Commercializing Conventional and Advanced Transport Biofuels From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Production of Second Generation Biofuels: Trends and Influences
GLOBAL PRODUCTION OF SECOND GENERATION BIOFUELS: TRENDS AND INFLUENCES January 2017 Que Nguyen and Jim Bowyer, Ph. D Jeff Howe, Ph. D Steve Bratkovich, Ph. D Harry Groot Ed Pepke, Ph. D. Kathryn Fernholz DOVETAIL PARTNERS, INC. Global Production of Second Generation Biofuels: Trends and Influences Executive Summary For more than a century, fossil fuels have been the primary source of a wide array of products including fuels, lubricants, chemicals, waxes, pharmaceuticals and asphalt. In recent decades, questions about the impacts of fossil fuel reliance have led to research into alternative feedstocks for the sustainable production of those products, and liquid fuels in particular. A key objective has been to use feedstocks from renewable sources to produce biofuels that can be blended with petroleum-based fuels, combusted in existing internal combustion or flexible fuel engines, and distributed through existing infrastructure. Given that electricity can power short-distance vehicle travel, particular attention has been directed toward bio-derived jet fuel and fuels used in long distance transport. This report summarizes the growth of second-generation biofuel facilities since Dovetail’s 2009 report1 and some of the policies that drive that growth. It also briefly discusses biofuel mandates and second-generation biorefinery development in various world regions. Second generation biorefineries are operating in all regions of the world (Figure 1), bringing far more favorable energy balances to biofuels production than have been previously realized. Substantial displacement of a significant portion of fossil-based liquid fuels has been demonstrated to be a realistic possibility. However, in the face of low petroleum prices, continuing policy support and investment in research and development will be needed to allow biofuels to reach their full potential. -
Unit 3 Types of Fuels and Their Characteristics
Types of Fuels and UNIT 3 TYPES OF FUELS AND THEIR their Characteristics CHARACTERISTICS Structure 3.1 Introduction Objectives 3.2 Principles of Classification of Fuels 3.3 Solid Fuels and their Characteristics 3.3.1 Woods and their Characteristics 3.3.2 Coals and their Characteristics 3.3.3 Manufactured Solid Fuels and their Characteristics 3.4 Liquid Fuels and their Characteristics 3.4.1 Petroleum and its Characteristics 3.4.2 Manufactured Liquid Fuels and their Characteristics 3.5 Gaseous Fuels and their Characteristics 3.5.1 Natural Gas and its Characteristics 3.5.2 Manufactured Gases and their Characteristics 3.6 Summary 3.7 Key Words 3.8 Answers to SAQs 3.1 INTRODUCTION Fuel is a substance which, when burnt, i.e. on coming in contact and reacting with oxygen or air, produces heat. Thus, the substances classified as fuel must necessarily contain one or several of the combustible elements : carbon, hydrogen, sulphur, etc. In the process of combustion, the chemical energy of fuel is converted into heat energy. To utilize the energy of fuel in most usable form, it is required to transform the fuel from its one state to another, i.e. from solid to liquid or gaseous state, liquid to gaseous state, or from its chemical energy to some other form of energy via single or many stages. In this way, the energy of fuels can be utilized more effectively and efficiently for various purposes. Objectives After studying this unit, you should be able to • describe the classification of fuels, • explain the various types of fuels and their characteristics, and • know their applications in various fields. -
Industrial Biorefineries for Production of Biofuels, Materials and Chemicals
Industrial Biorefineries for Production of Biofuels, Materials and Chemicals IEA End-Use Working Party Webinar on Deep Decarbonization in Industry 9 December 2020 Tech. Lic. Mats Larsson, Research Programme Manager, Biofuels and Industry, Swedish Energy Agency Usage of fossile energy in Sweden (2018) (TWh) 120 Housing, 11 TWh/year 100 80 60 Transport sector, 64 TWh. 40 20 Industry sector, 27 TWh. 0 Energy usage in domestic transport sector 110 100 Biofuels 90 80 70 Aviation (light blue) Diesel 60 TWh • Fossils fuels, mostly 50 petrol and diesel, are the 40 origin for around 75% • Bio fuels has increased 30 Petrol rapidly during the last 20 years 10 The fossil part is around 0 6-7 million m3 per year. Source: Swedish Energy Agency Biofuels Biogas 20 18 16 Biodiesel, 14 Hydrogenated vegetable oil (HVO) and Fatty Acid Methyl 12 Ester (FAME). 10 TWh 8 Increase mainly due to 6 import of HVO. 4 2 Bioethanol 0 Source: Swedish Energy Agency Domsjö Fabriker The biorefinery Domsjö Fabriker AB refines wood into products with strong environmental profile. In addition to the main products cellulose, bioethanol and lignin the biorefinery produces more and more complementary products such as carbon dioxide, biogas, bio resin and soil improvers. Source: http://www.domsjo.adityabirla.com/sidor/Domsjo-Fabriker.aspx The biorefinery originates from the sulphite pulp mill that was started in 1903 and has since yearly 2000’s been transformed into the modern biorefinery it is today. The production capacity is 230 000 tonnes cellulose, 120 000 tonnes lignin and 20 000 tonnes bioethanol. The production of biogas from the biological treatment plant is one of the largest in Sweden. -
Solid Fuels and Firelighting Products
Nordic Ecolabelling of Solid fuels and firelighting products Version 3.2 • 06 March 2017 - 31 March 2024 Nordic Ecolabelling Content What is a Nordic Swan Ecolabelled solid fuel or firelighting product? 4 Why choose The Nordic Swan Ecolabel? 4 What can carry The Nordic Swan Ecolabel? 4 How to apply 5 1 Production and product description 6 2 Resources 6 2.1 Wood 8 2.2 Solid and liquid renewable raw materials other than wood in barbecue charcoal/briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land 10 2.3 Requirements for working conditions in the production of barbeque charcoal/briquettes 11 2.4 Chemicals 12 3 Energy consumption 14 4 Use and quality requirements 16 5 Quality and official requirements 20 Regulations for the Nordic Ecolabelling of products 22 Follow-up inspections 22 History of the criteria 22 New criteria 22 Terms and definitions 23 Appendix 1 Description of the solid fuel, material composition and production Appendix 2 Definition, class and type of raw materials Appendix 3 Declaration of tree species not permitted to be used in Nordic Ecolabelled products Appendix 4 Traceability and verification of renewable raw materials in barbecue charcoal/-briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land Appendix 5 Declaration for chemical products used in the manufacture of solid fuels or firelighting products Appendix 6 Declaration for constituent substances in chemical products Appendix 7 Reference values for the energy content of fuels Appendix 8 Analysis and test laboratories Appendix 9 Declaration of compliance with quality specifications for firewood O87 Solid fuels and firelighting products, version 3.2, 26 January 2021 This document is a translation of an original in Danish. -
Outline of Solid Fuel Manufacturing
Technical Information Sheet 1. Name of technology Biomass Waste Fuel (BWF) Manufacturing Technology Complete recycling of waste oil (waste ink, waste paint, etc.) which has been considered difficult for recycling and simply incinerated. 2. Type of technology A patented original treatment system (Patent No. 5078628) to manufacture BWF as an alternative fuel to coal 3. Description of technology [Objective and application of technology] Our original treatment method and facilities enable waste oil, for which incineration has been the only treatment method, to be recycled to BWF with higher combustion efficiency than coal and thereby contributing to the reduction in environmental impact by accelerating the recycling of various kinds of waste. In particular, BWF for cement factories enables combustion residue from incineration plants and oil mud from oil-water separation plants to be fully recycled, provided that BWF is used in appropriate plants with facilities for burning general coal. In our BWF manufacturing process, we receive materials after carrying out preliminarily sample inspections for thoroughly confirming material composition (to eliminate substances with hazardous properties such as heavy metal contamination). Also, we treat the materials using a reliable safety management system including special fire prevention equipment such as a nitrogen generating devices and sprinklers with twice the capacity generally required. Outline of solid fuel manufacturing Animal and plant Combustion Waste oil Waste plastic Slag Smoke dust Tonner -
Natural Fibers and Fiber-Based Materials in Biorefineries
Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom. -
Economic Evaluation of Large-Scale Biorefinery Deployment
sustainability Article Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models Jonas Zetterholm 1,* , Elina Bryngemark 2 , Johan Ahlström 3 , Patrik Söderholm 2 , Simon Harvey 3 and Elisabeth Wetterlund 1,4 1 Department of Energy Engineering, Division of Energy Science, Luleå University of Technology, SE-971 87 Luleå, Sweden; [email protected] 2 Economics, Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, SE-971 87 Luleå, Sweden; [email protected] (E.B.); [email protected] (P.S.) 3 Department of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; [email protected] (J.A.); [email protected] (S.H.) 4 International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria * Correspondence: [email protected] Received: 13 July 2020; Accepted: 28 August 2020; Published: 1 September 2020 Abstract: Biofuels and biochemicals play significant roles in the transition towards a fossil-free society. However, large-scale biorefineries are not yet cost-competitive with their fossil-fuel counterparts, and it is important to identify biorefinery concepts with high economic performance. For evaluating early-stage biorefinery concepts, one needs to consider not only the technical performance and process costs but also the economic performance of the full supply chain and the impacts on feedstock and product markets. This article presents and demonstrates a conceptual interdisciplinary framework that can constitute the basis for evaluations of the full supply-chain performance of biorefinery concepts. This framework considers the competition for biomass across sectors, assumes exogenous end-use product demand, and incorporates various geographical and technical constraints. -
Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’S Name Tax Reference No
This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’s Name Tax Reference No. Address (include Eircode) Accounting Period From DDMMYYYY To DDMMYYYY (see Note 1) Part A Declaration of tax-free and fully relieved supplies of solid fuel (One tonne equals 1,000 kilograms) Coal Peat briquettes Milled peat Other peat Purpose of supply Tonnes (one Tonnes (one Tonnes (one Tonnes (one decimal place) decimal place) decimal place) decimal place Electricity generation (excluding CHP cogeneration) (see Notes 2 & 3) Use by a Greenhouse Gas Not (GHG) emissions permit Applicable holder (see Note 4) Use as a raw material (see Note 5) First supply outside the State Part B Summary of taxable supplies (including self-supplies) of solid fuel and tax payable (see Note 6) (One tonne equals 1,000 kilograms) Tonnes Rate Description of solid fuel Tax Payable (one decimal place) € / tonne Coal for use by a GHG emissions 4.18 € permit holder (see Note 4) 0 to <30% Biomass 88.23 € Coal (see Note 7) 30% to <50% Biomass 61.76 € Biomass 50% or over 44.12 € 0 to <30% Biomass 61.42 € Peat briquettes 30% to <50% Biomass 42.99 € (see Note 7) Biomass 50% or over 30.71 € Milled peat 30.44 € Other peat (see Note 8) 45.65 € Total Tax Payable € 1 RPC014952_EN_WB_L_1 This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Part C DECLARATION I declare, in accordance with the law* governing SFCT, that: • the details on page 1 of this form represent -
Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries
1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on COMBUSTION OF SOLID FUELS AND INDOOR AIR QUALITY IN PRIMARILY DEVELOPING COUNTRIES Approved by ASHRAE Board of Directors October 3, 2016 Reaffirmed by ASHRAE Technology Council June 26, 2019 Expires June 26, 2022 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y COMMITTEE ROSTER The ASHRAE Position Document on “Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries” was developed by the Society’s Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Position Document Committee formed on September 16, 2013 with Paul Francisco as its chair. Paul W. Francisco, Chair Kirk R. Smith University of Illinois University of California Champaign, IL, USA Berkeley, CA, USA Jill Baumgartner Dean Still McGill University Aprovecho Research Center Montreal, QC, Canada Cottage Grove, OR, USA Chandra Sekhar National University of Singapore Singapore, Singapore Cognizant Committees The chairperson of Environmental Health Committee also served as ex-officio members. Zuraimi Sultan, Ex-Officio Cognizant Committee Chair Environmental Health Committee National Research Council Canada Ottawa, ON, Canada ii HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL DATES The following summarizes the revision, reaffirmation or withdrawal dates 10/03/2016 —BOD approves Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries 6/26/2019—Technology Council approves reaffirmation of Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Note: Technology Council and the cognizant committee recommend revision, reaffirmation or withdrawal every 30 months. -
Health Problems and Burning Indoor Fuels
American Thoracic Society PUBLIC HEALTH | INFORMATION SERIES Health Problems and Burning Indoor Fuels Household air pollution means that the quality of the air inside your home is not healthy. There are a number of things that can pollute the air indoors. A common source of indoor air pollution worldwide is the fuel used for cooking and heating. When these fuels are burned, the process can cause pollution inside the home, particularly if there is not good outdoor air exchange (ventilation). This fact sheet focuses on air pollution caused by burning fuels in the home. How does burning fuel cause pollution in the home? What lung problems can indoor pollution from Burning of fuels inside homes generates a complex mixture burning fuels cause? of indoor air pollutants. The key air pollutants include soot Household air pollution is harmful to people of all ages, and and other small particles (called particulate matter) that can may start having a harmful impact on lung function soon be breathed in and damage the lungs. Liquefied petroleum after birth or even before a baby is born. The most common gas, natural gas, ethanol, and electricity are considered clean lung problem from household air pollution in adults is chronic fuels, but not all clean fuels are equal. Some studies find that bronchitis, a type of chronic obstructive pulmonary disease cooking with gas stoves, particularly if they are unvented, (COPD). Regular exposure to indoor air pollution can increase may increase indoor levels of nitrogen dioxide, causing air the risk for asthma, tuberculosis, interstitial lung diseases, pollution. heart disease, and lung cancer. -
THE GUIDE to SOLID FUELS This Leaflet Will Tell You All You Need To
THE GUIDE TO SOLID FUELS This leaflet will tell you all you need to know about: • The different solid fuels available and their suitability for the various types of appliances • Smoke control legislation • Buying solid fuel • Hints on getting the best from your fuel and appliance Choice of Fuel There are a great many different solid fuels for sale. Your choice will be based on a number of criteria, the most important of which will be the type of appliance you will be burning the fuel on and whether or not you live in a smoke control area (see page 4). Fuels for open fires Housecoal The most traditional fuel for open fires is housecoal. It is available in various sizes e.g. Large Cobbles, Cobbles, Trebles and Doubles. The larger sizes are usually a little more expensive than Doubles size. Housecoal comes from mines in Britain and other parts of the world, most notably Columbia and Indonesia. The coal may be sold by the name of the colliery it comes from e.g. Daw Mill, the port of entry e.g. Merseyport or a merchant’s own brand name, e.g. Stirling. Coal merchants also frequently sell the coal by grade – 1, 2 and 3 or A, B and C; 1 and A being the best quality. Wood Wood and logs can be burnt on open fires. They should be well-seasoned and preferably have a low resin content. You should not use any wood that has any kind of coating on the surface e.g. varnish or paint, as harmful gases may be emitted on burning. -
Commercializing Second-Generation Biofuels Scaling up Sustainable Supply Chains and the Role of Public Policy Rapporteur’S Report
Energy Technology Innovation Policy Commercializing Second-Generation Biofuels Scaling Up Sustainable Supply Chains and the Role of Public Policy rapporteur’s report Joern Huenteler, Laura Diaz Anadon, Henry Lee, Nidhi Santen November 13-14, 2014 Energy Technology Innovation Policy Belfer Center for Science and International Affairs John F. Kennedy School of Government Harvard University 79 JFK Street Cambridge, MA 02138 Fax: (617) 495-8963 Email: [email protected] Website: http://belfercenter.org Copyright 2014 President and Fellows of Harvard College The authors of this report invite use of this information for educational purposes, requiring only that the reproduced material clearly cite the full source: Huenteler, Joern, Laura Diaz Anadon, Henry Lee, Nidhi Santen. “Commercializing Second-Generation Biofuels: Scaling Up Sustainable Supply Chains and the Role of Public Policy.” Rapporteur’s Report, Belfer Center for Science and International Affairs, Harvard Kennedy School. November 2014. Statements and views expressed in this paper are solely those of the authors and do not imply endorsement by Harvard University, the Harvard Kennedy School, or the Belfer Center for Science and International Affairs. Cover photo: A switchgrass field in Texas. (Warren Gretz / National Renewable Energy Laboratory) Energy Technology Innovation Policy Commercializing Second-Generation Biofuels Scaling Up Sustainable Supply Chains and the Role of Public Policy rapporteur’s report Joern Huenteler, Laura Diaz Anadon, Henry Lee, Nidhi Santen November 13-14, 2014 About the Workshop The promise, prospects and public policy trade-offs related to the greater use and production of second-generation biofuels were addressed in an executive session convened by the John F. Kennedy School of Government at Harvard University on November 13th and 14th, 2014.