RESEARCH ARTICLE Proximity proteomics in a marine diatom reveals a putative cell surface-to- chloroplast iron trafficking pathway Jernej Turnsˇek1,2,3,4,5,6†, John K Brunson6,7, Maria del Pilar Martinez Viedma8‡, Thomas J Deerinck9, Alesˇ Hora´ k10,11, Miroslav Obornı´k10,11, Vincent A Bielinski12, Andrew Ellis Allen4,6* 1Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard University, Cambridge, United States; 2Department of Systems Biology, Harvard Medical School, Boston, United States; 3Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, United States; 4Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States; 5Center for Research in Biological Systems, University of California San Diego, La Jolla, United States; 6Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, United States; 7Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States; 8Informatics, J. Craig Venter Institute, La Jolla, United States; 9National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, United States; 10Biology Centre CAS, Institute of Parasitology, Cˇ eske´ Budeˇjovice, Czech Republic; *For correspondence: 11 ˇ
[email protected] University of South Bohemia, Faculty of Science, Ceske´ Budeˇjovice, Czech Republic; 12Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, Present address: †Department of Plant and Microbial Biology, United States University of California, Berkeley, Howard Hughes Medical Institute, University of California, Berkeley, United States; Abstract Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, ‡PharmaMar S.A., Madrid, Spain cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense.