ACTA PEDIÁTRICA PORTUGUESA Vol 43 Nº 5 Setembro / Outubro 2012 ­‑ Suplemento I (Orgão Oficial Da Sociedade Portuguesa De Pediatria) ­‑ [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

ACTA PEDIÁTRICA PORTUGUESA Vol 43 Nº 5 Setembro / Outubro 2012 ­‑ Suplemento I (Orgão Oficial Da Sociedade Portuguesa De Pediatria) ­‑ App@Spp.Pt S I ACTA PEDIÁTRICA PORTUGUESA VOl 43 Nº 5 SETEmbRO / OUTUbRO 2012 ‑ SUPlEmento I (Orgão Oficial da Sociedade Portuguesa de Pediatria) www.spp.pt ‑ [email protected] FundadOr Carlos Salazar de Sousa CONSELHO EDITORIAL Conselho Científico Aguinaldo Cabral (Sociedade Portuguesa de D. Metabólicas) Diretor Almerinda Pereira (Secção de Neonatologia) João m. Videira Amaral ‑ Lisboa Ana Cadete (Secção de Reabilitação Pediátrica da SPMFR) Deolinda barata (Pediatria Social) Editores Associados Fernando Pereira (Secção de Gastrenterologia e Nutrição) Guiomar Oliveira ‑ Coimbra Ana medeira (Sociedade Portuguesa de Genética Humana) Jorge Amil Dias ‑ Porto Ana Xavier (Grupo Port. de Oftalmologia Ped. e Estrabismo) luís Pereira‑da‑Silva ‑ Lisboa Alberto Caldas Afonso (Secção de Nefrologia) Coordenador de EdiçãO Filomena Pereira (Secção de Hematologia e Oncologia) António Gomes ‑ Almada Guiomar Oliveira (Sociedade de Neurodesenvolvimento) João Gomes‑Pedro (Secção de Educação Médica) Secretariado José Frias bulhosa (Ordem dos Médicos Dentistas) maria Júlia brito ‑ SPP Graça Rocha (Sociedade de Infeciologia) leonor Sassetti (Secção de Pediatria Ambulatória) libério Ribeiro (Secção de Imuno‑Alergologia) lurdes lisboa Editores Correspondentes (Secção de Cuidados Intensivos) manuel Salgado (Secção de Reumatologia) (Países de Língua OficiaL POrtuguesa) maria Ana Sampaio Nunes (Sociedade de Cardiologia Pediátrica) luís bernardino ‑ Angola miguel Coutinho (Subcomissão de ORL Pediátrica da SPORL) Paula Vaz ‑ Moçambique mário marcelo da Fonseca (Secção de Endocrinologia) Renato Procianoy ‑ Brasil miguel Felix (Secção de Pneumologia) dIrECTOrES EX ‑OFFICIO Olavo Gonçalves (Sociedade Portuguesa de Neuropediatria) (revista POrtuguesa de Pediatria e PuericuLtura, revista POrtuguesa de Óscar Tellechea (Sociedade Port. de Dermatologia e Venereologia) Pediatria e acta Pediátrica POrtuguesa) Paolo Casella (Sociedade Portuguesa de Cirurgia Pediátrica) Paula Fonseca (Secção de Medicina do Adolescente) Carlos Salazar de Sousa mário Cordeiro maria de lourdes levy Jaime Salazar de Sousa António marques Valido João Gomes ‑Pedro PresidEnte da SociedadE POrTuguesa dE PEdIaTrIa António Guerra Missão da APP: AAPP, sucessora da Revista portuguesa de pediatria, é uma revista científica funcionando na modalidade de revisão prévia dos textos sub‑ metidos ao corpo editorial por colegas peritos em anonimato mútuo (peer review). É dirigida essencialmente a pediatras (vertentes médico ‑cirúrgica) e a médicos em formação pós ‑graduada para obtenção das respectivas especialidades no pressuposto de que os conteúdos interessam a outros médicos e pro‑ fissionais interessados na saúde da criança e adolescente inseridos no respectivo meio familiar e social. AAPP pretende abarcar um vasto leque de questões sobre investigação, educação médica, pediatria social, prática clínica, temas controversos, debate de opiniões, normas de actuação, actualização de temas, etc. São adoptadas diversas modalidades de divulgação: editoriais, espaços de discussão, artigos originais, artigos sobre avanços em pediatria, resumos de estudos divulgados em eventos científicos, notícias sobre eventos científicos e organismos estatais e não estatais devotados à criança e adolescente. A revista científica Acta Pediátrica Portuguesa (APP) (ISSN 0873‑9781) é propriedade da Sociedade Portuguesa de Pediatria, com responsabilidade administrativa da respectiva Direc‑ ção. A publicação é bimestral com todos os direitos reservados. A coordenação dos conteúdos científicos é da responsabilidade do corpo editorial da APP (Director e Director Adjunto, Editores Associados, Coordenador de Edição e Conselho Editorial). A responsabilidade dos textos científicos publicados pertence aos respectivos autores, não reflectindo necessaria‑ mente a política da SPP. Administração: Sociedade Portuguesa de Pediatria – RuaAmilcar Cabral, 15, r/c I – 1750 ‑018 Lisboa – Telef.: 217 574 680 – Fax: 217 577 617 • Secretariado e Publicidade: Júlia Brito – Rua Amilcar Cabral, 15, r/c I – 1750 ‑018 Lisboa – Telef.: 217 574 680 – Fax: 217 577 617 • Redacção: Sociedade Portuguesa de Pediatria – Rua Amilcar Cabral, 15, r/c I – 1750 ‑018 Lisboa – Telef.: 217 574 680 – Fax: 217 577 617 • Condições de Assinatura: 1 Ano, Continente e Ilhas: 24,94 Euros, Estrangeiro US$40 • NºAvulso 7,48 Euros • Distribuição Gratuita aos Sócios da Sociedade Portuguesa de Pediatria • Composição e Impressão: Clássica ‑ Artes Gráficas SA. Rua Joaquim Ferreira, 70 Armazém G/H – 4435 ‑ 297 Rio Tinto – Telf.: 22 489 99 02 Fax.: 22 489 99 29 • Tiragem: 1000 Exemplares • Correspondência: Sociedade Portuguesa de Pediatria – RuaAmilcar Cabral, 15, r/c I – 1750 ‑018 Lisboa S II Vol. 43 | N.º 5 | Suplemento I Índice XIII COngresso nacional dE PEdIaTrIa COmissãO OrganIzadOra E CienTífica S III Resumos daS COnferênciaS MESAS REDONDAS S 1 WORKSHOPS S 19 COmunICações Orais S 21 POSTErS com aPresenTaçãO Em Sala S 39 POSTErS com discussãO S 72 PrImeiros auTOres S 173 ÍNDICE dE rESUMOS POr ÁrEa CIEnTíFICa S 175 Setembro / OuTubro 2012 S III ORGANIZAÇÃO E DIREÇÃO pRESIDENTE Revisores dos trabalhos António Guerra Cardiologia pediátrica Nefrologia Presidente da Sociedade Portuguesa de Pediatria Maria Ana Sampaio Nunes Alberto Caldas Afonso Marilia Loureiro Margarida Abranches COMISSãO ORGANIZADORA E CIENTífICA Cirurgia pediátrica Neonatologia Jorge Correia Pinto Almerinda Pereira António Guerra Paolo Casella Gustavo Rocha Amélia Cavaco Ana Carvalho Cuidados Continuados, Neurologia fernanda Rodrigues Domiciliários e paliativos Ana Carvalho Inês Azevedo Ana Carvalho Teresa Temudo Manuela Costa Alves Teresa Bandeira Maria João brito pediatria Ambulatória Ricardo ferreira Cuidados Intensivos Joana Figueira Teresa bandeira Francisco Abecasis Leonor Sassetti Lurdes Lisboa pediatria Geral Desenvolvimento Amélia Cavaco Guiomar Oliveira Fernanda Rodrigues Maria do Carmo Vale pediatria Social Doenças Metabólicas Deolinda Barata ApOIO COMISSãO CIENTífICA Maria João Brito Maria de Lurdes Torre Ricardo Ferreira (Presidentes das Sociedades e Secções da SPP) pneumologia Educação Medica e ética Miguel Félix Alberto Caldas Afonso João Gomes ‑Pedro Teresa Bandeira Presidente da Secção de Nefrologia Pediátrica Endocrinologia Reumatologia Almerinda barroso pereira Manuel Fontoura Manuel Salgado Presidente da Secção de Neonatologia Marcelo da Fonseca Marta Conde Deolinda barata Presidente da Secção de Pediatria Social Enfermagem pediátrica Tecnologias da Saúde, Desporto e Inês Azevedo Reabilitação fernando pereira Manuela Costa Alves Ana Carvalho Presidente da Secção de Gastrenterologia e Nutrição Pediátrica Teresa Bandeira farmacologia e Terapêutica filomena pereira Ana Carvalho urgência Presidente da Secção de Hematologia e Oncologia Pediátrica Teresa Bandeira Lia Gata Graça Rocha Luis Januário Gastroenterologia, Hepatologia e Presidente da Sociedade de Infecciologia Pediátrica Nutrição Guiomar Oliveira Fernando Pereira Presidente da Sociedade de Pediatria do Neurodesenvolvimento Ricardo Ferreira João Gomes ‑pedro Genética Presidente da Secção de Educação Maria João Brito Ricardo Ferreira Leonor Sassetti Presidente da Secção de Pediatria Ambulatória Hematologia e Oncologia Libério bonifácio Ribeiro Filomena Pereira Presidente da Secção de Imunoalergologia Pediátrica Gabriela Caldas Lurdes Lisboa Imunoalergologia Presidente da Sociedade de Cuidados Intensivos Pediátricos Ana Margarida Neves Libério Ribeiro Manuel Salgado Presidente da Secção de Reumatologia Pediátrica Infecciologia Arminda Jorge Maria Ana Sampaio Nunes Graça Rocha Presidente da Sociedade de Cardiologia Pediátrica Mário Marcelo da fonseca Investigação básica e Translaccional Presidente da Secção de Endocrinologia e Diabetologia Pediátrica Inês Azevedo Manuela Costa Alves Miguel félix Presidente da Secção de Pneumologia Pediátrica Medicina do Adolescente Hugo Tavares paula fonseca Paula Fonseca Presidente da Secção de Medicina do Adolescente REsumOs das Conferências MESAS REDONDAS ‑ Incentivo na forma de prorrogação por um período de dois anos do período de duração da exclusividade de mercado para os medicamentos órfãos (pos‑ suem actualmente dez anos) MR 1 MEDICAMENTOS: O QuE HÁ DE NOVO Objetivos para os medicamentos já comercializados e sem proteção de patente ou de certificado complementar de proteção O DESENVOLVIMENTO DE MEDICAMENTOS ‑ Criação de um novo tipo de Autorização de Introdução no Mercado (AIM) PEDIÁTRICOS NA UNIÃO EUROPEIA para Medicamentos de Uso Pediátrico, denominado de PUMA (Paediatric Use Helena fonseca Marketing Authorisation), associada a um período de dez anos de proteção Departamento de Pediatria – Hospital de Santa Maria de dados e comercialização O desenvolvimento de medicamentos em Pediatria é um processo complexo De acordo com este Regulamento, passou a ser obrigatória a apresentação de que se movimenta em torno das áreas científica, investigacional e regulamentar um PIP para todos os medicamentos a ser introduzidos no mercado a partir Os medicamentos (incluindo muitos dos que são frequentemente utilizados em de Junho de 2008 O PIP é um documento que estabelece um acordo entre a Pediatria) são raramente estudados em crianças, o que determina a sua utiliza‑ Autoridade Regulamentar (EMA) e o requerente relativo ao desenvolvimento ção em regime de “off ‑label”: utilização de medicamentos não autorizados e/ou do medicamento em Pediatria e inclui informação pormenorizada sobre o a utilização de medicamentos fora do âmbito da aprovação calendário e as medidas propostas para demonstrar a qualidade, segurança e Aproximadamente
Recommended publications
  • Limb-Girdle Muscular Dystrophy
    www.ChildLab.com 800-934-6575 LIMB-GIRDLE MUSCULAR DYSTROPHY What is Limb-Girdle Muscular Dystrophy? Limb-Girdle Muscular Dystrophy (LGMD) is a group of hereditary disorders that cause progressive muscle weakness and wasting of the shoulders and pelvis (hips). There are at least 13 different genes that cause LGMD, each associated with a different subtype. Depending on the subtype of LGMD, the age of onset is variable (childhood, adolescence, or early adulthood) and can affect other muscles of the body. Many persons with LGMD eventually need the assistance of a wheelchair, and currently there is no cure. How is LGMD inherited? LGMD can be inherited by autosomal dominant (AD) or autosomal recessive (AR) modes. The AR subtypes are much more common than the AD types. Of the AR subtypes, LGMD2A (calpain-3) is the most common (30% of cases). LGMD2B (dysferlin) accounts for 20% of cases and the sarcoglycans (LGMD2C-2F) as a group comprise 25%-30% of cases. The various subtypes represent the different protein deficiencies that can cause LGMD. What testing is available for LGMD? Diagnosis of the LGMD subtypes requires biochemical and genetic testing. This information is critical, given that management of the disease is tailored to each individual and each specific subtype. Establishing the specific LGMD subtype is also important for determining inheritance and recurrence risks for the family. The first step in diagnosis for muscular dystrophy is usually a muscle biopsy. Microscopic and protein analysis of the biopsy can often predict the type of muscular dystrophy by analyzing which protein(s) is absent. A muscle biopsy will allow for targeted analysis of the appropriate LGMD gene(s) and can rule out the diagnosis of the more common dystrophinopathies (Duchenne and Becker muscular dystrophies).
    [Show full text]
  • Anti-SGCG / Gamma Sarcoglycan Antibody (ARG41710)
    Product datasheet [email protected] ARG41710 Package: 100 μl anti-SGCG / gamma Sarcoglycan antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes SGCG / gamma Sarcoglycan Tested Reactivity Hu Tested Application IHC-P, IP, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name SGCG / gamma Sarcoglycan Antigen Species Human Immunogen Synthetic peptide of Human SGCG / gamma Sarcoglycan Conjugation Un-conjugated Alternate Names 35DAG; DMDA1; TYPE; SCG3; DMDA; Gamma-sarcoglycan; DAGA4; 35 kDa dystrophin-associated glycoprotein; A4; SCARMD2; Gamma-SG; LGMD2C; MAM Application Instructions Application table Application Dilution IHC-P 1:50 - 1:200 IP 1:50 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 32 kDa Observed Size ~ 32 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol SGCG Gene Full Name sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) Background This gene encodes gamma-sarcoglycan, one of several sarcolemmal transmembrane glycoproteins that interact with dystrophin.
    [Show full text]
  • Full Disclosure Forms
    Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS Xia Tian, PhD* ABSTRACT * Wen-Chen Liang, MD Objective: To establish and evaluate the effectiveness of a comprehensive next-generation * Yanming Feng, PhD sequencing (NGS) approach to simultaneously analyze all genes known to be responsible for Jing Wang, MD the most clinically and genetically heterogeneous neuromuscular diseases (NMDs) involving spi- Victor Wei Zhang, PhD nal motoneurons, neuromuscular junctions, nerves, and muscles. Chih-Hung Chou, MS Methods: All coding exons and at least 20 bp of flanking intronic sequences of 236 genes causing Hsien-Da Huang, PhD NMDs were enriched by using SeqCap EZ solution-based capture and enrichment method fol- Ching Wan Lam, PhD lowed by massively parallel sequencing on Illumina HiSeq2000. Ya-Yun Hsu, PhD ; 3 Thy-Sheng Lin, MD Results: The target gene capture/deep sequencing provides an average coverage of 1,000 per Wan-Tzu Chen, MS nucleotide. Thirty-five unrelated NMD families (38 patients) with clinical and/or muscle pathologic Lee-Jun Wong, PhD diagnoses but without identified causative genetic defects were analyzed. Deleterious mutations Yuh-Jyh Jong, MD were found in 29 families (83%). Definitive causative mutations were identified in 21 families (60%) and likely diagnoses were established in 8 families (23%). Six families were left without diagnosis due to uncertainty in phenotype/genotype correlation and/or unidentified causative Correspondence to genes. Using this comprehensive panel, we not only identified mutations in expected genes but Dr. Wong: also expanded phenotype/genotype among different subcategories of NMDs. [email protected] or Dr. Jong: Conclusions: Target gene capture/deep sequencing approach can greatly improve the genetic [email protected] diagnosis of NMDs.
    [Show full text]
  • Diagnosis and Cell-Based Therapy for Duchenne Muscular Dystrophy in Humans, Mice, and Zebrafish
    J Hum Genet (2006) 51:397–406 DOI 10.1007/s10038-006-0374-9 MINIREVIEW Louis M. Kunkel Æ Estanislao Bachrach Richard R. Bennett Æ Jeffrey Guyon Æ Leta Steffen Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafish Received: 3 January 2006 / Accepted: 4 January 2006 / Published online: 1 April 2006 Ó The Japan Society of Human Genetics and Springer-Verlag 2006 Abstract The muscular dystrophies are a heterogeneous mutants carries a stop codon mutation in dystrophin, group of genetically caused muscle degenerative disor- and we have recently identified another carrying a ders. The Kunkel laboratory has had a longstanding mutation in titin. We are currently positionally cloning research program into the pathogenesis and treatment of the disease-causative mutation in the remaining 12 mu- these diseases. Starting with our identification of dys- tant strains. We hope that one of these new mutant trophin as the defective protein in Duchenne muscular strains of fish will have a mutation in a gene not previ- dystrophy (DMD), we have continued our work on ously implicated in human muscular dystrophy. This normal dystrophin function and how it is altered in gene would become a candidate gene to be analyzed in muscular dystrophy. Our work has led to the identifi- patients which do not carry a mutation in any of the cation of the defective genes in three forms of limb girdle known dystrophy-associated genes. By studying both muscular dystrophy (LGMD) and a better understand- disease pathology and investigating potential therapies, ing of how muscle degenerates in many of the different we hope to make a positive difference in the lives of dystrophies.
    [Show full text]
  • Analysis of the Dystrophin Interactome
    Analysis of the dystrophin interactome Dissertation In fulfillment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)” integrated in the International Graduate School for Myology MyoGrad in the Department for Biology, Chemistry and Pharmacy at the Freie Universität Berlin in Cotutelle Agreement with the Ecole Doctorale 515 “Complexité du Vivant” at the Université Pierre et Marie Curie Paris Submitted by Matthew Thorley born in Scunthorpe, United Kingdom Berlin, 2016 Supervisor: Simone Spuler Second examiner: Sigmar Stricker Date of defense: 7th December 2016 Dedicated to My mother, Joy Thorley My father, David Thorley My sister, Alexandra Thorley My fiancée, Vera Sakhno-Cortesi Acknowledgements First and foremost, I would like to thank my supervisors William Duddy and Stephanie Duguez who gave me this research opportunity. Through their combined knowledge of computational and practical expertise within the field and constant availability for any and all assistance I required, have made the research possible. Their overarching support, approachability and upbeat nature throughout, while granting me freedom have made this year project very enjoyable. The additional guidance and supported offered by Matthias Selbach and his team whenever required along with a constant welcoming invitation within their lab has been greatly appreciated. I thank MyoGrad for the collaboration established between UPMC and Freie University, creating the collaboration within this research project possible, and offering research experience in both the Institute of Myology in Paris and the Max Delbruck Centre in Berlin. Vital to this process have been Gisele Bonne, Heike Pascal, Lidia Dolle and Susanne Wissler who have aided in the often complex processes that I am still not sure I fully understand.
    [Show full text]
  • Genetic Modifiers of Hereditary Neuromuscular Disorders
    cells Article Genetic Modifiers of Hereditary Neuromuscular Disorders and Cardiomyopathy Sholeh Bazrafshan 1, Hani Kushlaf 2 , Mashhood Kakroo 1, John Quinlan 2, Richard C. Becker 1 and Sakthivel Sadayappan 1,* 1 Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (S.B.); [email protected] (M.K.); [email protected] (R.C.B.) 2 Department of Neurology and Rehabilitation Medicine, Neuromuscular Center, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; [email protected] (H.K.); [email protected] (J.Q.) * Correspondence: [email protected]; Tel.: +1-513-558-7498 Abstract: Novel genetic variants exist in patients with hereditary neuromuscular disorders (NMD), including muscular dystrophy. These patients also develop cardiac manifestations. However, the association between these gene variants and cardiac abnormalities is understudied. To determine genetic modifiers and features of cardiac disease in NMD patients, we have reviewed electronic medical records of 651 patients referred to the Muscular Dystrophy Association Care Center at the University of Cincinnati and characterized the clinical phenotype of 14 patients correlating with their next-generation sequencing data. The data were retrieved from the electronic medical records of the 14 patients included in the current study and comprised neurologic and cardiac phenotype and genetic reports which included comparative genomic hybridization array and NGS. Novel associations were uncovered in the following eight patients diagnosed with Limb-girdle Muscular Dystrophy, Bethlem Myopathy, Necrotizing Myopathy, Charcot-Marie-Tooth Disease, Peripheral Citation: Bazrafshan, S.; Kushlaf, H.; Kakroo, M.; Quinlan, J.; Becker, R.C.; Polyneuropathy, and Valosin-containing Protein-related Myopathy.
    [Show full text]
  • Muscle Diseases: the Muscular Dystrophies
    ANRV295-PM02-04 ARI 13 December 2006 2:57 Muscle Diseases: The Muscular Dystrophies Elizabeth M. McNally and Peter Pytel Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Department of Pathology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Annu. Rev. Pathol. Mech. Dis. 2007. Key Words 2:87–109 myotonia, sarcopenia, muscle regeneration, dystrophin, lamin A/C, The Annual Review of Pathology: Mechanisms of Disease is online at nucleotide repeat expansion pathmechdis.annualreviews.org Abstract by Drexel University on 01/13/13. For personal use only. This article’s doi: 10.1146/annurev.pathol.2.010506.091936 Dystrophic muscle disease can occur at any age. Early- or childhood- onset muscular dystrophies may be associated with profound loss Copyright c 2007 by Annual Reviews. All rights reserved of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies 1553-4006/07/0228-0087$20.00 Annu. Rev. Pathol. Mech. Dis. 2007.2:87-109. Downloaded from www.annualreviews.org may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle.
    [Show full text]
  • Rabbit Anti-Syntrophin Alpha1/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-Syntrophin Alpha1/FITC Conjugated antibody SL3600R-FITC Product Name: Anti-Syntrophin Alpha1/FITC Chinese Name: FITC标记的神经肌肉接头蛋白SNTA1抗体 SNT1; SNT2; SNT3; SNTA1; SNTB1; SNTB2; Syntrophin alpha 1; Syntrophin beta 1; Alias: Syntrophin beta 2. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Pig,Cow,Horse,Rabbit, IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 56kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human Syntrophins/SNTA1 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: Syntrophins are cytoplasmic peripheral membrane scaffold proteins that are components of the dystrophin-associated protein complex. This gene is a member of the syntrophin Product Detail: gene family and encodes the most common syntrophin isoform found in cardiac tissues. The N-terminal PDZ domain of this syntrophin protein interacts with the C-terminus of the pore-forming alpha subunit (SCN5A) of the cardiac sodium channel Nav1.5.
    [Show full text]
  • Value of Muscle Magnetic Resonance Imaging in the Differential Diagnosis
    Xie et al. Orphanet Journal of Rare Diseases (2019) 14:250 https://doi.org/10.1186/s13023-019-1242-y RESEARCH Open Access Value of muscle magnetic resonance imaging in the differential diagnosis of muscular dystrophies related to the dystrophin-glycoprotein complex Zhiying Xie1†, Zhihao Xie2†, Meng Yu1, Yiming Zheng1, Chengyue Sun1, Yilin Liu1, Chen Ling1, Ying Zhu3, Wei Zhang1, Jiangxi Xiao3, Zhaoxia Wang1* and Yun Yuan1* Abstract Background: Dystrophin-glycoprotein complex (DGC)-related muscular dystrophies may present similar clinical and pathological features as well as undetectable mutations thus being sometimes difficult to distinguish. We investigated the value of muscle magnetic resonance imaging (MRI) in the differential diagnosis of DGC-related muscular dystrophies and reported the largest series of Chinese patients with sarcoglycanopathies studied by muscle MRI. Results: Fifty-five patients with DGC-related muscular dystrophies, including 22 with confirmed sarcoglycanopathies, 11 with limb-girdle muscular dystrophy 2I (LGMD2I, FKRP-associated dystroglycanopathy), and 22 with dystrophinopathies underwent extensive clinical evaluation, muscle biopsies, genetic analysis, and muscle MRI examinations. Hierarchical clustering of patients according to the clinical characteristics showed that patients did not cluster according to the genotypes. No statistically significant differences were observed between sarcoglycanopathies and LGMD2I in terms of thigh muscle involvement. The concentric fatty infiltration pattern was observed not only in different sarcoglycanopathies (14/22) but also in LGMD2I (9/11). The trefoil with single fruit sign was observed in most patients with dystrophinopathies (21/22), and a few patients with sarcoglycanopathies (4/22) or LGMD2I (2/11). Hierarchical clustering showed that most patients with sarcoglycanopathies or LGMD2I can be distinguished from dystrophinopathies based on the concentric fatty infiltration pattern and trefoil with single fruit sign at the thigh level on muscle MRI.
    [Show full text]
  • Muscular Dystrophies Involving the Dystrophin–Glycoprotein Complex: an Overview of Current Mouse Models Madeleine Durbeej and Kevin P Campbell*
    349 Muscular dystrophies involving the dystrophin–glycoprotein complex: an overview of current mouse models Madeleine Durbeej and Kevin P Campbell* The dystrophin–glycoprotein complex (DGC) is a multisubunit dystrophies are a heterogeneous group of disorders. complex that connects the cytoskeleton of a muscle fiber to its Patients with DMD have a childhood onset phenotype and surrounding extracellular matrix. Mutations in the DGC disrupt die by their early twenties as a result of either respiratory the complex and lead to muscular dystrophy. There are a few or cardiac failure, whereas patients with BMD have naturally occurring animal models of DGC-associated moderate weakness in adulthood and may have normal life muscular dystrophy (e.g. the dystrophin-deficient mdx mouse, spans. The limb–girdle muscular dystrophies have a dystrophic golden retriever dog, HFMD cat and the highly variable onset and progression, but the unifying δ-sarcoglycan-deficient BIO 14.6 cardiomyopathic hamster) theme among the limb–girdle muscular dystrophies is the that share common genetic protein abnormalities similar to initial involvement of the shoulder and pelvic girdle those of the human disease. However, the naturally occurring muscles. Moreover, muscular dystrophies may or may not animal models only partially resemble human disease. In be associated with cardiomyopathy [1–4]. addition, no naturally occurring mouse models associated with loss of other DGC components are available. This has Combined positional cloning and candidate gene encouraged the generation of genetically engineered mouse approaches have been used to identify an increasing number models for DGC-linked muscular dystrophy. Not only have of genes that are mutated in various forms of muscular analyses of these mice led to a significant improvement in our dystrophy.
    [Show full text]
  • SGCG Maxpab Rabbit Polyclonal Antibody (D01)
    SGCG MaxPab rabbit polyclonal dystrophin. The dystrophin-glycoprotein complex (DGC) antibody (D01) spans the sarcolemma and is comprised of dystrophin, syntrophin, alpha- and beta-dystroglycans and Catalog Number: H00006445-D01 sarcoglycans. The DGC provides a structural link between the subsarcolemmal cytoskeleton and the Regulatory Status: For research use only (RUO) extracellular matrix of muscle cells. Defects in the encoded protein can lead to early onset autosomal Product Description: Rabbit polyclonal antibody raised recessive muscular dystrophy, in particular limb-girdle against a full-length human SGCG protein. muscular dystrophy, type 2C (LGMD2C). [provided by RefSeq] Immunogen: SGCG (NP_000222.1, 1 a.a. ~ 291 a.a) full-length human protein. References: 1. Efficient exon skipping of SGCG mutations mediated Sequence: by phosphorodiamidate morpholino oligomers. Wyatt EJ, MVREQYTTATEGICIERPENQYVYKIGIYGWRKRCLYL Demonbreun AR, Kim EY, Puckelwartz MJ, Vo AH, FVLLLLIILVVNLALTIWILKVMWFSPAGMGHLCVTKDG Dellefave-Castillo LM, Gao QQ, Vainzof M, Pavanello LRLEGESEFLFPLYAKEIHSRVDSSLLLQSTQNVTVNA RCM, Zatz M, McNally EM. JCI Insight. 2018 May 3;3(9). RNSEGEVTGRLKVGPKMVEVQNQQFQINSNDGKPLF pii: 99357. [Epub ahead of print] TVDEKEVVVGTDKLRVTGPEGALFEHSVETPLVRADP FQDLRLESPTRSLSMDAPRGVHIQAHAGKIEALSQMDI LFHSSDGMLVLDAETVCLPKLVQGTWGPSGSSQSLYE ICVCPDGKLYLSVAGVSTTCQEHSHICL Host: Rabbit Reactivity: Human Applications: IP, WB-Ti, WB-Tr (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Storage Buffer: No additive Storage Instruction: Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 6445 Gene Symbol: SGCG Gene Alias: A4, DAGA4, DMDA, DMDA1, LGMD2C, MAM, MGC130048, SCARMD2, SCG3, TYPE Gene Summary: This gene encodes gamma-sarcoglycan, one of several sarcolemmal transmembrane glycoproteins that interact with Page 1/1 Powered by TCPDF (www.tcpdf.org).
    [Show full text]
  • Multilineage Differentiation for Formation of Innervated Skeletal
    cells Article Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells Kilian Mazaleyrat 1, Cherif Badja 1, Natacha Broucqsault 1, Raphaël Chevalier 1, Camille Laberthonnière 1, Camille Dion 1, Lyla Baldasseroni 1, Claire El-Yazidi 1, Morgane Thomas 1, Richard Bachelier 2 , Alexandre Altié 2, Karine Nguyen 1,3, Nicolas Lévy 1,3, Jérôme D. Robin 1 and Frédérique Magdinier 1,* 1 Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; [email protected] (K.M.); [email protected] (C.B.); [email protected] (N.B.); [email protected] (R.C.); [email protected] (C.L.); [email protected] (C.D.); [email protected] (L.B.); [email protected] (C.E.-Y.); [email protected] (M.T.); [email protected] (K.N.); [email protected] (N.L.); [email protected] (J.D.R.) 2 Aix-Marseille University, INSERM, INRA, C2VN, 13385 Marseille, France; [email protected] (R.B.); [email protected] (A.A.) 3 APHM, Département de Génétique Médicale, Hôpital de la Timone Enfants, 13385 Marseille, France * Correspondence: [email protected] Received: 17 May 2020; Accepted: 16 June 2020; Published: 23 June 2020 Abstract: Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle.
    [Show full text]