Ensuring Data and AI Work for People and Society Foreword

Total Page:16

File Type:pdf, Size:1020Kb

Ensuring Data and AI Work for People and Society Foreword i The Ada Lovelace Institute Ensuring data and AI work for people society Ensuring data and AI work for people and society Foreword The Ada Lovelace Institute (Ada) has been Engine has no pretensions whatever established by the Nuffield Foundation with to originate anything. It can do whatever a £5m commitment, and with the support we know how to order it to perform.’ of founding partners. Much later, this influenced Alan Turing The Nuffield Foundation is an independent to intervene with the notion of a ‘Turing charitable trust with a mission to Test’ – the test of a machine’s ability to advance educational opportunity and exhibit intelligent behaviour indistinguishable ii social well-being across the UK. It has from that of a human. Ada Lovelace Institute Ada Lovelace long been at the forefront of addressing the ethical questions raised by scientific This debate between perspectives remains advancements. In 1991, the Foundation a live part of the discussion about the established the Nuffield Council on ethical and social implications of artificial Bioethics, which has been influential in intelligence – the extent to which technology establishing ethical frameworks for policy is able to, or should, replace or work in and regulation relating to innovations in partnership with, human intelligence. biology and medicine. We are very grateful to the Trustees and Ada has been created with the support staff of the Nuffield Foundation, particularly of founding partners: The Alan Turing Imogen Parker who has led the development Institute, the Royal Society, the British of the Institute, for their enthusiasm and Academy, the Royal Statistical Society, support, and to the colleagues from our Wellcome Trust, Luminate, techUK and the partner organisations who formed the initial Nuffield Council on Bioethics. Ada is named Advisory Board of the embryonic Institute: after the mathematician Ada Lovelace Dame Colette Bowe, Julie Maxton, Hetan (1815–1852), who wrote in visionary Shah, Genevra Richardson, Martin Tisne, terms about computing and its application Dan O’Connor, Pete Mills, Helen Margetts in the wider world. and Antony Walker. We would also like to acknowledge the large number of individuals Ada Lovelace is famous for some of the working in this field for their time and earliest ever written reflections on artificial generosity in contributing to this project. intelligence, arguing of the computer in a statement that was famously framed as Alan Wilson the ‘Lovelace objection’ that: ‘The Analytical Executive Chair, Ada Lovelace Institute A new, a vast, and a powerful language is developed for the future use of analysis, in which to yield its truths so that these may become of more speedy and accurate practical application for the purposes of mankind than the means hitherto in our possession have rendered possible. Ada Lovelace Contents 2 The Ada Lovelace Institute 3 The context: the data-driven AI revolution 1 Ensuring data and AI work for people society 4 The agenda: impacts and ethics 6 Ways of working 8 Work with us The Ada Lovelace Institute The Ada Lovelace Institute is an on different groups in society. It will guide independent research and deliberative body ethical practice in the development and with a mission to ensure data and AI work deployment of these technologies, and will for people and society. Ada will promote undertake research and long-term thinking informed public understanding of the to lay the foundations for a data-driven impact of AI and data-driven technologies society with well-being at its core. 2 Ada has three core aims: Ada Lovelace Institute Ada Lovelace 1 2 3 Build evidence Convene diverse Define and inform and foster rigorous voices to create good practice research and debate a shared understanding in the design and on how data and of the ethical issues deployment of AI affect people arising from data data and AI. and society. and AI. In undertaking its work, Ada will: • Be outward-facing and collaborative, acting independently of vested interests, and transparent about relationships and funding. • Be at the forefront of developing change needed to improve people’s lives, through a focus on: rights-based approaches; establishing norms; influencing professional practice; technological innovation; regulation and the law; and public dialogue. • Recognise the potential value of data, algorithms, and AI for individual and social well-being, taking account of human capacity to adapt and respond to new technological challenges. • Combine reflective deliberation and rigorous research with the need to respond to a rapidly evolving social, technological and economic context. • Work with other organisations to situate its work in a global context. The context: the data-driven AI revolution We are living through the fourth industrial the internet – can read, see, hear, translate revolution, driven by computing power languages and can use data to make and information flows across the internet. decisions, often better than humans. This generates and stores huge volumes These decisions are made on rules-based of data, both on and for, individuals and processes that can be automated. organisations. The analytics’ tools of data science and AI transform both the When human responsibility for 3 way we live and business processes in all decisions is still needed, AI can be Ensuring data and AI work for people society kinds of organisations – public and private. thought of as ‘augmented intelligence’. Some organisations are leaders in these Machines can’t yet pass the Turing developments, some have as yet barely test and ‘think’ but they can ‘learn’. engaged. Ultimately, these transformations Health care and many other areas of will be all-embracing. No social policy or service delivery will be revolutionised analysis of the conditions for future social by learning machines: receiving and well-being can be put forward without linking data, and providing inputs now acknowledging the fundamental for machine learning algorithms. and inevitably disruptive impacts that For example, machines can generate AI will bring. precision medicine and rapid medical diagnosis. Treatment plans can then The tools of AI generate new data be evaluated and ‘fed back’ through and deploy existing data in a number the system thus creating the learning of different ways. The data provides machine. This kind of application the basis for new analytics and computer of learning machines is likely modelling. ‘Machines’ – computers to become more prevalent or networks of computers linked by in a range of different contexts. The agenda: impacts and ethics Ada’s first objective is to chart the impacts and the sharing economy, and security. of these technological developments on Combined, these benefits create smarter people and society. Since these are rooted urban (and rural) environments. in the data-driven AI economy, analysis will begin there. We will seek to understand the Individual benefits sit alongside social full capabilities of the technologies – for consequences. The impact of digital the present and, through horizon scanning, reforms in the justice system, for example, for their future potential. There are benefits raises concerns about the rights of the 4 to individuals directly – for example individual in relation to the state; and Uber, Ada Lovelace Institute Ada Lovelace through phone apps such as City Mapper though beneficial to customers, has led or direct connections to taxi services such to controversy relating to the workforce. as Uber – and in the delivery of a wide Individual autonomy is simultaneously range of services, for example in health, enhanced and challenged. education, justice, financial services, retail Ethical challenges These developments therefore inherently or, because of their training data, can be generate ethical challenges. The data and biased. Are the outcomes fair, and how can the algorithms have to be accurate and we test that? Are lines of what is acceptable reliable and we have to be aware of the being crossed? For example, while consequences of failings in this respect. marketing and electioneering were relatively Many benefits can only be delivered open, their methods, however contested, effectively through use of personal data, were not seen as a threat to the democratic with analytical power enhanced by linking process itself. But some contemporary of data from a variety of sources. This methods are now clearly unacceptable – raises issues of privacy and consent. because of their deliberately covert nature, Machine learning-constructed decisions, directing ‘fake’ news and information especially those based on ‘deep learning’ at targeted audiences to undermine the algorithms, are typically not transparent; basis of shared public debate. Understanding the impacts of innovation The speed at which these technologies data. In bringing together the disciplines change society, and the dynamism of the of social science and the humanities with markets they fuel, mean that neither the those of data and medical science and research communities, nor the designers technical innovators, Ada’s work will offer or developers have the space clearly to a deeper understanding of the impacts of articulate the conditions for a successful technological innovation as they play out AI-driven society. There is no shared across the very different strata and cultures discourse on how we can begin to measure of our increasingly complex, connected, and 5 or even account for the social value of fragmented society. Ensuring data
Recommended publications
  • Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
    INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier.
    [Show full text]
  • The Turing Approach Vs. Lovelace Approach
    Connecting the Humanities and the Sciences: Part 2. Two Schools of Thought: The Turing Approach vs. The Lovelace Approach* Walter Isaacson, The Jefferson Lecture, National Endowment for the Humanities, May 12, 2014 That brings us to another historical figure, not nearly as famous, but perhaps she should be: Ada Byron, the Countess of Lovelace, often credited with being, in the 1840s, the first computer programmer. The only legitimate child of the poet Lord Byron, Ada inherited her father’s romantic spirit, a trait that her mother tried to temper by having her tutored in math, as if it were an antidote to poetic imagination. When Ada, at age five, showed a preference for geography, Lady Byron ordered that the subject be replaced by additional arithmetic lessons, and her governess soon proudly reported, “she adds up sums of five or six rows of figures with accuracy.” Despite these efforts, Ada developed some of her father’s propensities. She had an affair as a young teenager with one of her tutors, and when they were caught and the tutor banished, Ada tried to run away from home to be with him. She was a romantic as well as a rationalist. The resulting combination produced in Ada a love for what she took to calling “poetical science,” which linked her rebellious imagination to an enchantment with numbers. For many people, including her father, the rarefied sensibilities of the Romantic Era clashed with the technological excitement of the Industrial Revolution. Lord Byron was a Luddite. Seriously. In his maiden and only speech to the House of Lords, he defended the followers of Nedd Ludd who were rampaging against mechanical weaving machines that were putting artisans out of work.
    [Show full text]
  • CODEBREAKING Suggested Reading List (Can Also Be Viewed Online at Good Reads)
    MARSHALL LEGACY SERIES: CODEBREAKING Suggested Reading List (Can also be viewed online at Good Reads) NON-FICTION • Aldrich, Richard. Intelligence and the War against Japan. Cambridge: Cambridge University Press, 2000. • Allen, Robert. The Cryptogram Challenge: Over 150 Codes to Crack and Ciphers to Break. Philadelphia: Running Press, 2005 • Briggs, Asa. Secret Days Code-breaking in Bletchley Park. Barnsley: Frontline Books, 2011 • Budiansky, Stephen. Battle of Wits: The Complete Story of Codebreaking in World War Two. New York: Free Press, 2000. • Churchhouse, Robert. Codes and Ciphers: Julius Caesar, the Enigma, and the Internet. Cambridge: Cambridge University Press, 2001. • Clark, Ronald W. The Man Who Broke Purple. London: Weidenfeld and Nicholson, 1977. • Drea, Edward J. MacArthur's Ultra: Codebreaking and the War Against Japan, 1942-1945. Kansas: University of Kansas Press, 1992. • Fisher-Alaniz, Karen. Breaking the Code: A Father's Secret, a Daughter's Journey, and the Question That Changed Everything. Naperville, IL: Sourcebooks, 2011. • Friedman, William and Elizebeth Friedman. The Shakespearian Ciphers Examined. Cambridge: Cambridge University Press, 1957. • Gannon, James. Stealing Secrets, Telling Lies: How Spies and Codebreakers Helped Shape the Twentieth century. Washington, D.C.: Potomac Books, 2001. • Garrett, Paul. Making, Breaking Codes: Introduction to Cryptology. London: Pearson, 2000. • Hinsley, F. H. and Alan Stripp. Codebreakers: the inside story of Bletchley Park. Oxford: Oxford University Press, 1993. • Hodges, Andrew. Alan Turing: The Enigma. New York: Walker and Company, 2000. • Kahn, David. Seizing The Enigma: The Race to Break the German U-boat Codes, 1939-1943. New York: Barnes and Noble Books, 2001. • Kahn, David. The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet.
    [Show full text]
  • An Early Program Proof by Alan Turing F
    An Early Program Proof by Alan Turing F. L. MORRIS AND C. B. JONES The paper reproduces, with typographical corrections and comments, a 7 949 paper by Alan Turing that foreshadows much subsequent work in program proving. Categories and Subject Descriptors: 0.2.4 [Software Engineeringj- correctness proofs; F.3.1 [Logics and Meanings of Programs]-assertions; K.2 [History of Computing]-software General Terms: Verification Additional Key Words and Phrases: A. M. Turing Introduction The standard references for work on program proofs b) have been omitted in the commentary, and ten attribute the early statement of direction to John other identifiers are written incorrectly. It would ap- McCarthy (e.g., McCarthy 1963); the first workable pear to be worth correcting these errors and com- methods to Peter Naur (1966) and Robert Floyd menting on the proof from the viewpoint of subse- (1967); and the provision of more formal systems to quent work on program proofs. C. A. R. Hoare (1969) and Edsger Dijkstra (1976). The Turing delivered this paper in June 1949, at the early papers of some of the computing pioneers, how- inaugural conference of the EDSAC, the computer at ever, show an awareness of the need for proofs of Cambridge University built under the direction of program correctness and even present workable meth- Maurice V. Wilkes. Turing had been writing programs ods (e.g., Goldstine and von Neumann 1947; Turing for an electronic computer since the end of 1945-at 1949). first for the proposed ACE, the computer project at the The 1949 paper by Alan M.
    [Show full text]
  • Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
    Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth.
    [Show full text]
  • Biographies of Computer Scientists
    1 Charles Babbage 26 December 1791 (London, UK) – 18 October 1871 (London, UK) Life and Times Charles Babbage was born into a wealthy family, and started his mathematics education very early. By . 1811, when he went to Trinity College, Cambridge, he found that he knew more mathematics then his professors. He moved to Peterhouse, Cambridge from where he graduated in 1814. However, rather than come second to his friend Herschel in the final examinations, Babbage decided not to compete for an honors degree. In 1815 he co-founded the Analytical Society dedicated to studying continental reforms of Newton's formulation of “The Calculus”. He was one of the founders of the Astronomical Society in 1820. In 1821 Babbage started work on his Difference Engine designed to accurately compile tables. Babbage received government funding to construct an actual machine, but they stopped the funding in 1832 when it became clear that its construction was running well over-budget George Schuetz completed a machine based on the design of the Difference Engine in 1854. On completing the design of the Difference Engine, Babbage started work on the Analytical Engine capable of more general symbolic manipulations. The design of the Analytical Engine was complete in 1856, but a complete machine would not be constructed for over a century. Babbage's interests were wide. It is claimed that he invented cow-catchers for railway engines, the uniform postal rate, a means of recognizing lighthouses. He was also interested in locks and ciphers. He was politically active and wrote many treatises. One of the more famous proposed the banning of street musicians.
    [Show full text]
  • Alan Turing, Marshall Hall, and the Alignment of WW2 Japanese Naval Intercepts
    Alan Turing, Marshall Hall, and the Alignment of WW2 Japanese Naval Intercepts Peter W. Donovan arshall Hall Jr. (1910–1990) is de- The statistician Edward Simpson led the JN-25 servedly well remembered for his team (“party”) at Bletchley Park from 1943 to 1945. role in constructing the simple group His now declassified general history [12] of this of order 604800 = 27 × 33 × 52 × 7 activity noted that, in November 1943: Mas well as numerous advances in [CDR Howard Engstrom, U.S.N.] gave us combinatorics. A brief autobiography is on pages the first news we had heard of a method 367–374 of Duran, Askey, and Merzbach [5]. Hall of testing the correctness of the relative notes that Howard Engstrom (1902–1962) gave setting of two messages using only the him much help with his Ph.D. thesis at Yale in property of divisibility by three of the code 1934–1936 and later urged him to work in Naval In- groups [5-groups is the usage of this paper]. telligence (actually in the foreign communications The method was known as Hall’s weights unit Op-20-G). and was a useful insurance policy just in I was in a research division and got to see case JN-25 ever became more difficult. He work in all areas, from the Japanese codes promised to send us a write-up of it. to the German Enigma machine which Alan The JN-25 series of ciphers, used by the Japanese Turing had begun to attack in England. I Navy (I.J.N.) from 1939 to 1945, was the most made significant results on both of these important source of communications intelligence areas.
    [Show full text]
  • Women in Computing
    History of Computing CSE P590A (UW) PP190/290-3 (UCB) CSE 290 291 (D00) Women in Computing Katherine Deibel University of Washington [email protected] 1 An Amazing Photo Philadelphia Inquirer, "Your Neighbors" article, 8/13/1957 2 Diversity Crisis in Computer Science Percentage of CS/IS Bachelor Degrees Awarded to Women National Center for Education Statistics, 2001 3 Goals of this talk ! Highlight the many accomplishments made by women in the computing field ! Learn their stories, both good and bad 4 Augusta Ada King, Countess of Lovelace ! Translated and extended Menabrea’s article on Babbage’s Analytical Engine ! Predicted computers could be used for music and graphics ! Wrote the first algorithm— how to compute Bernoulli numbers ! Developed notions of looping and subroutines 5 Garbage In, Garbage Out The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths. — Ada Lovelace, Note G 6 On her genius and insight If you are as fastidious about the acts of your friendship as you are about those of your pen, I much fear I shall equally lose your friendship and your Notes. I am very reluctant to return your admirable & philosophic 'Note A.' Pray do not alter it… All this was impossible for you to know by intuition and the more I read your notes the more surprised I am at them and regret not having earlier explored so rich a vein of the noblest metal.
    [Show full text]
  • Alan Turing's Forgotten Ideas
    Alan Turing, at age 35, about the time he wrote “Intelligent Machinery” Copyright 1998 Scientific American, Inc. lan Mathison Turing conceived of the modern computer in 1935. Today all digital comput- Aers are, in essence, “Turing machines.” The British mathematician also pioneered the field of artificial intelligence, or AI, proposing the famous and widely debated Turing test as a way of determin- ing whether a suitably programmed computer can think. During World War II, Turing was instrumental in breaking the German Enigma code in part of a top-secret British operation that historians say short- ened the war in Europe by two years. When he died Alan Turing's at the age of 41, Turing was doing the earliest work on what would now be called artificial life, simulat- ing the chemistry of biological growth. Throughout his remarkable career, Turing had no great interest in publicizing his ideas. Consequently, Forgotten important aspects of his work have been neglected or forgotten over the years. In particular, few people— even those knowledgeable about computer science— are familiar with Turing’s fascinating anticipation of connectionism, or neuronlike computing. Also ne- Ideas glected are his groundbreaking theoretical concepts in the exciting area of “hypercomputation.” Accord- ing to some experts, hypercomputers might one day in solve problems heretofore deemed intractable. Computer Science The Turing Connection igital computers are superb number crunchers. DAsk them to predict a rocket’s trajectory or calcu- late the financial figures for a large multinational cor- poration, and they can churn out the answers in sec- Well known for the machine, onds.
    [Show full text]
  • Ada Lovelace the first Computer Programmer 1815 - 1852
    Ada Lovelace The first computer programmer 1815 - 1852 Biography Ada Lovelace Day I Born on December 10th, 1815 in London as Augusta Ada Byron Each second Tuesday in October is Ada Lovelace Day. A day to raise the I Parents separated when she was a baby profile of women in science, technology, engineering, and maths to create new role models for girls and women in these fields. During this day the I Father Lord Byron was a poet and died when she was 8 years old accomplishments of those women are celebrated. I Mother Lady Wentworth was a social reformer I Descended from a wealthy family I Early interest in mathematics and science, encouraged by her mother Portrait I Obtained private classes and got in touch with intellectuals, e.g. Mary Sommerville who tutored her and later introduced Lovelace to Charles Babbage at the age of 17 I Married in 1835 William King at the age of 19, shortly after becoming the Countess of Lovelace I By 1839, she had given birth to 3 children I Continued studying maths, supported among others by Augustus De Morgan, a math professor in London who taught her via correspondence I In 1843, she published a translation of an Italian academic paper about Babbage's Analytical Engine and added her famous note section (see Contributions) I Died on November 27th, 1852 at the age of 36 Contributions I First computer programmer, roughly a century before the electronic computer I A two decade lasting correspondence with Babbage about his idea of an Analytical Engine I Developed an algorithm that would enable the Analytical Engine to calculate a sequence of Bernoulli numbers, unfortunately, the machine was never built I First person to realize the power of computer programs: Not only used for calculations with numbers I Combined arts and logic, calling it poetical science Figure 3:Ada Lovelace I First reflections about artificial intelligence, but she rejected the idea Bernoulli Numbers Quotes I Play an important role in several domains of mathematics, e.g.
    [Show full text]
  • Charles Babbage (1791-1871)
    History of Computer abacus invented in ancient China Blaise Pascal (1623-1662) ! Blaise Pascal was a French mathematician Pascal’s calculators ran with gears and wheels Pascal Calculator Charles Babbage (1791-1871) Charles Babbage was an English mathematician. Considered a “father of the computer” He invented computers but failed to build them. The first complete Babbage Engine was completed in London in 2002, 153 years after it was designed. Babbage Engine Alan Turing (1912-1954) Alan Turing was a British computer scientist. ! He proposed the concepts of "algorithm" and "computation" with the Turing machine in 1936 , which can be considered a model of a general purpose computer. Alan Turing (1912-1954) During the second World War, Turing worked for Britain’s code breaking centre. He devised a number of techniques for breaking German ciphers. Turing was prosecuted in 1952 for homosexual acts. He accepted treatment with estrogen injections (chemical castration) as an alternative to prison. Grace Hopper (1906–1992) Grace Hopper was an American computer scientist and United ! States Navy rear admiral. She created a compiler system that translated mathematical code into machine language. Later, the compiler became the forerunner to modern programming languages Grace Hopper (1906–1992) In 1947, Hopper and her assistants were working on the "granddaddy" of modern computers, the Harvard Mark II. "Things were going badly; there was something wrong in one of the circuits of the long glass- enclosed computer," she said. Finally, someone located the trouble spot and, using ordinary The bug is so famous, tweezers, removed the problem, a you can actually see two- inch moth.
    [Show full text]
  • Algorithms, Turing Machines and Algorithmic Undecidability
    U.U.D.M. Project Report 2021:7 Algorithms, Turing machines and algorithmic undecidability Agnes Davidsdottir Examensarbete i matematik, 15 hp Handledare: Vera Koponen Examinator: Martin Herschend April 2021 Department of Mathematics Uppsala University Contents 1 Introduction 1 1.1 Algorithms . .1 1.2 Formalisation of the concept of algorithms . .1 2 Turing machines 3 2.1 Coding of machines . .4 2.2 Unbounded and bounded machines . .6 2.3 Binary sequences representing real numbers . .6 2.4 Examples of Turing machines . .7 3 Undecidability 9 i 1 Introduction This paper is about Alan Turing's paper On Computable Numbers, with an Application to the Entscheidungsproblem, which was published in 1936. In his paper, he introduced what later has been called Turing machines as well as a few examples of undecidable problems. A few of these will be brought up here along with Turing's arguments in the proofs but using a more modern terminology. To begin with, there will be some background on the history of why this breakthrough happened at that given time. 1.1 Algorithms The concept of an algorithm has always existed within the world of mathematics. It refers to a process meant to solve a problem in a certain number of steps. It is often repetitive, with only a few rules to follow. In more recent years, the term also has been used to refer to the rules a computer follows to operate in a certain way. Thereby, an algorithm can be used in a plethora of circumstances. The word might describe anything from the process of solving a Rubik's cube to how search engines like Google work [4].
    [Show full text]