Morphology, Function and Evolution of the Sternum V Glands in Amphiesmenoptera

Total Page:16

File Type:pdf, Size:1020Kb

Morphology, Function and Evolution of the Sternum V Glands in Amphiesmenoptera University of Alberta Morphology, function and evolution of the sternum V glands in Amphiesmenoptera by Marie Djernæs A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systematics and Evolution Department of Biological Sciences ©Marie Djernæs Fall 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee Felix A. H. Sperling, Department of Biological Sciences Bruce S. Heming, Department of Biological Sciences Maya L. Evenden, Department of Biological Sciences John Spence, Department of Renewable Resources Mark V. H. Wilson, Department of Biological Sciences Ralph W. Holzenthal, University of Minnesota Abstract I investigated the paired sternum V glands in thirty-eight trichopteran families and all lepidopteran families possessing the gland or associated structures. Using my morphological data and literature data on sternum V gland secretions, I examined phylogenetic trends in morphology and gland products and reconstructed ancestral states. I investigated correlations between gland products, between morphological traits and between chemistry and morphology. The gland is present in twenty-five trichopteran families. It is generally present in Annulipalpia, except Dipseudopsidae, and in Spicipalpia. It is widespread in Plenitentoria, but is often absent in Brevitentoria, especially in males. In Lepidoptera, I present the first report on the reduced, but functional glands in Neopseustidae and Nepticulidae. The gland is typically an invagination from sternum V with a duct leading to a reservoir surrounded by secretory tissue. An opening muscle inserts just inside the opening. I found two non-homologous opening-muscle types, one in Lepidoptera and some Trichoptera, another in the remaining Trichoptera. Muscle fibres often surround the reservoir, sometimes also the secretory tissue. Exceptions are found in Psychomyiidae (no opening muscle), female Philopotamidae (fenestra with separate glandular complex), Agathiphagidae (several unique features), Neopseustidae and Nepticulidae (gland present without gland opening). Using variations in gland structure, I identified phylogenetically useful characters from the superorder to the species level. The fenestrae in female Philopotamidae, Eriocraniidae, Neopseustidae and Nepticulidae are perforated, and perforated patches are present in female Psychomyiidae. The perforated patches are associated with a reservoir, secretory tissue and a distinctive ‘sunburst’ musculature in both Trichoptera and Lepidoptera. The probable ancestral gland compounds are heptan-2-ol, 4-hepten-2-one, 4-hepten-2-ol, nonan-2-one, 6- nonen-2-one and 6-nonen-2-ol, making pheromone production a plausible ancestral function. The most widespread gland compounds are heptan-2-one, heptan-2-ol, nonan-2-one and nonan-2-ol, but these are absent from Apataniidae + Limnephilidae, which instead produce methylated 3-ketones and -ols, unique within Trichoptera. These compounds all probably function as pheromones. Both large and small glands in females can function in sex pheromone production, while large glands in male Hydropsyche (Hydropsychidae) are likely linked to male aggregation pheromone production. Relative sizes of regular gland reservoirs and fenestral gland reservoirs in female philopotamids suggest a complementary function. Acknowledgements I am grateful to N. P. Kristensen for suggesting this interesting project, and to my supervisor F. A. H. Sperling for encouraging me to expand the project and study not only Lepidoptera, but also Trichoptera. I appreciate having had numerous discussions on the intricacies of the sternum V gland with both. I am also enormously grateful to my husband T. J. Simonsen who has provided companionship, practical assistance above and beyond and been a willing discussion partner. This entire project would not have been possible without the loan of specimens from several collections and the collection efforts of a number of individuals. Thus I am grateful to Clemson University (C. J. Geraci and I. Stocks), Los Angeles County Museum (J. P. Donahue and W. Xie), Natural History Museum of Denmark (O. Karsholt and N. P. Kristensen), Smithsonian Institution (C. J. Geraci and O. Flint) and University of Minnesota Insect Collection (R. Holzenthal and D. Robertson) for the loan of specimens. Futhermore, I thank R. Brown, J. Dombroskie, G. Gibbs, O. Karsholt, J.-F. Landry, E. van Nieukerken, G. Pohl, G. S. Robinson and F. A. H. Sperling for collecting or providing specimens. I thank Gatineau Park, Québec, for a permit to collect and conduct experiments on Epimartyria auricrinella . I am grateful to N. P. Kristensen for supplying prepared slides of various Lepidoptera as well as TEM micrographs of Eriocrania semipurpurella . In addition to specimens, a PhD project cannot be completed without the help of a large number of people. I thank C. Löfstedt for supplying unpublished data on gland compounds and T. Garland for advice on phylogenetically independent contrasts. I am grateful to I. Lusebrink who went above and beyond to get me a copy of Ansteeg’s thesis. I gratefully acknowledge B. S. Heming and D. A. Craig for help with microscopy. I thank A. Nimmo for help in identifying specimens, G. Braybrook for assistance with SEM and M. Eberhard for preparing the 1 µm sections of Synempora andesae and Agathiphaga vitiensis . I thank the members of the extended Sperling lab for being good company, and making me feel at home in Edmonton. I thank the members of my PhD committee, B. Heming, M. Evenden and J. Spence, for being willing to serve, and for many useful discussions and pieces of advice over the years. Finally, a project like this requires funding. This study was funded by an NSERC grant to Felix A. H. Sperling, an Alberta Ingenuity Scholarship to M. Djernæs, and operation money from the Danish Council for Independent Research/Natural Sciences (grant no 272-08-0480). Further support for travel to conferences came from FGSR (Marie Louise Imrie award), from the Department of Biological Sciences and from the Graduate Students’ Association. Biography I was born on December 12, 1978, and grew up on a dairy farm in the western part of Denmark. I was an extremely curious child. At around age two I started asking ‘why’ about the world around me: “Why are ducks brown?”, “why are only female ducks brown?” I appreciate the patience of my parents in answering my questions, but also think they were relieved when I learned to read well enough that I could look up the answers myself. But my curiosity often outstripped my reading ability or the literature in the school library. Growing up on a dairy farm, I knew cows, and I had a passion for horses. I could see that cows and horses were in many respects similar, but did wonder how cows got cloven hooves and horses did not. Looking at cow and horse feet, I concluded that if the two halves of a cow foot were to fuse, the result would look very like a horse’s hoof. Soon after that I found a book explaining the evolution of feet in hoofed mammals, and I had to reject my theory. Eventually looking up the answers wasn’t really enough anymore, and I started looking at a career in research. I began studying biology at the University of Copenhagen in 1999, knowing that I wanted to study evolution, but thinking that I would be working with vertebrates. My first introduction to the wonderful world of entomology came in the third year at university when we had to do undergraduate research projects. We were offered several standard and mainly literature based projects, but Klaus- Dieter Klass and Rudolf Meier from the Natural History Museum of Denmark had two small research projects suitable for students, one on flies and one on cockroaches. With a fellow student I went for the cockroach project, not attracted by the cockroaches, but by the promise of being allowed to do real research. This was also the time when I met my future husband Thomas J. Simonsen, truly a time for starting long term relationships. The cockroach project resulted in a talk that I gave at the 22 nd International Congress on Entomology in Brisbane, Australia, my first conference talk ever! I spent a year (2002/2003) as an exchange student at University of California, Riverside where I took my first entomology courses and continued my studies on cockroaches in Daphne Fairbairn’s lab. Back at the University of Copenhagen I took a course in molecular evolution. After the course we students were offered small relevant research projects. This was when I was confirmed as an entomologist: Among the different projects offered were tracing paternity in elephants or trying to place the newly described insect order Mantophasmatodea. I went for Mantophasmatodea, supervised by Jakob Damgaard, and never really considered working on vertebrates after that. The Mantophasmatodea project ended up being about intron positions in EF-1α in the entire Hexapoda, but I still learned valuable new skills about sequencing, data mining, and aligning and analysing gene sequences. In early 2004, I started my Master’s thesis, a molecular phylogeny of cockroaches, at the Natural History Museum of Denmark. Originally I was supervised by Nils Møller Andersen and Jakob Damgaard. Upon the untimely death of Nils Andersen, Niels Peder Kristensen and Jakob Damgaard supervised my thesis work. In the fall of 2004, I married Thomas Simonsen.
Recommended publications
  • African Butterfly News Can Be Downloaded Here
    LATE SUMMER EDITION: JANUARY / AFRICAN FEBRUARY 2018 - 1 BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to the first newsletter of 2018! I trust you all have returned safely from your December break (assuming you had one!) and are getting into the swing of 2018? With few exceptions, 2017 was a very poor year butterfly-wise, at least in South Africa. The drought continues to have a very negative impact on our hobby, but here’s hoping that 2018 will be better! Braving the Great Karoo and Noorsveld (Mark Williams) In the first week of November 2017 Jeremy Dobson and I headed off south from Egoli, at the crack of dawn, for the ‘Harde Karoo’. (Is there a ‘Soft Karoo’?) We had a very flexible plan for the six-day trip, not even having booked any overnight accommodation. We figured that finding a place to commune with Uncle Morpheus every night would not be a problem because all the kids were at school. As it turned out we did not have to spend a night trying to kip in the Pajero – my snoring would have driven Jeremy nuts ... Friday 3 November The main purpose of the trip was to survey two quadrants for the Karoo BioGaps Project. One of these was on the farm Lushof, 10 km west of Loxton, and the other was Taaiboschkloof, about 50 km south-east of Loxton. The 1 000 km drive, via Kimberley, to Loxton was accompanied by hot and windy weather. The temperature hit 38 degrees and was 33 when the sun hit the horizon at 6 pm.
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
    CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case.
    [Show full text]
  • Trichoptera: Hydropsychidae) in the Carpathians
    Eur. J. Entomol. 112(1): 106–113, 2015 doi: 10.14411/eje.2015.006 ISSN 1210-5759 (print), 1802-8829 (online) Spatial ecology of Hydropsyche incognita (Trichoptera: Hydropsychidae) in the Carpathians MÃLINA PÎRVU 1, 2, CLAUDIA ZAHARIA3, ALINA SATMARI 4 and LUCIAN PÂRVULESCU 1 1 Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timișoara, Timișoara, Romania; e-mails: [email protected]; [email protected] 2 Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania 3 Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timișoara, Timișoara, Romania; e-mail: [email protected] 4 Department of Geography, Faculty of Chemistry, Biology, Geography, West University of Timișoara, Timișoara, Romania; e-mail: [email protected] Key words. Trichoptera, Hydropsychidae, Hydropsyche incognita, ecological preferences, spatial analysis, species distribution modelling Abstract. Caddisflies are often used in studies on freshwater ecosystem ecology because of their aquatic-dependent larvae. The pre- sent study addresses the ecological affinities of larvae of Hydropsyche incognita in terms of the pattern of distribution of this species in the Romanian Carpathians using a boosted regression trees (BRT) model. A population cluster located in the western Romanian Carpathians was identified by the spatial analysis. The statistical model revealed that this species prefers a neutral to low-alkaline pH, high levels of dissolved oxygen, low conductivity, fast flowing water, moderate sized rivers at an altitude below 600 m a.s.l. and low concentrations of organic pollutants. An eastward decrease in the frequency of H.
    [Show full text]
  • Diversity and Ecosystem Services of Trichoptera
    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
    [Show full text]
  • Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
    REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en­ dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co­ leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo­ cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution­
    [Show full text]
  • DNA Minibarcodes in Taxonomic Assignment: a Morphologically
    Zoologica Scripta DNA mini-barcodes in taxonomic assignment: a morphologically unique new homoneurous moth clade from the Indian Himalayas described in Micropterix (Lepidoptera, Micropterigidae) DAVID C. LEES,RODOLPHE ROUGERIE,CHRISTOF ZELLER-LUKASHORT &NIELS P. KRISTENSEN Submitted: 3 June 2010 Lees, D. C., Rougerie, R., Zeller-Lukashort, C. & Kristensen, N. P. (2010). DNA mini- Accepted: 24 July 2010 barcodes in taxonomic assignment: a morphologically unique new homoneurous moth doi: 10.1111/j.1463-6409.2010.00447.x clade from the Indian Himalayas described in Micropterix (Lepidoptera, Micropterigidae). — Zoologica Scripta, 39, 642–661. The first micropterigid moths recorded from the Himalayas, Micropterix cornuella sp. n. and Micropterix longicornuella sp. n. (collected, respectively, in 1935 in the Arunachel Pra- desh Province and in 1874 in Darjeeling, both Northeastern India) constitute a new clade, which is unique within the family because of striking specializations of the female postab- domen: tergum VIII ventral plate forming a continuous sclerotized ring, segment IX bear- ing a pair of strongly sclerotized lateroventral plates, each with a prominent horn-like posterior process. Fore wing vein R unforked, all Rs veins preapical; hind wing devoid of a discrete vein R. The combination of the two first-mentioned vein characters suggests close affinity to the large Palearctic genus Micropterix (to some species of which the members of the new clade bear strong superficial resemblance). Whilst absence of the hind wing R is unknown in that genus, this specialization is not incompatible with the new clade being subordinate within it. A 136-bp fragment of Cytochrome oxidase I successfully amplified from both of the 75-year-old specimens strongly supports this generic assignment.
    [Show full text]
  • Annual Meeting 2002
    Newsletter 51 74 Newsletter 51 75 The Palaeontological Association 46th Annual Meeting 15th–18th December 2002 University of Cambridge ABSTRACTS Newsletter 51 76 ANNUAL MEETING ANNUAL MEETING Newsletter 51 77 Holocene reef structure and growth at Mavra Litharia, southern coast of Gulf of Corinth, Oral presentations Greece: a simple reef with a complex message Steve Kershaw and Li Guo Oral presentations will take place in the Physiology Lecture Theatre and, for the parallel sessions at 11:00–1:00, in the Tilley Lecture Theatre. Each presentation will run for a New perspectives in palaeoscolecidans maximum of 15 minutes, including questions. Those presentations marked with an asterisk Oliver Lehnert and Petr Kraft (*) are being considered for the President’s Award (best oral presentation by a member of the MONDAY 11:00—Non-marine Palaeontology A (parallel) Palaeontological Association under the age of thirty). Guts and Gizzard Stones, Unusual Preservation in Scottish Middle Devonian Fishes Timetable for oral presentations R.G. Davidson and N.H. Trewin *The use of ichnofossils as a tool for high-resolution palaeoenvironmental analysis in a MONDAY 9:00 lower Old Red Sandstone sequence (late Silurian Ringerike Group, Oslo Region, Norway) Neil Davies Affinity of the earliest bilaterian embryos The harvestman fossil record Xiping Dong and Philip Donoghue Jason A. Dunlop Calamari catastrophe A New Trigonotarbid Arachnid from the Early Devonian Windyfield Chert, Rhynie, Philip Wilby, John Hudson, Roy Clements and Neville Hollingworth Aberdeenshire, Scotland Tantalizing fragments of the earliest land plants Steve R. Fayers and Nigel H. Trewin Charles H. Wellman *Molecular preservation of upper Miocene fossil leaves from the Ardeche, France: Use of Morphometrics to Identify Character States implications for kerogen formation Norman MacLeod S.
    [Show full text]
  • Animal Phylogeny and the Ancestry of Bilaterians: Inferences from Morphology and 18S Rdna Gene Sequences
    EVOLUTION & DEVELOPMENT 3:3, 170–205 (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Kevin J. Peterson and Douglas J. Eernisse* Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA; and *Department of Biological Science, California State University, Fullerton CA 92834-6850, USA *Author for correspondence (email: [email protected]) SUMMARY Insight into the origin and early evolution of the and protostomes, with ctenophores the bilaterian sister- animal phyla requires an understanding of how animal group, whereas 18S rDNA suggests that the root is within the groups are related to one another. Thus, we set out to explore Lophotrochozoa with acoel flatworms and gnathostomulids animal phylogeny by analyzing with maximum parsimony 138 as basal bilaterians, and with cnidarians the bilaterian sister- morphological characters from 40 metazoan groups, and 304 group. We suggest that this basal position of acoels and gna- 18S rDNA sequences, both separately and together. Both thostomulids is artifactal because for 1000 replicate phyloge- types of data agree that arthropods are not closely related to netic analyses with one random sequence as outgroup, the annelids: the former group with nematodes and other molting majority root with an acoel flatworm or gnathostomulid as the animals (Ecdysozoa), and the latter group with molluscs and basal ingroup lineage. When these problematic taxa are elim- other taxa with spiral cleavage. Furthermore, neither brachi- inated from the matrix, the combined analysis suggests that opods nor chaetognaths group with deuterostomes; brachiopods the root lies between the deuterostomes and protostomes, are allied with the molluscs and annelids (Lophotrochozoa), and Ctenophora is the bilaterian sister-group.
    [Show full text]
  • The Zoogeomorphology of Case-Building Caddisfly Larvae
    The zoogeomorphology of case-building caddisfly larvae by Richard Mason A Doctoral thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University (June 2020) © Richard Mason 2020 i Abstract Caddisfly (Trichoptera) are an abundant and widespread aquatic insect group. Caddisfly larvae of most species build cases from silk and fine sediment at some point in their lifecycle. Case- building caddisfly have the potential to modify the distribution and transport of sediment by: 1) altering sediment properties through case construction, and 2) transporting sediment incorporated into cases over the riverbed. This thesis investigates, for the first time, the effects of bioconstruction by case-building caddisfly on fluvial geomorphology. The research was conducted using two flume experiments to understand the mechanisms of caddisfly zoogeomorphology (case construction and transporting sediment), and two field investigations that increase the spatial and temporal scale of the research. Caddisfly cases varied considerably in mass between species (0.001 g - 0.83 g) and grain sizes used (D50 = 0.17 mm - 4 mm). As a community, caddisfly used a wide range of grain-sizes in case construction (0.063 mm – 11 mm), and, on average, the mass of incorporated sediment was 38 g m-2, in a gravel-bed stream. This sediment was aggregated into biogenic particles (cases) which differed in size and shape from their constituent grains. A flume experiment determined that empty cases of some caddisfly species (tubular case-builders; Limnephilidae and Sericostomatidae) were more mobile than their incorporated sediment, but that dome shaped Glossosomatidae cases moved at the same entrainment threshold as their constituent grains, highlighting the importance of case design as a control on caddisfly zoogeomorphology.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • ENANTIOMERS of (Z,Z)-6,9-HENEICOSADIEN-11-OL: SEX PHEROMONE COMPONENTS of Orgyia Detrita
    P1: GRA Journal of Chemical Ecology [joec] pp990-joec-473399 October 15, 2003 14:26 Style file version June 28th, 2002 Journal of Chemical Ecology, Vol. 29, No. 10, October 2003 (C 2003) ENANTIOMERS OF (Z,Z)-6,9-HENEICOSADIEN-11-OL: SEX PHEROMONE COMPONENTS OF Orgyia detrita REGINE GRIES,1,4 GRIGORI KHASKIN,1 EUGENE KHASKIN,1 JOHN L. FOLTZ,2 PAUL W. SCHAEFER,3 and GERHARD GRIES1, 1Department of Biological Sciences Simon Fraser University Burnaby, British Columbia, Canada, V5A 1S6 2Department of Entomology & Nematology University of Florida Gainesville, Florida 32611-0620, USA 3United States Department of Agriculture Agricultural Research Service Beneficial Insects Introduction Research Laboratory Newark, Delaware 19713, USA (Received November 1, 2002; accepted June 17, 2003) Abstract—(6Z,9Z,11S)-6,9-Heneicosadien-11-ol (Z6Z9-11S-ol-C21) and (6Z,9Z,11R)-6,9-heneicosadien-11-ol (Z6Z9-11R-ol-C21) were identified as major sex pheromone components of female tussock moths, Orgyia detrita Gu´erin-M´eneville (Lepidoptera: Lymantriidae), on the basis of (1) analyses of pheromone gland extracts of female O. detrita by coupled gas chromatographic- electroantennographic detection (GC-EAD) and GC mass spectrometry, and (2) field trapping experiments with synthetic standards. Z6Z9-11S-ol-C21 and Z6Z9-11R-ol-C21 in combination, but not singly, attracted significant numbers of male moths. Racemic Z6Z9-11-ol-C21 was more attractive than the 1:3.5 (R:S) blend ratio found in pheromone gland extracts from female moths. Lower and higher homologues of Z6Z9-11-ol-C21 were also detected in GC-EAD recordings of pheromone extracts, and the racemic compounds enhanced attrac- tiveness of Z6Z9-11-ol-C21 in field experiments.
    [Show full text]