SAE - Society of Automotive Engineers NC - National Coarse SFPM - surface feet per minute NF - National Fine tpf -taper per foot OD - outside diameter tpi taper per inch RH - right hand UNC - Unified National Coarse CS - cutting speed UNF - Unified National Fine AA - aluminum alloys SF -standard form IPM - feed rate in inches per minute Med - medical FPM - feet per minute of workpiece WRPM - revolutions per minute of workpiece pd - pitch diameter FF - fraction of finish tan L - tangent angle formula WW - width of wheel It - length of taper TT - table travel in feet per minute DEFINITIONS abrasive - natural - (sandstone, emery, corundum. accurate - Conforms to a standard or tolerance. diamonds) or artificial (silicon carbide, aluminum oxide) material used for making grinding wheels, Acme thread - A screw thread having a 29 degree sandpaper, abrasive cloth, and lapping compounds. included angle. Used largely for feed and adjusting screws on machine tools. abrasive wheels - Wheels of a hard abrasive, such as Carborundum used for grinding. acute angle - An angle that is less than 90 degrees. Glossary - 1 TC 9-524 adapter - A tool holding device for fitting together automatic stop - A device which may be attached to various types or sizes of cutting tools to make them any of several parts of a machine tool to stop the interchangeable on different machines.
    [Show full text]
  • Tool and Die Maker (Press Tools, Jigs & Fixtures)
    CURRICULUM FOR THE TRADE OF TOOL AND DIE MAKER (PRESS TOOLS, JIGS & FIXTURES) UNDER APPRENTICESHIP TRAINING SCHEME GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENURESHIP DIRECTORATE GENERAL OF TRAINING 1 CONTENTS Sl. No. Topics Page No. 1. Acknowledgement 3 2. Background 4-5 1.1 Apprenticeship Training under Apprentice Act 1961 1.2 Changes in Industrial Scenario 1.3 Reformation 3. Rationale 6 4. Job roles: reference NCO 7-8 5. General Information 9 6. Course structure 10-11 Syllabus 12-29 7.1 Basic Training 7.1.1 Detail syllabus of Core Skill A. Block-I (Engg. drawing & W/ Cal. & Sc.) B. Block-II (Engg. drawing & W/ Cal. & Sc.) 7.1.2 Detail syllabus of Professional Skill & Professional Knowledge A. Block – I B. Block – II 7. 7.1.3 Employability Skill 7.1.3.1 Syllabus of Employability skill A. Block – I B. Block – II 7.2 Practical Training (On-Job Training) 7.2.1 Broad Skill Component to be covered during on-job training. A. Block – I B. Block – II Assessment Standard 30-32 8.1 Assessment Guideline 8. 8.2 Final assessment-All India trade Test (Summative assessment) 9. Further Learning Pathways 33 10. Annexure-I – Tools & Equipment for Basic Training 34-40 11. Annexure-II – Infrastructure for On-Job Training 41 12. Annexure-III - Guidelines for Instructors & Paper setter 42 2 1. ACKNOWLEDGEMENT The DGT sincerely express appreciation for the contribution of the Industry, State Directorate, Trade Experts and all others who contributed in revising the curriculum. Special acknowledgement to the following industries/organizations who have contributed valuable inputs in revising the curricula through their expert members: 1.
    [Show full text]