HYBRID COMBINED CYCLES with BIOMASS and WASTE FIRED BOTTOMING CYCLE - Literature Study Miroslav P

Total Page:16

File Type:pdf, Size:1020Kb

HYBRID COMBINED CYCLES with BIOMASS and WASTE FIRED BOTTOMING CYCLE - Literature Study Miroslav P HPT/KTH08/2002 HYBRIDCOMBINEDCYCLES WITHBIOMASSANDWASTEFIRED BOTTOMINGCYCLE -LiteratureStudy MiroslavP.Petrov LiteratureStudyReport 2002 SNEAProjectP12477-1 DepartmentofEnergyTechnology DivisionofHeatandPower RoyalInstituteofTechnology Stockholm,Sweden LiteratureStudyReport Dept.ofEnergyTechnology Div.ofHeatandPower Prof:TorstenH.Fransson Title:HybridCombinedCycleswith Keywords:Biomass,MSW,ToppingandBottoming BiomassandWastesFiredBottomingCycle. Cycle,GasTurbines,InternalCombustionEngines, ALiteratureStudy. SteamBoilers,HybridCombinedCycle. Author:MiroslavP.Petrov Reportnr:KTH/HPT08/2002 Projecttitle:“BiomassandNaturalGas” Pages:145 Figures:65 SNEAP12477-1 SupervisorsatKTH:LaszloHunyadi, Date:2002-02-13 Appendices:3 TorstenH.Fransson,JinyueYan OverallresponsibleatKTH:Prof.TorstenH.Fransson ApprovedatKTHby: Signature: Overallresponsibleatindustry: Industrialpartners: Approvedbyindustrialpartners: Signature: Abstract BiomassisoneofthemainnaturalresourcesinSweden.Thepresentlow-CO2emissioncharacteristicsofthe Swedishelectricityproductionsystem(hydroandnuclear)canberetainedonlybyexpansionofbiofuel applicationsforenergypurposes.DomesticSwedishbiomassresourcesarevastandrenewable,butnot infinite.Theymustbeutilizedasefficientlyaspossible,inordertomakesurethattheymeettheconditionsfor sustainabilityinthefuture.Applicationofefficientpowergenerationcyclesatlowcostsisessentialformeeting thischallenge.Thisappliesalsotomunicipalsolidwasteincinerationwithenergyextraction,whichshouldbe preferredtoitsdumpinginlandfills. Hybriddual-fuelcombinedcycleunitsareasimpleandaffordablewaytoincreasetheelectricefficiencyof biofuelenergyutilization,withoutbiginvestments,uncertaintiesorlossofreliabilityarisingfromcomplicated technologies.Configurationsofsuchpowercyclesareveryflexibleandreliable.Theirpotentialforhighelectric efficiencyincondensingmode,hightotalefficiencyincombinedheatandpowermodeandunrivalledload flexibilityisexploredinthisproject. ThepresentreportisaLiteratureStudythatconcentratesoncertainbiomassutilizationtechnologies,in particularthedesignandperformanceofhybridcombinedcyclepowerunitsofvariousconfigurations,withgas turbinesandinternalcombustionenginesastoppingcycles.Anoverviewofpublishedliteratureandgeneral developmenttrendsontherelevanttopicispresented.Thestudyisextendedtoencompassashortoverview ofbiomassutilizationasanenergysource(focusingonSweden),historyofcombinedcyclesdevelopmentwith referenceespeciallytocombinedcycleswithsupplementaryfiringandcoal-firedhybridcombinedcycles, repoweringofoldsteamunitsintohybridonesandcombinedcyclesforinternalcombustionengines.The hybridcombinedcycleconceptformunicipalsolidwasteincineratorsisprobablytheoptionwiththegreatest efficiencyimprovementpotential,withinthereasonablecostandscalelimits. Furthermore,aState-of-Artreportisincludedinthestudyasaseparatechapter.Descriptionsofexistinghybrid combinedcycleinstallationswithbiofuel-firedbottomingcycleinSwedenanditssurroundingcountriesare compiledinit.Thepresentationshowsthathybridcombinedcyclesareastandardtechnologyinmany respects.Thesespecificconfigurationshavebeenchosenasthemostrewardingonesoutofvarious alternativesandhaveprovedtheiradvantagesincommercialoperation. ThemajorresearchprojectfollowingthisLiteratureStudywillfocusoninvestigationofpossibleefficiency improvementofbiomassenergyutilizationbyapplicationofhybridconfigurationswithnaturalgasfiredgas turbineandinternalcombustionenginesastoppingcycles. (Svensktitel:Hybridcyklermedgasturbiner/kolvmotorerochbiobränsle-elleravfallseldadepannor.) Approvedfordistribution: Open Name/company Address Locality HybridCombinedCycleswithBiomassandWasteFiredBottomingCycle.ALiteratureStudy.MiroslavPetrov,Feb2002 CONTENTS: Page: ACKNOWLEDGEMENTS….……………………………………………………… 3 ABBREVIATIONS…..……………………………………………………………… 4 1.INTRODUCTION………………………………………………………………… 5 1.1.Background……………………………………………………………... 5 1.2.Objectives……………………………………………………………….. 6 1.2.1.Objectivesofthemainresearchproject………………………6 1.2.2.ObjectivesoftheLiteratureStudy……………………………..6 1.3.Definitions……………………………………………………………….. 7 1.4.Methodology…………………………………………………………….. 9 2.BIOMASSANDMUNICIPALSOLIDWASTEASFUELS…………..….….. 11 2.1.UtilizationofBiomassandMSWworldwideandinSweden……. 11 2.1.1.Importanceofbiofuelsassourcesofenergy………………….11 2.2.2.BiomassutilizationinSweden…………………………………..13 2.1.3.BiomassandMSWresourcebaseinSweden………………..16 2.2.Combustionpropertiesofbiofuels………………………………….. 19 2.2.1.Elementalstructureofbiomass.Ashcomposition……………19 2.2.2.Theenergyvalueofbiomass.Combustionkinetics………….23 2.2.3.Pollutantemissions………………………………………………25 2.3.TechnologiesforbiomassandMSWenergyutilization…………. 26 2.3.1.Directcombustion………………………………………………..26 2.3.2.Upgradingtogaseousfuels……………………………………..32 2.3.3.Upgradingtoliquidfuels…………………………………………35 2.4.Biofuelhandlingandpreparation.LifeCycleAnalysis……………40 3.HISTORYANDDEVELOPMENTOFHYBRIDCOMBINEDCYCLES. HCCWITHCOAL-FIREDBOTTOMINGCYCLE….………………………….. 45 3.1.Toppingcyclesandfuels……………………………………………….45 3.2.Bottomingcyclesandfuels…………………………………………….45 3.3.Combinedcycles…………………………………………………………46 3.4.ReviewofsupplementaryfiredCCandcoal-firedHCC………….. 48 1 HybridCombinedCycleswithBiomassandWasteFiredBottomingCycle.ALiteratureStudy.MiroslavPetrov,Feb2002 4.HCCWITHBIOMASSORMSWASBOTTOMINGFUEL………………...… 65 4.1.HCCwithbiomassasbottomingfuel……………………………….. 65 4.2.HCCwithMSWasbottomingfuel……………………………………. 70 5.SPECIALATTENTIONTOINTERNALCOMBUSTIONENGINES COMBINEDCYCLES………………………………………………………….… 77 6.STATE-OF-ARTOFEXISTINGBIOMASSHYBRIDCOMBINEDCYCLES INSWEDENANDITSNEIGHBOURINGCOUNTRIES……………………… 92 6.1.Finland 6.1.1.Kirkniemiindustrialcogenerationpowerplant………………92 6.1.2.TheindustrialcogenerationunitinKotka……………………96 6.2.Sweden 6.2.1.TheCHPplantinSandviken…………………………………. 99 6.2.2.TheoldCHPunitinEskilstuna……………………………….101 6.2.3.TheMSW-firedCHPplantinLinköping(Gärstad)………….105 6.2.4.TheCHPplantinKarlskoga………………………………….109 6.2.5.ThenewCHPunitinHelsingborg……………………………….111 6.3.Denmark 6.3.1.TheMSW-firedCHPplantinHorsens………………….……115 6.3.2.ThenewCHPunit“Avedøre2”….……………………………117 6.4.AfewwordsaboutotherrelevantexamplesinNorthernEurope 6.4.1.TheMSWincineratorinAlkmaar,TheNetherlands,toppedby internalcombustionengines…………………………………122 6.4.2.MSWincineratorandgasturbineHCCinGermany…………123 6.4.3.IndustrialHCCco-generationforthepulp&paperindustry inGermany…………………………………………………….124 7.DISCUSSIONANDCONCLUSIONS…….……………………………………...125 8.Sammanfattning(påsvenska)…………………………………………………. 128 LISTOFREFERENCES……………………………………………………………. 130 AppendixA.1.Chemicalelementsinbiomass AppendixA.2.ImpactofmoisturecontentonLHVofbiomassfuel AppendixA.3.Shortdiscussiononcycleefficiencies 2 HybridCombinedCycleswithBiomassandWasteFiredBottomingCycle.ALiteratureStudy.MiroslavPetrov,Feb2002 ACKNOWLEDGEMENTS Theentireproject,partofwhichisthisLiteratureStudy,isfinanciallysupportedbythe SwedishNationalEnergyAdministration(StatensEnergimyndighet),withinthe programmeframeworkTermiskaProcesserförElproduktion.Theircontributionis gratefullyacknowledged. IamextremelygratefultoProf.TorstenFranssonandAssoc.Prof.LaszloHunyadiat theDivisionofHeatandPowerTechnologyinKTH,forthechancetoworkonthis excitingproject.GratitudeisalsoduetoallmysupervisorsintheAdvisoryGroup, whosehelp,remarksandsuggestionsclearedthewayforthisreportandthewhole projectwork. Lastbutnotleast,Iwouldliketothankmyfellowstudentsandothercolleaguesfrom theDivisionofHeat&PowerTechnologyandthewholeDepartmentofEnergy TechnologyatKTH,fortheirsupportandfortheniceatmosphere. 3 HybridCombinedCycleswithBiomassandWasteFiredBottomingCycle.ALiteratureStudy.MiroslavPetrov,Feb2002 ABBREVIATIONS BC BottomingCycle BFB BubblingFluidisedBed CC CombinedCycle CFB CirculatingFluidisedBed CHP CombinedHeat&Power DFCC Dual-FuelCombinedCycle FB FluidizedBed FD ForcedDraught(fan) GT GasTurbine GTCCGasTurbineCombinedCycle ha hectare(aunitforlandarea=10’000m2) HCC HybridCombinedCycle HFO HeavyFuelOil HHV HigherHeatingValue(offuels) HRSG HeatRecoverySteamGenerator HP HighPressure ICE InternalCombustionEngine ICECC InternalCombustionEngineCombinedCycle ID InducedDraught(fan) IGCC IntegratedGasificationCombinedCycle LFO LightFuelOil LHV LowerHeatingValue(offuels) LP LowPressure MP MediumPressure MSW MunicipalSolidWaste NG NaturalGas NOx NitricOxides(generalisedformulation) PFBC PressurisedFluidisedBedCombustion PM ParticulateMatter ppm parts-per-million(=mg/Nm3) ppmv parts-per-milliononvolumebasis(=ml/Nm3) RDF RefuseDerivedFuel SOx SulphuricOxides(generalisedformulation) ST SteamTurbine TC ToppingCycle UHC UnburnedHydroCarbons VOC VolatileOrganicCompounds %wt %byweight(masspercent) %v %byvolume(volumetricpercent) 4 HybridCombinedCycleswithBiomassandWasteFiredBottomingCycle.ALiteratureStudy.MiroslavPetrov,Feb2002 Chapter1:“Introduction” 1.INTRODUCTION 1.1.Background Biomasshasbeenusedasfuelsincethedawnofhumankind.Inthelasttwocenturies however,ithasbeengraduallyreplacedbyfossilfuels,whichareusedinever-rising quantities(althoughinmanydevelopingcountriesbiomassisstillthemostimportant localenergyresource).Industrialization,large-scalecentralizedpowergenerationand productionoffuelsfortransportationhaveruledouttheuseofbiomassasamajor energyresource.Itnowcontributesaverysmallfractionoftheprimaryenergymixof theindustrializednations,althoughstillbeingimportantfordevelopingcountries. Currently,interestinbiomassenergyutilizationisrisingagain.Severalmajorfactors forthiscanbementioned:decreasingpollutantemissions(especiallycarbondioxide),
Recommended publications
  • Unit 3 Types of Fuels and Their Characteristics
    Types of Fuels and UNIT 3 TYPES OF FUELS AND THEIR their Characteristics CHARACTERISTICS Structure 3.1 Introduction Objectives 3.2 Principles of Classification of Fuels 3.3 Solid Fuels and their Characteristics 3.3.1 Woods and their Characteristics 3.3.2 Coals and their Characteristics 3.3.3 Manufactured Solid Fuels and their Characteristics 3.4 Liquid Fuels and their Characteristics 3.4.1 Petroleum and its Characteristics 3.4.2 Manufactured Liquid Fuels and their Characteristics 3.5 Gaseous Fuels and their Characteristics 3.5.1 Natural Gas and its Characteristics 3.5.2 Manufactured Gases and their Characteristics 3.6 Summary 3.7 Key Words 3.8 Answers to SAQs 3.1 INTRODUCTION Fuel is a substance which, when burnt, i.e. on coming in contact and reacting with oxygen or air, produces heat. Thus, the substances classified as fuel must necessarily contain one or several of the combustible elements : carbon, hydrogen, sulphur, etc. In the process of combustion, the chemical energy of fuel is converted into heat energy. To utilize the energy of fuel in most usable form, it is required to transform the fuel from its one state to another, i.e. from solid to liquid or gaseous state, liquid to gaseous state, or from its chemical energy to some other form of energy via single or many stages. In this way, the energy of fuels can be utilized more effectively and efficiently for various purposes. Objectives After studying this unit, you should be able to • describe the classification of fuels, • explain the various types of fuels and their characteristics, and • know their applications in various fields.
    [Show full text]
  • Djuplodade Sjöar Och Vattendrag I Örebro Län Djupkartorna Finns Digitalt Som Bildfiler, Men Även Som Papperskopior
    Länsstyrelsen i Örebro län Djuplodade sjöar och vattendrag i Örebro län Djupkartorna finns digitalt som bildfiler, men även som papperskopior. Förklaring till kolumnrubriker finns på sista sidan. Namn Kommun Vs Sjönr Xkoord Ykoord Ekolod Handlod Vber Vattensystem Anm. Abborrflyet (Lilla KviddtjäHällefors 138 493 6644080 1431800 1968 SMHI Gullspångsälven Abborrtjärn Karlskoga 138 172 6592910 1436030 1988 SMHI Gullspångsälven Abborrtjärn, se Lobergs-Karlskoga 138 139 6592870 1432850 1988 SMHI Gullspångsälven Lindesberg Abborrtjärnen Smedjebacken 123 3 6644910 1472610 1965 SMHI Hedströmmen Acksjön Lindesberg 122 632 6627410 1457700 1993 SMHI Arbogaån Alsen Askersund 67 1 6527602 1449053 se top.karta Mindre vattendrag till Vättern Andsjön Lindesberg 122 633 6627160 1455800 1986 SMHI Arbogaån Aspen Lindesberg 122 385 6618440 1454390 1992 SMHI Arbogaån Hallsberg Avern Finspång 6711 1 6530080 1487980 Årtal okänt Ysundaån Babbtjärnen Nora 122 402 6612030 1442950 1985 SMHI Arbogaån Bastkulltjärnen Karlskoga 138 165 6591420 1435010 1988 SMHI Gullspångsälven Bergsjön Laxå 670 160 6514990 1428630 1988 SMHI Forsviksån Bergtjärn Hällefors 138 194 6595780 1436430 1988 SMHI Gullspångsälven Bergtjärn Karlskoga 121 180 6571320 1430320 1994 SMHI Eskilstunaån Bergtjärnen Hällefors 138 562 6646000 1426930 1986 SMHI Gullspångsälven Bergtjärnen Hällefors 138 526 6647820 1434570 1986,2009 SMHI, SVb Gullspångsälven Bjuggtjärnen Lindesberg 123 34 6645860 1466530 1962 SMHI Hedströmmen Bjurhultasjön Hallsberg 6711 19 6537920 1480910 1958 Ysundaån Bjursjön Hällefors
    [Show full text]
  • Improved Accessibility to Corridors from Remoted and Connected Areas in Region Örebro
    Improved accessibility to corridors from remoted and connected areas in region Örebro Author: Ahmed Alaeddine, Region Örebro County Published: March 2021 Improved accessibility to corridors from remoted and connected areas in region Örebro By Ahmed Alaeddine Copyright: Reproduction of this publication in whole or in part must include the customary bibliographic citation, including author attribution, report title, etc. Cover photo: Region Örebro County Published by: Ahmed Alaeddine, Region Örebro County The contents of this publication are the sole responsibility of BALTIC LOOP partnership and do not necessarily reflect the opinion of the European Union. Contents Background ................................................................................................................ 1 Method ....................................................................................................................... 2 Sweden ...................................................................................................................... 2 The municipalities challenges - today and in the future .............................................. 2 The situation of the municipalities today ..................................................................... 2 Population and labour market ................................................................................. 3 Business .................................................................................................................. 3 Economy ................................................................................................................
    [Show full text]
  • Örebro Län. Våren 2021
    Anmäl dig till vår SMS-Lista för att få påminnelse när vi har uppdaterat listan för insamling! Skicka ett SMS med texten "Lantbruksplast Örebro" till nummer 711 40 så läggs numret du skickar från med på listan Örebro Län. Våren 2021 Kommun Insamlingsplats Datum Öppettider Insamlare Telefon Askersund Granngården 19-20 Juli Måndag 13-18, Tisdag 07-12 Mikael Jogevall 070-672 36 22 Ervalla Före detta Lantmännen Ervalla 26-27 Juli Måndag 13-18, Tisdag 07-12 Mikael Jogevall 070-672 36 22 Hallsberg Bo Hjortkvarn 19-20 Juli Måndag 13-18, Tisdag 07-12 Mikael Jogevall 070-672 36 22 Karlskoga Granngården Karlskoga 21-22 Juli Onsdag 13-18, Torsdag 07-12 Mikael Jogevall 070-672 36 22 Kumla Vakant! Vakant! Lekeberg Före detta Lantmännen Fjugesta 20-21 Juli Tisdag 13-18, Onsdag 07-12 Mikael Jogevall 070-672 36 22 Lindesberg Före detta Lantmännen Fellingsbro 26-27 Juli Måndag 13-18, Tisdag 07-12 Mikael Jogevall 070-672 36 22 Lindesberg Mårdträ, Sinderstalpsvägen 6 27-28 Juli Tisdag 13-18, Onsdag 07-12 Mikael Jogevall 070-672 36 22 Ljusnarsberg Östra Löa Sågverksplan 28-29 Juli Onsdag 13-18, Torsdag 07-12 Mikael Jogevall 070-672 36 22 Nora Björkudden Nyhyttan 28-29 Juli Onsdag 13-18, Torsdag 07-12 Mikael Jogevall 070-672 36 22 För att få lämna använd fiberduk, odlingsfolie, plansilofolie och ensilageslang måste handling som visar att uppdaterad 2021-03-11 återvinningsavgiften är betald uppvisas. Kan sådan handling inte uppvisas kan du bli nekad avlastning. De olika plastfraktionerna skall färgsorteras, vit och transparent plast sorteras i en "vit fraktion" övriga färger blandas i en "färgad fraktion".
    [Show full text]
  • Rankings Province of Örebro Län
    9/27/2021 Maps, analysis and statistics about the resident population Demographic balance, population and familiy trends, age classes and average age, civil status and foreigners Skip Navigation Links SVEZIA / Östra Mellansverige / Province of Örebro län Powered by Page 1 L'azienda Contatti Login Urbistat on Linkedin Adminstat logo DEMOGRAPHY ECONOMY RANKINGS SEARCH SVEZIA Municipalities Askersund Stroll up beside >> Karlskoga Degerfors Kumla Hällefors Laxå Hallsberg Lekeberg Lindesberg Ljusnarsberg Nora Örebro Provinces ÖREBRO LÄN SÖDERMANLANDS LÄN ÖSTERGÖTLANDS LÄN UPPSALA LÄN VÄSTMANLANDS LÄN Regions Powered by Page 2 Mellersta Övre Norrland L'azienda Contatti Login Urbistat on Linkedin Norrland Adminstat logo Småland med DEMOGRAPHY ECONOMY RANKINGS SEARCH Norra SVEZIAöarna Mellansverige Stockholm Östra Sydsverige Mellansverige Västsverige Province of Örebro län Territorial extension of Province of ÖREBRO LÄN and related population density, population per gender and number of households, average age and incidence of foreigners TERRITORY DEMOGRAPHIC DATA (YEAR 2019) Östra Region Mellansverige Inhabitants (N.) 304,805 Sign Örebro län Families (N.) 144,379 Municipality capital Örebro Males (%) 50.1 Municipalities in 12 Province Females (%) 49.9 Surface (Km2) 9,687.03 Foreigners (%) 7.2 Population density Average age 31.5 41.2 (Inhabitants/Kmq) (years) Average annual variation +1.16 (2015/2019) MALES, FEMALES AND DEMOGRAPHIC BALANCE FOREIGNERS INCIDENCE (YEAR 2019) (YEAR 2019) Powered by Page 3 ^L'azienda Contatti Login Urbistat on Linkedin Adminstat logo DEMOGRAPHY ECONOMY RANKINGS SEARCH SVEZIA Balance of nature [1], Migrat. balance [2] Balance of nature = Births - Deaths ^ Migration balance = Registered - Deleted Rankings Province of örebro län the 5 most populated Municipalities: Örebro, Karlskoga, Lindesberg, Kumla e Hallsberg is on 8° place among 21 provinces by demographic size is on 14° place among 21 provinces per average age Address Contacts Svezia AdminStat 41124 Via M.
    [Show full text]
  • Solid Fuels and Firelighting Products
    Nordic Ecolabelling of Solid fuels and firelighting products Version 3.2 • 06 March 2017 - 31 March 2024 Nordic Ecolabelling Content What is a Nordic Swan Ecolabelled solid fuel or firelighting product? 4 Why choose The Nordic Swan Ecolabel? 4 What can carry The Nordic Swan Ecolabel? 4 How to apply 5 1 Production and product description 6 2 Resources 6 2.1 Wood 8 2.2 Solid and liquid renewable raw materials other than wood in barbecue charcoal/briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land 10 2.3 Requirements for working conditions in the production of barbeque charcoal/briquettes 11 2.4 Chemicals 12 3 Energy consumption 14 4 Use and quality requirements 16 5 Quality and official requirements 20 Regulations for the Nordic Ecolabelling of products 22 Follow-up inspections 22 History of the criteria 22 New criteria 22 Terms and definitions 23 Appendix 1 Description of the solid fuel, material composition and production Appendix 2 Definition, class and type of raw materials Appendix 3 Declaration of tree species not permitted to be used in Nordic Ecolabelled products Appendix 4 Traceability and verification of renewable raw materials in barbecue charcoal/-briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land Appendix 5 Declaration for chemical products used in the manufacture of solid fuels or firelighting products Appendix 6 Declaration for constituent substances in chemical products Appendix 7 Reference values for the energy content of fuels Appendix 8 Analysis and test laboratories Appendix 9 Declaration of compliance with quality specifications for firewood O87 Solid fuels and firelighting products, version 3.2, 26 January 2021 This document is a translation of an original in Danish.
    [Show full text]
  • Outline of Solid Fuel Manufacturing
    Technical Information Sheet 1. Name of technology Biomass Waste Fuel (BWF) Manufacturing Technology Complete recycling of waste oil (waste ink, waste paint, etc.) which has been considered difficult for recycling and simply incinerated. 2. Type of technology A patented original treatment system (Patent No. 5078628) to manufacture BWF as an alternative fuel to coal 3. Description of technology [Objective and application of technology] Our original treatment method and facilities enable waste oil, for which incineration has been the only treatment method, to be recycled to BWF with higher combustion efficiency than coal and thereby contributing to the reduction in environmental impact by accelerating the recycling of various kinds of waste. In particular, BWF for cement factories enables combustion residue from incineration plants and oil mud from oil-water separation plants to be fully recycled, provided that BWF is used in appropriate plants with facilities for burning general coal. In our BWF manufacturing process, we receive materials after carrying out preliminarily sample inspections for thoroughly confirming material composition (to eliminate substances with hazardous properties such as heavy metal contamination). Also, we treat the materials using a reliable safety management system including special fire prevention equipment such as a nitrogen generating devices and sprinklers with twice the capacity generally required. Outline of solid fuel manufacturing Animal and plant Combustion Waste oil Waste plastic Slag Smoke dust Tonner
    [Show full text]
  • Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’S Name Tax Reference No
    This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’s Name Tax Reference No. Address (include Eircode) Accounting Period From DDMMYYYY To DDMMYYYY (see Note 1) Part A Declaration of tax-free and fully relieved supplies of solid fuel (One tonne equals 1,000 kilograms) Coal Peat briquettes Milled peat Other peat Purpose of supply Tonnes (one Tonnes (one Tonnes (one Tonnes (one decimal place) decimal place) decimal place) decimal place Electricity generation (excluding CHP cogeneration) (see Notes 2 & 3) Use by a Greenhouse Gas Not (GHG) emissions permit Applicable holder (see Note 4) Use as a raw material (see Note 5) First supply outside the State Part B Summary of taxable supplies (including self-supplies) of solid fuel and tax payable (see Note 6) (One tonne equals 1,000 kilograms) Tonnes Rate Description of solid fuel Tax Payable (one decimal place) € / tonne Coal for use by a GHG emissions 4.18 € permit holder (see Note 4) 0 to <30% Biomass 88.23 € Coal (see Note 7) 30% to <50% Biomass 61.76 € Biomass 50% or over 44.12 € 0 to <30% Biomass 61.42 € Peat briquettes 30% to <50% Biomass 42.99 € (see Note 7) Biomass 50% or over 30.71 € Milled peat 30.44 € Other peat (see Note 8) 45.65 € Total Tax Payable € 1 RPC014952_EN_WB_L_1 This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Part C DECLARATION I declare, in accordance with the law* governing SFCT, that: • the details on page 1 of this form represent
    [Show full text]
  • Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries
    1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on COMBUSTION OF SOLID FUELS AND INDOOR AIR QUALITY IN PRIMARILY DEVELOPING COUNTRIES Approved by ASHRAE Board of Directors October 3, 2016 Reaffirmed by ASHRAE Technology Council June 26, 2019 Expires June 26, 2022 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y COMMITTEE ROSTER The ASHRAE Position Document on “Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries” was developed by the Society’s Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Position Document Committee formed on September 16, 2013 with Paul Francisco as its chair. Paul W. Francisco, Chair Kirk R. Smith University of Illinois University of California Champaign, IL, USA Berkeley, CA, USA Jill Baumgartner Dean Still McGill University Aprovecho Research Center Montreal, QC, Canada Cottage Grove, OR, USA Chandra Sekhar National University of Singapore Singapore, Singapore Cognizant Committees The chairperson of Environmental Health Committee also served as ex-officio members. Zuraimi Sultan, Ex-Officio Cognizant Committee Chair Environmental Health Committee National Research Council Canada Ottawa, ON, Canada ii HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL DATES The following summarizes the revision, reaffirmation or withdrawal dates 10/03/2016 —BOD approves Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries 6/26/2019—Technology Council approves reaffirmation of Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Note: Technology Council and the cognizant committee recommend revision, reaffirmation or withdrawal every 30 months.
    [Show full text]
  • Health Problems and Burning Indoor Fuels
    American Thoracic Society PUBLIC HEALTH | INFORMATION SERIES Health Problems and Burning Indoor Fuels Household air pollution means that the quality of the air inside your home is not healthy. There are a number of things that can pollute the air indoors. A common source of indoor air pollution worldwide is the fuel used for cooking and heating. When these fuels are burned, the process can cause pollution inside the home, particularly if there is not good outdoor air exchange (ventilation). This fact sheet focuses on air pollution caused by burning fuels in the home. How does burning fuel cause pollution in the home? What lung problems can indoor pollution from Burning of fuels inside homes generates a complex mixture burning fuels cause? of indoor air pollutants. The key air pollutants include soot Household air pollution is harmful to people of all ages, and and other small particles (called particulate matter) that can may start having a harmful impact on lung function soon be breathed in and damage the lungs. Liquefied petroleum after birth or even before a baby is born. The most common gas, natural gas, ethanol, and electricity are considered clean lung problem from household air pollution in adults is chronic fuels, but not all clean fuels are equal. Some studies find that bronchitis, a type of chronic obstructive pulmonary disease cooking with gas stoves, particularly if they are unvented, (COPD). Regular exposure to indoor air pollution can increase may increase indoor levels of nitrogen dioxide, causing air the risk for asthma, tuberculosis, interstitial lung diseases, pollution. heart disease, and lung cancer.
    [Show full text]
  • THE GUIDE to SOLID FUELS This Leaflet Will Tell You All You Need To
    THE GUIDE TO SOLID FUELS This leaflet will tell you all you need to know about: • The different solid fuels available and their suitability for the various types of appliances • Smoke control legislation • Buying solid fuel • Hints on getting the best from your fuel and appliance Choice of Fuel There are a great many different solid fuels for sale. Your choice will be based on a number of criteria, the most important of which will be the type of appliance you will be burning the fuel on and whether or not you live in a smoke control area (see page 4). Fuels for open fires Housecoal The most traditional fuel for open fires is housecoal. It is available in various sizes e.g. Large Cobbles, Cobbles, Trebles and Doubles. The larger sizes are usually a little more expensive than Doubles size. Housecoal comes from mines in Britain and other parts of the world, most notably Columbia and Indonesia. The coal may be sold by the name of the colliery it comes from e.g. Daw Mill, the port of entry e.g. Merseyport or a merchant’s own brand name, e.g. Stirling. Coal merchants also frequently sell the coal by grade – 1, 2 and 3 or A, B and C; 1 and A being the best quality. Wood Wood and logs can be burnt on open fires. They should be well-seasoned and preferably have a low resin content. You should not use any wood that has any kind of coating on the surface e.g. varnish or paint, as harmful gases may be emitted on burning.
    [Show full text]
  • AN ORDINANCE for ZONING for SOLID FUEL-FIRED HEATING DEVICES (Sfhds)
    MPCA Model Ordinance for Minnesota Local Governments Solid Fuel-Fired Heating Devices February 2017 ZONING: NEW AND EXISTING SFHDS ALLOWED AN ORDINANCE FOR ZONING FOR SOLID FUEL-FIRED HEATING DEVICES (SFHDs) ADD I. IF YOUR COMMUNITY HAS, WILL ALLOW, PROHIBITS, OR WILL PROHIBIT SFHDs: I. ADMINISTRATIVE PROVISIONS A. PURPOSE. Model Community adopts the regulations in this ordinance controlling the use, installation and operation of outdoor wood or other solid fuel-fired heating devices (SFHDs) to achieve the following purposes: 1. Health. To protect citizens from environmental hazards and to safeguard community health. In particular, to protect the health of citizens from fine particles in emissions generated by SFHDs. The Clean Air Act (CAA) required the U.S. Environmental Protection Agency (EPA) to establish standards for particulate matter. EPA’s daily and annual fine particle National Ambient Air Quality Standards (NAAQS) were developed to protect the public from adverse health effects associated with exposure to fine particle pollution exposure. Sensitive populations protected by the CAA include persons who already have heart or lung diseases, children, and older adults. They experience serious health effects such as heart attacks, strokes, acute and chronic bronchitis, asthma episodes, reduced lung function, and other respiratory illnesses as a result of inhaling fine particle smoke which imbeds in their respiratory and circulatory systems. In addition to health effects, scientific studies show inhalation results in increased hospital and emergency room visits, lost work and school days, and in rare cases, premature death. 2. Fire safety. To protect citizens and structures from fire safety risks from SFHDs that are not properly installed, do not have proper safety equipment such as spark arresters, or are installed in close proximity to other buildings.
    [Show full text]