Paleoenvironmental Interpretation and Identification
Total Page:16
File Type:pdf, Size:1020Kb
PALEOENVIRONMENTAL INTERPRETATION AND IDENTIFICATION OF THE NORIAN – RHAETIAN BOUNDARY IN THE SINWA FORMATION (MOUNT SINWA, BRITISH COLUMBIA) USING STABLE ISOTOPES AND CONODONTS by JERRY (Z.X.) LEI A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE (HONOURS) in THE FACULTY OF SCIENCE Department of Earth, Ocean, and Atmospheric Sciences This thesis conforms to the required standard ……………………………………………………………………………………………………… Advisor Faculty Co-Advisor THE UNIVERSITY OF BRITISH COLUMBIA April 2018 ii Abstract The Sinwa Formation is exposed at its type locality on Mt. Sinwa, located in the southern portion of the Whitehorse Trough in northwestern British Columbia. Composed of thick, fossiliferous Late Triassic carbonates, the formation is interpreted to have been deposited in the forearc basin between the Stikine Terrane (pre-accretion) and the North American Craton. This study marks the first detailed stratigraphic investigation of the Sinwa Formation and has significant implications for understanding Late Triassic paleoenvironmental changes in the region and the location of the Norian-Rhaetian boundary in North America. It also contributes to ongoing research refining Late-Norian to Rhaetian conodont biostratigraphy. This was achieved by recording lithologies, δ13C, and conodonts across a 231.3 m thick section. Carbonate facies progress up-section from rip-up clast rich mudstone, to coral fragment wackestone, to bivalve coral wackestone/packstone and intact coral boundstone, to a dark siliciclastic shale. This progression is interpreted as rising sea level caused by local tectonics. Petrographic thin sections show variation in depositional energy based on matrix texture. Conodont species recovered include Mockina englandi, M. carinata, M. cf. spiculata, M. bidentata, and M. mosheri. Being exclusively Rhaetian (Carter and Orchard, 2007), the appearance of M. mosheri at 231 m places the Norian-Rhaetian boundary below it. The δ13C record shows 3 negative excursions. Comparable to the western Tethys section investigated by Zaffani et al. (2017), the stratigraphically highest iii excursion starting at 230 m may coincides with the Norian-Rhaetian boundary. In considering evidence from both conodont biostratigraphy and carbon isotopes the boundary is tentatively constrained between 230-231 m from the base of the Mt. Sinwa section. In a lithological context, this places the Norian-Rhaetian boundary 0.3-1.3 m below the transition between coral boundstone (Facies 3) and shale (Facies 4). iv Table of Contents Abstract .......................................................................................................................... ii Table of Contents ......................................................................................................... iv List of Figures .............................................................................................................. vi List of Tables .............................................................................................................. viii Acknowledgements ...................................................................................................... ix 1.0 Introduction ............................................................................................................. 1 2.0 Background and Past Research ............................................................................ 3 2.1 Global Trends in Oceanic Conditions During the Mesozoic .............................. 3 2.2 Regional Geology, the Canadian Cordillera ...................................................... 7 2.3 Local Geology, Late Triassic Carbonates in the Whitehorse Trough .............. 12 3.0 Methods ................................................................................................................. 17 3.1 Fieldwork......................................................................................................... 17 3.2 Thin Section Preparation................................................................................. 18 3.3 Conodont Preparation ..................................................................................... 18 3.4 Stable Isotope Ratio Mass Spectrometry ........................................................ 19 4.0 Data ........................................................................................................................ 21 4.1 Field Lithological ............................................................................................. 21 4.2 Petrographic Description of Thin Sections ...................................................... 30 4.3 Conodont Biostratigraphy ............................................................................... 40 4.4 Stable Isotope Geochemistry .......................................................................... 44 v 5.0 Analysis ................................................................................................................. 47 5.1 Lithological ...................................................................................................... 47 5.2 Geochemical and Paleontological ................................................................... 51 6.0 Conclusions ........................................................................................................... 53 References ................................................................................................................... 55 Appendices .................................................................................................................. 61 Appendix A ................................................................................................................ 61 Appendix B ................................................................................................................ 64 vi List of Figures Fig. 2.1.1 Global tectonic arrangement during the Late Triassic ........................ 3 Fig. 2.1.2 (A) Preserved soft-tissue of the conodont animal (B) Conodont apparatuses ................................................................................................................. 5 Fig. 2.2 Geological map of British Columbia showing the configuration of Intermontane belt terranes ........................................................................................... 8 Fig. 2.3 Preliminary geology of the Sinwa Creek area ................................. 13 Fig. 3.1 Traverse route on Mt. Sinwa ........................................................... 18 Fig. 4.1.1 Stratigraphic column of the Sinwa Formation on Mt. Sinwa ............ 21 Fig. 4.1.2 Carbonate mud chips of Facies 1 ................................................... 27 Fig. 4.1.3 Convolute lamination or stromatolites of Facies 1 .......................... 27 Fig. 4.1.4 Bivalve wackestone of Facies 3 ...................................................... 29 Fig. 4.1.5 Coral boundstone of Facies 3 ......................................................... 30 Fig. 4.2.1 Thin section V-003818, potential bivalve geopetal structure ........... 33 Fig. 4.2.2 Thin section V-003826, crinoid columnal ........................................ 34 Fig. 4.2.3 Thin section V-003827, coral/bryozoan fragment ........................... 35 Fig. 4.2.4 Thin section V-003834, recrystallized large shelly fragment ........... 36 Fig. 4.2.5 Thin section V-003818, rectangular sparite cluster ......................... 37 Fig. 4.2.6 Thin section V-003821, irregularly shaped sparite cluster .............. 38 Fig. 4.2.7 Thin section V-003823, calcite veins crosscutting sparite clusters . 39 Fig. 4.3.1 Simplified stratigraphic column of the Sinwa Formation on Mt. Sinwa aligned with conodont biostratigraphy ........................................................................ 41 vii Fig. 4.3.2 Conodont species recovered from the Sinwa Formation exposed on Mt. Sinwa ................................................................................................................... 42 Fig. 4.4.1 Simplified stratigraphic column of the Sinwa Formation on Mt. Sinwa aligned with δ18O and δ13C isotope records ............................................................... 44 Fig. 4.4.2 Cross-plot of δ18O and δ13C isotope systems in Sinwa Formation carbonate samples from Mt. Sinwa ............................................................................ 45 Fig. 4.4.3 Limestone-dolostone differentiated cross-plot of δ18O and δ13C isotope systems in Sinwa Formation carbonate samples from Mt. Sinwa ................. 45 Fig. 5.1.1 Reef zonation off the coast of the Lewes River Arc, with the depositional settings of Facies 1 through 4 ................................................................ 48 Fig. 5.1.2 Change in local sea level through the progression of Facies 1 through 4 ................................................................................................................... 49 Fig. 5.1.3 Sequence chronostratigraphy across the Triassic showing global sea level fluctuation .......................................................................................................... 50 viii List of Tables Table 4.2 Description of thin sections from Mt. Sinwa ..................................... 31 Table 4.3 Conodont recovery from the Mt. Sinwa section ............................... 40 ix Acknowledgements I would like to thank my advisors Dr. Martyn Golding and Prof. Stuart Sutherland, to both of whom I owe a lot, for their incredible support