Tracking Access to Nonsolid Fuel for Cooking 2014/8

Total Page:16

File Type:pdf, Size:1020Kb

Tracking Access to Nonsolid Fuel for Cooking 2014/8 1 TRACKING ACCESS TO NONSOLID FUEL FOR COOKING 2014/8 Supported by A KNOWLEDGE NOTE SERIES FOR THE ENERGY & EXTRACTIVES GLOBAL PRACTICE THE BOTTOM LINE Tracking Access to Nonsolid Fuel for Cooking Some 4.3 million deaths each year in the developing world To support the achievement of these goals, a starting point are traceable to household Why is this issue important? must be set, indicators developed, and a framework established to air pollution caused by the Traditional home cooking practices are a major health track those indicators until 2030. The World Bank and International inefficient use of solid fuels for risk across the developing world Energy Agency have led a consortium of 15 international agencies household cooking and other to produce data on access to nonsolid fuel for the SE4ALL Global purposes. Although 1.6 billion The World Health Organization estimates that in 2012 about 4.3 mil- Tracking Framework. Launched in 2013, the framework defines people gained access to lion deaths occurred because of exposure to household air pollution access to modern cooking solutions is as the use of nonsolid fuels nonsolid fuels between 1990 caused by smoke from the incomplete combustion of fuels such as for the primary method of cooking. Nonsolid fuels include (i) liquid and 2010, reliance on solid fuels wood, coal, and kerosene. Inefficient energy use in the home also fuels (for example, kerosene, ethanol, or other biofuels), (ii) gaseous expanded in Sub-Saharan Africa poses substantial risks to safety, causing burns and injuries across fuels (such as natural gas, LPG, and biogas), and (iii) electricity. These and Southern Asia. Future the developing world. are in contrast to solid fuels such as (i) traditional biomass (wood, efforts to increase access to Achieving universal access to modern energy services, including charcoal, agricultural residues, and dung), (ii) processed biomass nonsolid fuels could focus on cooking fuel, is one of the three complementary objectives of the (pellets, briquettes); and (iii) other solid fuels (such as coal and 20 countries that account for Sustainable Energy for All (SE4ALL) initiative. Formally launched in lignite). The measurement of access to nonsolid fuels is underpinned 85 percent of the global deficit. the UN General Assembly in September 2012 and co-chaired by the by several databases, including the WHO Global Household Energy president of the World Bank Group and the UN Secretary-General, Database (box 1). SE4ALL calls governments, businesses, and civil society to address urgent energy challenges by 2030 (SE4ALL 2012). Sudeshna Ghosh Banerjee is a senior economist in the World Box 1. Assembling the data on access to modern cooking fuels Bank’s Energy Practice Elisa Portale is an To arrive at the figures quoted here, various household data sources 1990 and 2010 (Bonjour and others 2012). This model derived solid fuel energy economist in the were leveraged to establish a historical series of data on primary fuel use estimates for 193 countries. For cooking solutions, data are primarily use between 1990 and 2010. For the WHO Global Household Energy from the DHS, national censuses or national household surveys, and same practice. Database, data were collected from nationally representative household MICS. surveys as well as Demographic and Health Surveys (DHS) and Living Heather Standards Measurement Surveys (LSMS), Multi-Indicator Cluster Surveys The mixed model used here was developed by the WHO to track progress Adair-Rohani (MICS), and the World Health Survey (WHS). Surveys such as the DHS toward the United Nations Millennium Development Goals—to gauge, and the LSMS/income-expenditure surveys are typically conducted for example, the rates of child malnutrition and access to water and and Sophie every 3–4 years, while most censuses are held every 10 years. Given sanitation access—and for WHO reporting on household solid fuel use. Bonjour are the infrequency and the regional distribution of some surveys, some This model accounts for regions, countries, and time as spline functions technical officers at the World Health countries have gaps in available data. A mixed model was used to obtain only. Spline function estimates are restricted to values ranging from zero Organization. a set of annual access rates to nonsolid fuel for each country between to one. 2 TRACKING ACCESS TO NONSOLID FUEL FOR COOKING What is the current level of access? Figure 2a. Top 20 high-impact countries: home to 2.4 billion of the 2.8 billion people who use solid fuel The global rate of access—at 59 percent—masks India 705 stark differences between regions China 613 Bangladesh 135 The share of the global population using primarily nonsolid fuels Indonesia 131 “More than two-thirds of Nigeria 118 for cooking was 59 percent in 2010; the other 2.8 billion people on Pakistan 111 the planet still relied mainly on solid fuels. About 78 percent of that Ethiopia 81 the rural population in the Congo, DR 61 population lived in rural areas, and 96 percent was geographically Vietnam 49 developing world depends 46 concentrated in Sub-Saharan Africa, Eastern Asia, Southern Asia, and Philippines on solid fuels. The situation Myanmar 44 Southeastern Asia (figure 1). Tanzania 42 Sudan 35 is particularly stark in Sub- Within the developing world, the rate of access to nonsolid fuel Kenya 33 Uganda 32 Saharan Africa (94 percent), varies from 19 percent in Sub-Saharan Africa to about 95 percent in Afghanistan 27 Western Asia and 100 percent in Northern Africa. Except in Western Nepal 25 Oceania (79 percent), Mozambique 22 Asia, the Caucasus and Central Asia, and Northern Africa, more than 22 Southeastern Asia Korea, DR two-thirds of the rural population in the developing world depends Ghana 20 (77 percent), and Southern on solid fuels. The situation is particularly stark in Sub-Saharan Africa 0 100 200 300 400 500 600 700 800 Access deficit (millions of people) Asia (73 percent).” (94 percent), Oceania (79 percent), Southeastern Asia (77 percent), and Southern Asia (73 percent). These four regions together account Source: WHO Global Household Energy Database, 2012 for three-quarters of the total rural use of solid fuel in the world. In urban areas, more than 70 percent of the population has access to nonsolid fuels, except in Sub-Saharan Africa, where the rate is just Efforts to increase access to nonsolid fuel should focus on 20 42 percent. “high-impact” countries. These account for 85 percent (2.4 billion people) of the absolute global access deficit (figure 2a). Eleven of the 20 countries are in Asia and nine in Sub-Saharan Africa. India Figure 1. Deficit in access to nonsolid fuel, 2010 (in millions) and China together account for 1.3 billion users of solid fuel. Among another group of 20 low-access countries (figure 2b), 18 are in Sub- Other Saharan Africa. 124 The rate of access to nonsolid fuel spans a wide range. In SSA 690 Sub-Saharan Africa 21 countries show less than 10 percent access Rural to nonsolid fuel. By contrast, near-universal access (greater than Nonsolid fuel, Solid fuel, SA 2,179 95 percent) is found in 73 countries of the world (37 of which are 4.1 billion, 2.8 billion, 1,018 59% 41% developing countries). SEA 308 EA Urban 637 598 How has access evolved historically? Gains in access to nonsolid cooking fuel between Source: WHO Global Household Energy Database, 2012 1990 and 2010 were tempered by population growth Note: The regional groupings used in this figure, and in this note generally, are those used The share of the global population with access to nonsolid fuel by the United Nations. SSA = Sub-Saharan Africa; SA = Southern Asia; SEA = Southeast Asia; EA = East Asia. rose from 47 percent (2.5 billion people) in 1990 to approximately 3 TRACKING ACCESS TO NONSOLID FUEL FOR COOKING Figure 2b. Top 20 low-access countries: home to 369 million of Table 1. Regional trends in access to nonsolid fuel, 1990–2010 the 2.8 billion people who use solid fuel % of total population with access to nonsolid fuel Timor-Leste 8.0 Congo, DR 7.0 1990 2000 2010 Togo 5.6 Tanzania 5.6 Sub-Saharan Africa 14 17 19 Mozambique 5.0 “The share of the global Somalia 4.7 Oceania 14 24 31 Burundi 4.4 Southern Asia 16 30 40 population with access to Niger 4.0 CAR 3.8 Southeast Asia 29 40 48 nonsolid fuel rose from Lao PDR 3.7 Uganda 3.6 East Asia 37 48 55 47 percent (2.5 billion Malawi 3.4 Guinea 3.2 Caucasus and Central Asia 58 73 85 people) in 1990 to Guinea-Bissau 2.4 Ethiopia 2.2 Latin America and Caribbean 73 81 86 approximately 59 percent Liberia 2.2 Sierra Leone 2.0 Western Asia 83 90 95 Rwanda 2.0 (4.1 billion people) in 2010.” Mali 2.0 Northern Africa 88 96 100 Madagascar 2.0 Industrialized world 95 98 99 0 2 4 6 8 10 Accessrate (% of population) World 47 54 59 Source: WHO Global Household Energy Database, 2012 Source: WHO Global Household Energy Database, 2012 59 percent (4.1 billion people) in 2010. The access rate in rural areas The growth rate of access to nonsolid fuel in urban areas, at increased over the same period from 26 percent to 35 percent; in 1.7 percent, far outpaced the rural growth rate of 0.6 percent. urban areas, from 77 percent to 84 percent. Dramatic progress was Nevertheless, the rapid pace of urban population growth over this made in the Caucasus and Central Asia and in Southern Asia, which period made it difficult for nonsolid fuel access in urban areas to registered increases of 27 and 24 percentage points, respectively, keep up, with the expansion of access falling short of population over the two decades.
Recommended publications
  • Unit 3 Types of Fuels and Their Characteristics
    Types of Fuels and UNIT 3 TYPES OF FUELS AND THEIR their Characteristics CHARACTERISTICS Structure 3.1 Introduction Objectives 3.2 Principles of Classification of Fuels 3.3 Solid Fuels and their Characteristics 3.3.1 Woods and their Characteristics 3.3.2 Coals and their Characteristics 3.3.3 Manufactured Solid Fuels and their Characteristics 3.4 Liquid Fuels and their Characteristics 3.4.1 Petroleum and its Characteristics 3.4.2 Manufactured Liquid Fuels and their Characteristics 3.5 Gaseous Fuels and their Characteristics 3.5.1 Natural Gas and its Characteristics 3.5.2 Manufactured Gases and their Characteristics 3.6 Summary 3.7 Key Words 3.8 Answers to SAQs 3.1 INTRODUCTION Fuel is a substance which, when burnt, i.e. on coming in contact and reacting with oxygen or air, produces heat. Thus, the substances classified as fuel must necessarily contain one or several of the combustible elements : carbon, hydrogen, sulphur, etc. In the process of combustion, the chemical energy of fuel is converted into heat energy. To utilize the energy of fuel in most usable form, it is required to transform the fuel from its one state to another, i.e. from solid to liquid or gaseous state, liquid to gaseous state, or from its chemical energy to some other form of energy via single or many stages. In this way, the energy of fuels can be utilized more effectively and efficiently for various purposes. Objectives After studying this unit, you should be able to • describe the classification of fuels, • explain the various types of fuels and their characteristics, and • know their applications in various fields.
    [Show full text]
  • Solid Fuels and Firelighting Products
    Nordic Ecolabelling of Solid fuels and firelighting products Version 3.2 • 06 March 2017 - 31 March 2024 Nordic Ecolabelling Content What is a Nordic Swan Ecolabelled solid fuel or firelighting product? 4 Why choose The Nordic Swan Ecolabel? 4 What can carry The Nordic Swan Ecolabel? 4 How to apply 5 1 Production and product description 6 2 Resources 6 2.1 Wood 8 2.2 Solid and liquid renewable raw materials other than wood in barbecue charcoal/briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land 10 2.3 Requirements for working conditions in the production of barbeque charcoal/briquettes 11 2.4 Chemicals 12 3 Energy consumption 14 4 Use and quality requirements 16 5 Quality and official requirements 20 Regulations for the Nordic Ecolabelling of products 22 Follow-up inspections 22 History of the criteria 22 New criteria 22 Terms and definitions 23 Appendix 1 Description of the solid fuel, material composition and production Appendix 2 Definition, class and type of raw materials Appendix 3 Declaration of tree species not permitted to be used in Nordic Ecolabelled products Appendix 4 Traceability and verification of renewable raw materials in barbecue charcoal/-briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land Appendix 5 Declaration for chemical products used in the manufacture of solid fuels or firelighting products Appendix 6 Declaration for constituent substances in chemical products Appendix 7 Reference values for the energy content of fuels Appendix 8 Analysis and test laboratories Appendix 9 Declaration of compliance with quality specifications for firewood O87 Solid fuels and firelighting products, version 3.2, 26 January 2021 This document is a translation of an original in Danish.
    [Show full text]
  • Outline of Solid Fuel Manufacturing
    Technical Information Sheet 1. Name of technology Biomass Waste Fuel (BWF) Manufacturing Technology Complete recycling of waste oil (waste ink, waste paint, etc.) which has been considered difficult for recycling and simply incinerated. 2. Type of technology A patented original treatment system (Patent No. 5078628) to manufacture BWF as an alternative fuel to coal 3. Description of technology [Objective and application of technology] Our original treatment method and facilities enable waste oil, for which incineration has been the only treatment method, to be recycled to BWF with higher combustion efficiency than coal and thereby contributing to the reduction in environmental impact by accelerating the recycling of various kinds of waste. In particular, BWF for cement factories enables combustion residue from incineration plants and oil mud from oil-water separation plants to be fully recycled, provided that BWF is used in appropriate plants with facilities for burning general coal. In our BWF manufacturing process, we receive materials after carrying out preliminarily sample inspections for thoroughly confirming material composition (to eliminate substances with hazardous properties such as heavy metal contamination). Also, we treat the materials using a reliable safety management system including special fire prevention equipment such as a nitrogen generating devices and sprinklers with twice the capacity generally required. Outline of solid fuel manufacturing Animal and plant Combustion Waste oil Waste plastic Slag Smoke dust Tonner
    [Show full text]
  • Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’S Name Tax Reference No
    This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’s Name Tax Reference No. Address (include Eircode) Accounting Period From DDMMYYYY To DDMMYYYY (see Note 1) Part A Declaration of tax-free and fully relieved supplies of solid fuel (One tonne equals 1,000 kilograms) Coal Peat briquettes Milled peat Other peat Purpose of supply Tonnes (one Tonnes (one Tonnes (one Tonnes (one decimal place) decimal place) decimal place) decimal place Electricity generation (excluding CHP cogeneration) (see Notes 2 & 3) Use by a Greenhouse Gas Not (GHG) emissions permit Applicable holder (see Note 4) Use as a raw material (see Note 5) First supply outside the State Part B Summary of taxable supplies (including self-supplies) of solid fuel and tax payable (see Note 6) (One tonne equals 1,000 kilograms) Tonnes Rate Description of solid fuel Tax Payable (one decimal place) € / tonne Coal for use by a GHG emissions 4.18 € permit holder (see Note 4) 0 to <30% Biomass 88.23 € Coal (see Note 7) 30% to <50% Biomass 61.76 € Biomass 50% or over 44.12 € 0 to <30% Biomass 61.42 € Peat briquettes 30% to <50% Biomass 42.99 € (see Note 7) Biomass 50% or over 30.71 € Milled peat 30.44 € Other peat (see Note 8) 45.65 € Total Tax Payable € 1 RPC014952_EN_WB_L_1 This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Part C DECLARATION I declare, in accordance with the law* governing SFCT, that: • the details on page 1 of this form represent
    [Show full text]
  • Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries
    1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on COMBUSTION OF SOLID FUELS AND INDOOR AIR QUALITY IN PRIMARILY DEVELOPING COUNTRIES Approved by ASHRAE Board of Directors October 3, 2016 Reaffirmed by ASHRAE Technology Council June 26, 2019 Expires June 26, 2022 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y COMMITTEE ROSTER The ASHRAE Position Document on “Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries” was developed by the Society’s Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Position Document Committee formed on September 16, 2013 with Paul Francisco as its chair. Paul W. Francisco, Chair Kirk R. Smith University of Illinois University of California Champaign, IL, USA Berkeley, CA, USA Jill Baumgartner Dean Still McGill University Aprovecho Research Center Montreal, QC, Canada Cottage Grove, OR, USA Chandra Sekhar National University of Singapore Singapore, Singapore Cognizant Committees The chairperson of Environmental Health Committee also served as ex-officio members. Zuraimi Sultan, Ex-Officio Cognizant Committee Chair Environmental Health Committee National Research Council Canada Ottawa, ON, Canada ii HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL DATES The following summarizes the revision, reaffirmation or withdrawal dates 10/03/2016 —BOD approves Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries 6/26/2019—Technology Council approves reaffirmation of Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Note: Technology Council and the cognizant committee recommend revision, reaffirmation or withdrawal every 30 months.
    [Show full text]
  • Health Problems and Burning Indoor Fuels
    American Thoracic Society PUBLIC HEALTH | INFORMATION SERIES Health Problems and Burning Indoor Fuels Household air pollution means that the quality of the air inside your home is not healthy. There are a number of things that can pollute the air indoors. A common source of indoor air pollution worldwide is the fuel used for cooking and heating. When these fuels are burned, the process can cause pollution inside the home, particularly if there is not good outdoor air exchange (ventilation). This fact sheet focuses on air pollution caused by burning fuels in the home. How does burning fuel cause pollution in the home? What lung problems can indoor pollution from Burning of fuels inside homes generates a complex mixture burning fuels cause? of indoor air pollutants. The key air pollutants include soot Household air pollution is harmful to people of all ages, and and other small particles (called particulate matter) that can may start having a harmful impact on lung function soon be breathed in and damage the lungs. Liquefied petroleum after birth or even before a baby is born. The most common gas, natural gas, ethanol, and electricity are considered clean lung problem from household air pollution in adults is chronic fuels, but not all clean fuels are equal. Some studies find that bronchitis, a type of chronic obstructive pulmonary disease cooking with gas stoves, particularly if they are unvented, (COPD). Regular exposure to indoor air pollution can increase may increase indoor levels of nitrogen dioxide, causing air the risk for asthma, tuberculosis, interstitial lung diseases, pollution. heart disease, and lung cancer.
    [Show full text]
  • THE GUIDE to SOLID FUELS This Leaflet Will Tell You All You Need To
    THE GUIDE TO SOLID FUELS This leaflet will tell you all you need to know about: • The different solid fuels available and their suitability for the various types of appliances • Smoke control legislation • Buying solid fuel • Hints on getting the best from your fuel and appliance Choice of Fuel There are a great many different solid fuels for sale. Your choice will be based on a number of criteria, the most important of which will be the type of appliance you will be burning the fuel on and whether or not you live in a smoke control area (see page 4). Fuels for open fires Housecoal The most traditional fuel for open fires is housecoal. It is available in various sizes e.g. Large Cobbles, Cobbles, Trebles and Doubles. The larger sizes are usually a little more expensive than Doubles size. Housecoal comes from mines in Britain and other parts of the world, most notably Columbia and Indonesia. The coal may be sold by the name of the colliery it comes from e.g. Daw Mill, the port of entry e.g. Merseyport or a merchant’s own brand name, e.g. Stirling. Coal merchants also frequently sell the coal by grade – 1, 2 and 3 or A, B and C; 1 and A being the best quality. Wood Wood and logs can be burnt on open fires. They should be well-seasoned and preferably have a low resin content. You should not use any wood that has any kind of coating on the surface e.g. varnish or paint, as harmful gases may be emitted on burning.
    [Show full text]
  • AN ORDINANCE for ZONING for SOLID FUEL-FIRED HEATING DEVICES (Sfhds)
    MPCA Model Ordinance for Minnesota Local Governments Solid Fuel-Fired Heating Devices February 2017 ZONING: NEW AND EXISTING SFHDS ALLOWED AN ORDINANCE FOR ZONING FOR SOLID FUEL-FIRED HEATING DEVICES (SFHDs) ADD I. IF YOUR COMMUNITY HAS, WILL ALLOW, PROHIBITS, OR WILL PROHIBIT SFHDs: I. ADMINISTRATIVE PROVISIONS A. PURPOSE. Model Community adopts the regulations in this ordinance controlling the use, installation and operation of outdoor wood or other solid fuel-fired heating devices (SFHDs) to achieve the following purposes: 1. Health. To protect citizens from environmental hazards and to safeguard community health. In particular, to protect the health of citizens from fine particles in emissions generated by SFHDs. The Clean Air Act (CAA) required the U.S. Environmental Protection Agency (EPA) to establish standards for particulate matter. EPA’s daily and annual fine particle National Ambient Air Quality Standards (NAAQS) were developed to protect the public from adverse health effects associated with exposure to fine particle pollution exposure. Sensitive populations protected by the CAA include persons who already have heart or lung diseases, children, and older adults. They experience serious health effects such as heart attacks, strokes, acute and chronic bronchitis, asthma episodes, reduced lung function, and other respiratory illnesses as a result of inhaling fine particle smoke which imbeds in their respiratory and circulatory systems. In addition to health effects, scientific studies show inhalation results in increased hospital and emergency room visits, lost work and school days, and in rare cases, premature death. 2. Fire safety. To protect citizens and structures from fire safety risks from SFHDs that are not properly installed, do not have proper safety equipment such as spark arresters, or are installed in close proximity to other buildings.
    [Show full text]
  • WHO Indoor Air Quality Guidelines: Household Fuel Combustion
    WHO IAQ Guidelines: household fuel combustion – Review 2: Emissions WHO Indoor Air Quality Guidelines: Household fuel Combustion Review 2: Emissions of Health-Damaging Pollutants from Household Stoves Convening lead author: Rufus Edwards1 Lead authors: Sunny Karnani1, Elizabeth M. Fisher2, Michael Johnson3, Luke Naeher4, Kirk R. Smith5, Lidia Morawska6 Affiliations: 1Department of Epidemiology, School of Medicine, University of California, Irvine, USA 2Department Mechanical and Aerospace Engineering, School of Mechanical and Aerospace Engineering, Cornell University, New York State, USA 3Berkeley Air Monitoring Group, School of Public Health, University of California - Berkeley, CA 4Environmental Health Sciences, College of Public Health, University of Georgia, USA 5Environmental Health Sciences, School of Public Health, University of California - Berkeley, CA, USA 6International Laboratory for Air Quality and Health, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology Brisbane, Australia Convening lead author: that author who led the planning and scope of the review, and managed the process of working with other lead authors and contributing authors, and ensuring that all external peer review comments were responded to. Lead authors: those authors who contributed to one or more parts of the full review, and reviewed and commented on the entire review at various stages. Disclaimer: The work presented in this technical paper for the WHO indoor air quality guidelines: household fuel combustion has been carried out by the listed authors, in accordance with the procedures for evidence review meeting the requirements of the Guidelines Review Committee of the World Health Organization. Full details of these procedures are described in the Guidelines, available at: http://www.who.int/indoorair/guidelines/hhfc ; these include declarations by the authors that they have no actual or potential competing financial interests.
    [Show full text]
  • Public Consultation on the Development of New Solid Fuel Regulations for Ireland Summary of Responses
    Public Consultation on the Development of New Solid Fuel Regulations for Ireland Summary of Responses April 2021 Table of Contents Table of Contents ..................................................................................................................... i 1 Introduction ....................................................................................................................... 3 2 Public Consultation Summary .......................................................................................... 4 3 Overall Summary .............................................................................................................. 6 3.1 Q1: Are you in favour of a national regulation on solid fuels, and if so, why? .......... 7 3.2 Q2 - What additional solid fuels should be subject to regulation, and why? ............ 9 3.3 Q3 - What specifications or standards should/could be applied to each type of solid fuel? 10 3.4 Q4 - What do you believe are the most appropriate, implementable and enforceable regulatory approaches for each type of solid fuel? ......................................... 10 3.5 Q5 - How can a transition to less polluting fuels and more efficient heating systems be supported? (Building upon the measures already set out in the Climate Action Plan) . 11 3.6 Q6-8 Timelines ....................................................................................................... 13 3.6.1 Q6 - What do you think is an appropriate timeframe for the implementation of a national regulation of solid fuel? ....................................................................................
    [Show full text]
  • Solid Fuel Booklet
    LC102 FIRE SAFETY in Solid Fuel-Burning Systems A solid fuel safety reference guide Introduction RAM Mutual Insurance provides reinsurance for township mutual insurance companies. These locally-owned and References operated companies provide fire insurance to their NFPA 211 ~ Standard for Chimneys, Fireplaces, policyholders. RAM, since its beginning in 1931, has Vents, and Solid Fuel-Burning Systems (2016 Edition) worked very closely with these township mutuals in fire loss prevention. This booklet is presented in the hope that it will NFPA 921 ~ Guide for Fire and Explosion be helpful in preventing tragic fire losses. Investigations (2017 Edition) Be sure to check with your insurance company before HEATING WITH WOOD ~ Minnesota Department of purchasing or installing any solid fuel-burning system. Be Energy (excerpts and clip art reprinted with permission) aware that insurance policies may void coverage if the hazard is increased by an improperly installed solid WOOD HEAT SAFETY (Copyright 1979) by Jay W. fuel-burning system. Most insurance companies will Shelton, Garden Way Publishing, Charlotte, VT 05445 ~ require that these systems be inspected for fire insurance The Preferred Parallel Installation and Preferred Series underwriting purposes. Solid fuel-burning systems in Installation diagrams on pages 39, 40 and 41, particular can pose a greater fire hazard than the use of respectively, are reprinted with permission. conventional oil or gas heating appliances. A violation of any of the installation or safety requirements may lead to Paul B. Stegmeir ~ Fire Safety and Hearth Products the endangerment of lives and property. Consultant, Lecturer, Writer This publication is a fire insurance underwriting guide for the proper installation, operation, and maintenance of solid To simplify information, trade names have been used in this fuel-burning systems.
    [Show full text]
  • Commercializing Conventional and Advanced Transport Biofuels From
    Newsletter Issue #55 Task 39 Newsletter – October 2020 Commercializing Conventional and Advanced Transport Biofuels from Biomass and Other Renewable Feedstocks Inside this Issue From the Task From the Task 1 By Mahmood Ebadian, Jim McMillan and Jack Saddler Feature Article on Sweden 5 Since publishing our last Newsletter in June 2020, IEA Bioenergy Task 39 has continued In the News 20 its work to advance the commercialization of sustainable, lower-carbon intensive Meetings/Conferences 23 biofuels to decarbonize the multi-faceted transport sector, particularly long-distance transport segments (i.e., marine, aviation, rail and trucking) where electrification is more challenging. Task 39 Business Virtual Meeting in June 2020 The second Task 39 business meeting of 2020 was held on June 23, virtually using Zoom. The meeting’s main purpose was to review and discuss active projects; to provide a forum for Task 39 members to share questions, thoughts and ideas regarding the scope, objectives and methodology of each project as well as its budget allocation. Project leaders presented progress updates and described next steps to seed these discussions; a listing of Task 39’s projects for the 2019-2021 triennium is provided in the previous issue of this newsletter (link). The group was excited to have India’s newly appointed country representative, Mr. Ravi P. Gupta, General Manager of Bioenergy Research Centre at the Indian Oil Corporation joining the meeting despite the difficult time zone challenges. Despite the COVID-19 pandemic disrupting global supply chains and economies, the long-distance transport sector continues to play a vital role in maintaining the delivery of essential goods and services (e.g., medical supplies, food, energy, etc.).
    [Show full text]