Recognition of Courtship Song in the Field Cricket, Teleogryllus Oceanicus

Total Page:16

File Type:pdf, Size:1020Kb

Recognition of Courtship Song in the Field Cricket, Teleogryllus Oceanicus Anim. Behav., 1996, 51, 353–366 Recognition of courtship song in the field cricket, Teleogryllus oceanicus ROHINI BALAKRISHNAN & GERALD S. POLLACK Department of Biology, McGill University (Received 4 November 1994; initial acceptance 9 February 1995; final acceptance 9 June 1995; MS. number: 7146) Abstract. The courtship song of the cricket, Teleogryllus oceanicus plays an important role in inducing the female to mount the male, which is necessary for mating. The song consists of a short, amplitude-modulated chirp, followed by a long trill of constant intensity and high syllable rate. Using playback techniques, it was determined which physical parameters of courtship song are necessary and/or sufficient to evoke normal female mounting of muted, courting males. The higher harmonics of natural courtship song were neither necessary nor sufficient for the effectiveness of the song. The chirp component alone was sufficient to evoke normal levels of mounting, but the trill was only partially effective on its own. The conspicuous amplitude modulation of the chirp was not necessary to evoke normal responses. The results suggest that the high effectiveness of the chirp is due to its characteristic temporal pattern. As in other cricket species, the song repertoire of T. oceanicus also includes distinct calling and aggression songs, which contain chirps that are structurally similar to the courtship chirp. Both calling and aggression songs evoked normal mounting responses when played back in the context of courtship. ? 1996 The Association for the Study of Animal Behaviour Crickets use acoustic signals to communicate and courtship songs are recognized share common with each other. These signals take the form of or similar features. stereotyped, repetitive songs produced by stridu- Studies of song recognition have focused on lating males. Many cricket species, including Tel- calling song. Female crickets recognize and pref- eogryllus oceanicus, have a repertoire that includes erentially orient towards the conspecific calling three structurally distinct songs termed calling, song, which they identify based on its fundamen- courtship and aggression song, respectively tal frequency and species-specific temporal param- (Alexander 1961). The three songs serve distinct eters (reviewed in Elsner & Popov 1978; Doherty functions: calling song serves to attract females & Hoy 1985). The prior identification of song from afar, courtship song induces the female to parameters required for behavioural effectiveness mount the male, and aggression song is produced has been invaluable in studies of the neuronal during aggressive encounters with other males mechanisms for calling song recognition (Alexander 1962). (Schildberger et al. 1989). Little is known about The evolutionary processes that have resulted in the mechanisms, either behavioural or neuronal, this repertoire of three songs are unknown, but it of courtship song recognition in any cricket is generally believed that song in crickets first species. evolved in the context of courtship (Alexander The courtship behaviour of T. oceanicus, first 1962). The use of song for long-range attraction of described in detail by Burk (1983), is very similar females and in interactions with other males prob- to that of other gryllid species (Alexander 1961; ably evolved later. It is therefore interesting to Loher & Dambach 1989; Adamo & Hoy 1994). know whether the mechanisms by which calling Briefly, courtship is initiated when the antennae of the male contact the body of the female. The male then vibrates his antennae, adopts a typical sing- ing posture and begins to produce courtship song, Correspondence: G. Pollack: Department of Biology, McGill University, 1205 Dr Penfield Avenue, simultaneously stroking the female with his anten- Montreal, Quebec H3A 1B1, Canada (email: nae. He then turns away from her and presents his [email protected]). abdomen, stridulating all the while. The female 0003–3472/96/020353+14 $12.00/0 ? 1996 The Association for the Study of Animal Behaviour 353 354 Animal Behaviour, 51, 2 0 (a) (b) –20 –40 –60 –80 Relative intensity (dB) 0 6183012 24 0122461830 Frequency (kHz) Chirp Trill 200 ms (c) 30 ms Figure 1. The courtship song of T. oceanicus. (c) The oscillogram shows the amplitude-modulated chirp and long, constant-intensity trill. A portion of the trill is shown on an expanded time scale below. (a) Power spectrum of a single (high-amplitude) chirp pulse. (b) Power spectrum of a single trill pulse. Both chirp and trill pulses have a dominant peak at the fundamental frequency of 4–5 kHz and higher harmonics extending up to at least 30 kHz. Points superimposed on the spectra are mean (&) values of the relative intensity levels and frequencies of the harmonics. Data are based on analysis of at least 67 chirp and trill pulses in recordings from seven males. reacts by following the male, approaching from success in eliciting a mounting response from the behind and touching his abdomen with her anten- females. Mounting can be restored if courtship is nae and palpi, whereupon the male spreads his accompanied by playback of recorded courtship hind wings and flattens his abdomen, allowing her song. to mount him. Mounting of the male by the The courtship song of T. oceanicus (previously female is a prerequisite for copulation. described by Leroy 1966; Hutchings & Lewis The role of courtship song in T. oceanicus was 1984; Libersat et al. 1994) consists of a 7–10 pulse, first examined by Burk (1983). From observations amplitude-modulated chirp (Fig. 1), followed by a of males under semi-natural conditions, he con- long trill (2–4 s) of high pulse rate (33/s). Both cluded that male mating success was correlated chirp and trill are produced at a fundamental with the production of courtship song. Muting frequency of 4.5 kHz and contain higher harmon- and playback experiments in different cricket ics extending up to about 30 kHz. Libersat et al. species support this conclusion (von Hörmann (1994) demonstrated that the fundamental 4.5- Heck 1957; Crankshaw 1979; Libersat et al. 1994). kHz component of courtship song was both Males that have been muted by removing their necessary and sufficient to evoke normal female tegmina perform all the acts of courtship nor- mounting responses in T. oceanicus, and also mally, including ‘singing’ (as seen by move- showed that one of the higher frequency compo- ments of their wing stubs), yet they have little nents, 13.5 kHz, was not sufficient. In the present Balakrishnan & Pollack: Cricket courtship song 355 study, we confirmed and extended their findings Spectral and Temporal Pattern Analysis on the exclusive importance of the fundamental Power spectra were computed from digitized frequency. We also investigated the importance of songs using the Fast Fourier Transform. Tem- the temporal parameters of the song. The goal of poral pattern analysis was performed either by these studies was to provide insight into the manually measuring pulse durations and pulse mechanisms underlying recognition of courtship periods from digitized recordings of songs, or by song. routing tape-recorded songs through a custom- built circuit that converted each sound pulse to a METHODS rectangular voltage signal (details of the circuit can be obtained from the authors). The onsets and Crickets offsets of these rectangular pulses were detected Teleogryllus oceanicus males and females were and stored on computer, and used to calculate reared in the laboratory at 25–30)C in 66-litre pulse durations and periods. The calculated plastic containers on a diet of Purina cat chow spectral and temporal parameters are reported as (Adult Formula) and given water ad libitum. mean values&. Male and female nymphs were separated before the final moult. Adult males and virgin Acoustic Stimuli females were kept separately in plastic boxes (38#20#23 cm) on a 12:12 h light:dark cycle for We delivered digitized sound pulses (12-bit at least 2 weeks before use. Experiments were resolution, 100-kHz update rate), either recorded performed within 3–6 h of the onset of scoto- or synthesized, at computer-controlled intervals. phase. We used 2–3-week-old virgin females and The signals were routed through a calibrated 2–4-week-old males in all experiments. attenuator (either Hewlett Packard 350D or Grason Stadler 1292) before being amplified (Sanken S1-1050G) and broadcast through a Song Recording and Analysis loudspeaker (Realistic 40-1310). Acoustic signals We recorded courtship, calling and aggression were digitized and synthesized with a National songs of 2–4-week-old T. oceanicus males in the Instruments ATMIO16F5 multi-function board, laboratory. To record courtship song, we intro- resident in a 80486-based computer. Signal analy- duced a male and a female into a cylindrical sis and synthesis were done with programs written (14#13 cm) cotton gauze cage. Recordings of with LabWindows software. calling song were obtained in the same manner, but from isolated males. To record aggression The Behavioural Assay song, we placed two males (of which one was muted by cutting off his forewings) in a smaller Courtship assays were performed in a cylindri- cylindrical cage (6#2.5 cm). All recordings were cal, anechoic chamber (13#10 cm) made of min- carried out in an anechoic chamber, in the dark, at eral wool covered with cheesecloth. A ring of a temperature of 24–26)C. cellulose acetate was pinned around the rim and We made recordings using a Brüel and Kjaer projected about 1 cm into the chamber to prevent condenser microphone (type 4135) and measuring the crickets from escaping. Experiments were amplifier (type 2610). The microphone was placed performed in the dark, at 24–26)C. Illumination at a height of 5–6 cm close to the wall of the cage was provided by a 60-W red light bulb suspended (because the male was free to move and turn in about 25 cm above and to one side of the any direction, the reported intensity levels are chamber.
Recommended publications
  • The Efficiency of Sound Production in Two Cricket Species, Gryllotalpa Australis and Teleogryllus Commodus (Orthoptera: Grylloidea)
    J. exp. Biol. 130, 107-119 (1987) 107 Printed in Great Britain © The Company of Biologists Limited 1987 THE EFFICIENCY OF SOUND PRODUCTION IN TWO CRICKET SPECIES, GRYLLOTALPA AUSTRALIS AND TELEOGRYLLUS COMMODUS (ORTHOPTERA: GRYLLOIDEA) BY MARK W. KAVANAGH Department of Zoology, University of Melbourne, Parkville, Victoria, 3052, Australia Accepted 27 February 1987 SUMMARY 1. Males of Gryllotalpa australis (Erichson) (Gryllotalpidae) and Teleogryllus commodus (Walter) (Gryllidae) produced their calling songs while confined in respirometers. 2. G. australis males used oxygen during calling at a mean rate of 4-637 ml O2h^', equivalent to 27-65mW of metabolic energy, which was 13 times higher than the resting metabolic rate. T. commodus males used oxygen during calling at a rate of 0-728 ml O2h~', equivalent to 4-34mW, which was four times the resting metabolic rate. 3. The sound field during calling by males represents a sound power output of 0-27 mW for G. australis and l-51XlO~3mW for T. commodus. 4. The efficiency of sound production was 1-05% for males of G. australis and 0-05 % for males of T. commodus. Comparison with other insect species suggests that none is more than a few percent efficient in sound production. INTRODUCTION Many insect species produce stereotyped acoustic signals that are important in intraspecific communication. In most species that communicate by sound, the male's calling song, which seems to attract conspecific females, is the most obvious and the most important component of the repertoire. Production of the calling song will involve a cost to the producer in the form of an increased use of metabolic energy.
    [Show full text]
  • Under Percent
    Listing Statement for Catadromus lacordairei (Green-lined Ground Beetle) Catadromus lacordairei Under percent Green-lined Ground Beetle T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T Image Spencer & Richards Common name: Green-lined Ground Beetle Scientific name: Catadromus lacordairei Boisduval, 1835 Group: Invertebrate, Class Hexapoda, Order Coleoptera, Family Carabidae Name history: Catadromus Carabid Beetle Status: Threatened Species Protection Act 1995: vulnerable Environment Protection and Biodiversity Conservation Act 1999: Not listed IUCN Red List: Not listed Distribution: Endemic status: Not endemic to Tasmania Tasmanian NRM Regions: South, North 1 cm Figure 1. The distribution of the Green-lined Plate 1. The Green-lined Ground Beetle (images Ground Beetle in Tasmania, showing NRM regions Spencer & Richards) 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Catadromus lacordairei (Green-lined Ground Beetle) SUMMARY specialist soil-dwelling predators. Nothing has The Green-lined Ground Beetle is a large and been recorded of the pupal phase. predatory ground-dwelling beetle, shiny black Adult Green-lined Ground Beetles are in colour and with a distinctive metallic green opportunistic predators/scavengers, taking a line down the other side of the body. The wide range of invertebrate prey, including species has only been recorded from a small oligochaetes (worms), coleopteran (beetle) number of sites in Tasmania, mainly in the larvae, dipteran (fly) larvae, Teleogryllus commodus northern and central Midlands.
    [Show full text]
  • THE QUARTERLY REVIEW of BIOLOGY
    VOL. 43, NO. I March, 1968 THE QUARTERLY REVIEW of BIOLOGY LIFE CYCLE ORIGINS, SPECIATION, AND RELATED PHENOMENA IN CRICKETS BY RICHARD D. ALEXANDER Museum of Zoology and Departmentof Zoology The Universityof Michigan,Ann Arbor ABSTRACT Seven general kinds of life cycles are known among crickets; they differ chieff,y in overwintering (diapause) stage and number of generations per season, or diapauses per generation. Some species with broad north-south ranges vary in these respects, spanning wholly or in part certain of the gaps between cycles and suggesting how some of the differences originated. Species with a particular cycle have predictable responses to photoperiod and temperature regimes that affect behavior, development time, wing length, bod)• size, and other characteristics. Some polymorphic tendencies also correlate with habitat permanence, and some are influenced by population density. Genera and subfamilies with several kinds of life cycles usually have proportionately more species in temperate regions than those with but one or two cycles, although numbers of species in all widely distributed groups diminish toward the higher lati­ tudes. The tendency of various field cricket species to become double-cycled at certain latitudes appears to have resulted in speciation without geographic isolation in at least one case. Intermediate steps in this allochronic speciation process are illustrated by North American and Japanese species; the possibility that this process has also occurred in other kinds of temperate insects is discussed. INTRODUCTION the Gryllidae at least to the Jurassic Period (Zeuner, 1939), and many of the larger sub­ RICKETS are insects of the Family families and genera have spread across two Gryllidae in the Order Orthoptera, or more continents.
    [Show full text]
  • Virus Relatedness Predicts Susceptibility in Novel Host Species
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431403; this version posted February 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Imrie et al. Virus relatedness predicts host susceptibility. 1 1 Virus relatedness predicts susceptibility in novel host species 2 3 Ryan M. Imrie*, Katherine E. Roberts, Ben Longdon 4 5 Centre for Ecology & Conservation, Biosciences, College of Life and Environmental Sciences, 6 University of Exeter, Penryn Campus, Penryn, Cornwall 7 *corresponding author: [email protected] 8 9 10 11 Abstract 12 As a major source of outbreaks and emerging infectious diseases, virus host shifts cause significant 13 health, social and economic damage. Predicting the outcome of infection with novel combinations of 14 virus and host remains a key challenge in virus research. Host evolutionary relatedness can explain 15 variation in transmission rates, virulence, and virus community composition between host species, 16 but there is much to learn about the potential for virus evolutionary relatedness to explain variation 17 in the ability of viruses to infect novel hosts. Here, we measure correlations in the outcomes of 18 infection across 45 Drosophilidae host species with four Cripavirus isolates that vary in their 19 evolutionary relatedness. We found positive correlations between every pair of viruses tested, with 20 the strength of correlation tending to decrease with greater evolutionary distance between viruses. 21 These results suggest that virus evolutionary relatedness can explain variation in the outcome of 22 host shifts and may be a useful proxy for determining the likelihood of novel virus emergence.
    [Show full text]
  • An Alternative Hypothesis for the Evolution of Same-Sex Sexual Behaviour in Animals
    PERSPECTIVE https://doi.org/10.1038/s41559-019-1019-7 Corrected: Author Correction An alternative hypothesis for the evolution of same-sex sexual behaviour in animals Julia D. Monk 1*, Erin Giglio 2, Ambika Kamath3,4, Max R. Lambert 4 and Caitlin E. McDonough 5 Same-sex sexual behaviour (SSB) has been recorded in over 1,500 animal species with a widespread distribution across most major clades. Evolutionary biologists have long sought to uncover the adaptive origins of ‘homosexual behaviour’ in an attempt to resolve this apparent Darwinian paradox: how has SSB repeatedly evolved and persisted despite its presumed fitness costs? This question implicitly assumes that ‘heterosexual’ or exclusive different-sex sexual behaviour (DSB) is the baseline condition for animals, from which SSB has evolved. We question the idea that SSB necessarily presents an evolutionary conundrum, and suggest that the literature includes unchecked assumptions regarding the costs, benefits and origins of SSB. Instead, we offer an alternative null hypothesis for the evolutionary origin of SSB that, through a subtle shift in perspective, moves away from the expectation that the origin and maintenance of SSB is a problem in need of a solution. We argue that the frequently implicit assumption of DSB as ancestral has not been rigorously examined, and instead hypothesize an ancestral condition of indiscrimi- nate sexual behaviours directed towards all sexes. By shifting the lens through which we study animal sexual behaviour, we can more fruitfully examine the evolutionary history of diverse sexual strategies. ince Charles Darwin1,2 first recognized natural and sexual this apparent paradox have taken the form of taxon-specific searches selection as engines of evolutionary change, considerations of for adaptive and non-adaptive explanations of SSB (reviewed in Ssex and fitness in evolutionary biology have largely focused refs.
    [Show full text]
  • Flexibility in Male Phonotaxis Behavior and the Loss of Singing Ability In
    Behavioral Ecology doi:10.1093/beheco/arp052 Advance Access publication 9 April 2009 Preexisting behavior renders a mutation adaptive: flexibility in male phonotaxis behavior and the loss of singing ability in the field cricket Teleogryllus oceanicus Downloaded from Robin M. Tinghitella, Jeffrey M. Wang, and Marlene Zuk Department of Biology, University of California-Riverside, Riverside, CA 92521, USA http://beheco.oxfordjournals.org/ Flexibility in behavior and other traits can pave the way for rapid evolutionary change. A wing mutation, ‘‘flatwing,’’ eliminates the ability of .90% of male field crickets (Teleogryllus oceanicus) from one Hawaiian population to produce song to attract females. The morphological change was favored because calling is risky in Hawaii, attracting deadly parasitoid flies. An earlier study suggested that instead of calling, silent flatwing males use satellite behavior, approaching one of the few remaining callers and intercepting females attracted to them. Satellite-like behavior may have existed as a behavioral option prior to the wing mutation, accommodating the loss of singing ability, or behavior may have changed simultaneously with the spread of the mutation. In phonotaxis trials, males from different populations across the crickets’ range varied in the distance at which they settled from the source of broadcast song, behaving more or less like satellites. Anecdotally, we noted satellite behavior in all populations, and importantly, males from the mutated population and its direct ancestor behaved similarly. This suggests that the alternative behavior is not strictly associated with the mutation and instead predated the change in morphology. We hypothesized at University of Minnesota,Walter Library Serial Processing on May 28, 2014 further that satellite behavior may have been preexisting because it is beneficial under other circumstances, such as poor mating success.
    [Show full text]
  • Immune Function Reflected in Calling Song Characteristics in a Natural
    ANIMAL BEHAVIOUR, 2005, 69, 1235–1241 doi:10.1016/j.anbehav.2004.09.011 Immune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus LEIGH W. SIMMONS*,MARLENEZUK† &JOHNT.ROTENBERRY† *Evolutionary Biology Research Group, School of Animal Biology (M092), The University of Western Australia yDepartment of Biology, University of California, Riverside (Received 9 February 2004; initial acceptance 30 March 2004; final acceptance 24 September 2004; published online 17 February 2005; MS. number: 7999R) Secondary sexual traits have been suggested to provide reliable signals of a male’s ability to resist infection by agents of disease. The immunocompetence handicap hypothesis provides a potential mechanism for reliable signalling in the form of a trade-off between expenditure on trait expression and expenditure on immunity. Thus, males resistant to disease can spend more resources on their sexual signals. Examination of calling song parameters in a natural population of the cricket Teleogryllus commodus revealed that males scoring higher on the third principal component for song had significantly lower ability to encapsulate a foreign object. This component of immune function was associated with syllables of longer duration in both the trill and chirp elements of the song. Males with longer syllables in their song had a lower encapsulation ability. Syllable duration is known to influence phonotaxis by female T. commodus. Although the effect was only weak, our data suggest that females may base their choice of mate on reliable information contained within the temporal properties of male calls. Our study thus demonstrates a connection between sexual signalling and immune function in a natural population of insects and lends support to the immunocompetence handicap hypothesis.
    [Show full text]
  • Variation and Repeatability of Calling Behavior in Crickets Subject to a Phonotactic Parasitoid Fly
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@CalPoly Variation and Repeatability of Calling Behavior in Crickets Subject to a Phonotactic Parasitoid Fly Gita Raman Kolluru1 Male Teleogryllus oceanicus (Orthoptera: Gryllidae) produce a conspicuous calling song to attract females. In some populations, the song also attracts the phonotactic parasitoid fly Ormia ochracea (Diptera: Tachinidae). I examined the factors affecting calling song by characterizing the calling behavior of caged crickets from an area where the fly occurs. Calling activity (proportion of time spent calling) was repeatable and a significant predictor of female attraction. However, calling activity in the parasitized population was lower than in an unparasitized Moorea population (Orsak, 1988), suggesting a compromise between high activity to attract females and low activity to avoid flies. Calling activity peaked simultaneously with fly searching, so crickets did not shift to calling when the fly is less active. Males harboring larvae did not call less than unparasitized males; however, a more controlled study of the effects of parasitization on calling behavior is needed to evaluate this result. The results are discussed in the context of other studies of the evolutionary consequences of sexual and natural selection on cricket calling behavior. KEY WORDS: crickets; acoustic signals; calling duration; calling activity; calling patterns; phonotactic parasitoids; repeatability; Orthoptera; Gryllidae; Teleogryllus; Ormia. INTRODUCTION Male field crickets produce a conspicuous, long-range calling song to attract females for mating. However, the song may also attract acoustically-orienting natural enemies (Zuk and Kolluru, 1998). Therefore, both sexual selection and natural selection by eavesdropping enemies can shape the evolution of cricket 1 Department of Biology, University of California, Riverside, California 92521.
    [Show full text]
  • Protein and Lipid Characterization of Acheta Domesticus, Bombyx Mori, and Locusta Migratoria Dry Flours
    Graduate Theses, Dissertations, and Problem Reports 2018 Protein and Lipid Characterization of Acheta domesticus, Bombyx mori, and Locusta migratoria Dry Flours Emily N. Brogan Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Food Chemistry Commons, and the Food Microbiology Commons Recommended Citation Brogan, Emily N., "Protein and Lipid Characterization of Acheta domesticus, Bombyx mori, and Locusta migratoria Dry Flours" (2018). Graduate Theses, Dissertations, and Problem Reports. 7498. https://researchrepository.wvu.edu/etd/7498 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Protein and Lipid Characterization of Acheta domesticus, Bombyx mori, and Locusta migratoria Dry Flours Emily N. Brogan Thesis submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfilment of the requirements for the degree of Master of Science in Nutritional and Food Science Jacek Jaczynski Ph.D., chair Kristen Matak Ph. D Yong-Lak Park, Ph.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • The Neuromuscular Mechanism of Stridulation in Crickets (Orthoptera: Gryllidae)
    J. Exp. Biol. (1966), 45, isi-164 151 With 8 text-figures Printed in Great Britain THE NEUROMUSCULAR MECHANISM OF STRIDULATION IN CRICKETS (ORTHOPTERA: GRYLLIDAE) BY DAVID R. BENTLEY AND WOLFRAM KUTSCH Department of Zoology, University of Michigan, Aim Arbor, and Institute for Comparative Animal Physiology, University of Cologne {Received 21 February 1966) INTRODUCTION Study of the insect neuromuscular system appears very promising as a means of explaining behaviour in terms of cellular operation. The relatively small number of neurons, the ganglionic nature of the nervous system, the simplicity of the neuro- muscular arrangement, and the repetitiveness of behavioural sequences all lend them- selves to a solution of this problem. As a result, an increasing number of investigators have been turning their attention to insects and especially to the large orthopterans. Recently, Ewing & Hoyle (1965) and Huber (1965) reported on muscle activity underlying sound production in crickets. The acoustic behaviour is well understood (Alexander, 1961) and in the genera Gryllus, Acheta and Gryllodes communication is mediated by three basic songs composed of three types of pulses. While working independently on this system at the University of Cologne (W.K.) and the University of Michigan (D.B.) using various Gryllus species, we found a number of basic differences between the muscle activity in our crickets and that reported by Ewing & Hoyle (1965) for Acheta domesticus. These two genera, Gryllus and Acheta, are so nearly identical that they are distinguished solely by differences in the male genitalia (Chopard, 1961). The present paper constitutes a survey of muscle activity patterns producing stridulation in four species of field crickets.
    [Show full text]
  • New Species and Records of Some Crickets (Gryllinae: Gryllidae: Orthoptera) from Pakistan
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 1560–8530/2000/02–3–175–182 New Species and Records of some Crickets (Gryllinae: Gryllidae: Orthoptera) from Pakistan AZHAR SAEED, MUHAMMAD SAEED† AND MUHAMMAD YOUSUF Department of Agricultural Entomology, University of Agriculture, Faisalabad–38040, Pakistan †Nichimen Corporation, 20/11 U-Block, New Multan Colony, Multan ABSTRACT Adult crickets were collected from various localities of Pakistan and identified upto species level. The species of eight genera, viz., Tarbinskiellus, Phonarellus, Callogryllus, Plebiogryllus, Tartarogryllus, Gryllopsis, Gryllus and Gryllodes belonging to the subfamily Gryllinae are presented. Each genus is represented by a single species in Pakistan. The former five genera and their representative species are new record to the area, while two species, i.e. Callogryllus ovilongus and Plebiogryllus retiregularis are new to science. New taxa are described in detail, while only the differential and ew characters, if any, from the published descriptions, are given in case of already described species. Key Words: Systematics; Crickets; Gryllinae INTRODUCTION Pakistan along-with its distribution and habitat. This comprehensive study yielded a large number of Crickets are commonly met insects. They are specimens of the crickets. The subfamily Gryllinae was important to us due to two reasons: firstly, being pests of represented by 16 genera from the area, however out of various agricultural crops, vegetables, lawns, ornamental these only eight are presented here. plants, harvested grains both ate threshing floors and in godowns, and household articles, and secondly, being MATERIALS AND METHODS predators of small insects. As pests, cricket species such as Gryllus bimaculatus plays havoc by feeding Adult crickets were collected from various voraciously on seed and seedlings of cotton, millets and localities of the four climatic regions of Pakistan as oil-seeds every year necessitating re-sowing of the crop detailed by Ahmad (1951).
    [Show full text]