Aphareus Furca (Lacepède, 1801) (Plate V, 27) Frequent Synonyms / Misidentifications: None / None
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Length Selectivity of Commercial Fish Traps Assessed from in Situ Comparisons with Stereo-Video: Is There Evidence of Sampling Bias?
Length selectivity of commercial fish traps assessed from in situ comparisons with stereo-video: Is there evidence of sampling bias? Tim J. Langlois, Stephen J. Newman, Mike Cappo, Euan S. Harvey, Ben M. Rome, Craig L. Skepper, Corey B. Wakefield SEDAR68-RD43 May 2020 This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy. Fisheries Research 161 (2015) 145–155 Contents lists available at ScienceDirect Fisheries Research j ournal homepage: www.elsevier.com/locate/fishres Length selectivity of commercial fish traps assessed from in situ comparisons with stereo-video: Is there evidence of sampling bias? a,b,∗ b,c c,d c Tim J. Langlois , Stephen J. Newman , Mike Cappo , Euan S. Harvey , b b a,b,c Ben M. Rome , Craig L. Skepper , Corey B. Wakefield a The UWA Oceans Institute and School of Plant Biology (Botany M090), Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia b Western Australian Fisheries and Marine Research Laboratories, Department of Fisheries, Government of Western Australia, P.O. Box 20, North Beach, WA 6920, Australia c Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia d Australian Institute of Marine Science, PMB No. 3, Townsville MC, Queensland 4810, Australia a r t a b i c l e i n f o s t r a c t Article history: Stock assessments of tropical demersal teleost fisheries generally rely on fishery-dependent samples of Received 25 November 2013 age structure. -
Predator-Prey Relations at a Spawning Aggregation Site of Coral Reef Fishes
MARINE ECOLOGY PROGRESS SERIES Vol. 203: 275–288, 2000 Published September 18 Mar Ecol Prog Ser Predator-prey relations at a spawning aggregation site of coral reef fishes Gorka Sancho1,*, Christopher W. Petersen2, Phillip S. Lobel3 1Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 2College of the Atlantic, 105 Eden St., Bar Harbor, Maine 04609, USA 3Boston University Marine Program, Woods Hole, Massachusetts 02543, USA ABSTRACT: Predation is a selective force hypothesized to influence the spawning behavior of coral reef fishes. This study describes and quantifies the predatory activities of 2 piscivorous (Caranx melampygus and Aphareus furca) and 2 planktivorous (Melichthys niger and M. vidua) fishes at a coral reef fish-spawning aggregation site in Johnston Atoll (Central Pacific). To characterize preda- tor-prey relations, the spawning behavior of prey species was quantified simultaneously with mea- surements of predatory activity, current speed and substrate topography. The activity patterns of pis- civores was typical of neritic, daylight-active fish. Measured both as abundance and attack rates, predatory activity was highest during the daytime, decreased during the late afternoon, and reached a minimum at dusk. The highest diversity of spawning prey species occurred at dusk, when pisci- vores were least abundant and overall abundance of prey fishes was lowest. The abundance and predatory activity of the jack C. melampygus were positively correlated with the abundance of spawning prey, and therefore this predator was considered to have a flexible prey-dependent activ- ity pattern. By contrast, the abundance and activity of the snapper A. furca were generally not corre- lated with changes in abundance of spawning fishes. -
Phylogenetic Relationships of Selected Genera of Lutjanidae Inferred from Mitochondrial Regions, with a Note on the Taxonomic Status of Pinjalo Pinjalo
Ciencias Marinas (2013), 39(4): 349–361 http://dx.doi.org/10.7773/cm.v39i4.2287 C M Phylogenetic relationships of selected genera of Lutjanidae inferred from mitochondrial regions, with a note on the taxonomic status of Pinjalo pinjalo Relaciones filogenéticas de algunos géneros de la familia Lutjanidae inferidas a partir de regiones mitocondriales, con una nota sobre la taxonomía de Pinjalo pinjalo Cecilia Chu1, Mohammed Rizman-Idid1,2*, Chong Ving Ching1,2 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia. 2 Institute of Ocean and Earth Sciences, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia. * Corresponding author. Email: [email protected] ABSTRACT. Phylogenetic relationships of 43 species in 11 genera, representing four subfamilies of the family Lutjanidae and two genera of the family Caesionidae, were inferred using mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I (COI). Further assessment using the mtDNA control region (CR) was carried out to infer the relationship between the Indian and western Pacific types of Lutjanus russellii collected from the coast of Peninsular Malaysia. A total of 11 and 12 species were sequenced for COI and CR genes, respectively. Clade formation reflects, to some extent, the species groupings based on morphological characteristics and their biogeography. The close phylogenetic relationship between Pinjalo pinjalo and the Lutjanus red snappers (Lutjanus malabaricus and Lutjanus sebae) warrants a taxonomic revision of the former as the two genera are currently separated based on non-exclusive morphological characters. A sequence divergence of 4.2% between the Indian and western Pacific types of L. -
Solomon Islands Marine Life Information on Biology and Management of Marine Resources
Solomon Islands Marine Life Information on biology and management of marine resources Simon Albert Ian Tibbetts, James Udy Solomon Islands Marine Life Introduction . 1 Marine life . .3 . Marine plants ................................................................................... 4 Thank you to the many people that have contributed to this book and motivated its production. It Seagrass . 5 is a collaborative effort drawing on the experience and knowledge of many individuals. This book Marine algae . .7 was completed as part of a project funded by the John D and Catherine T MacArthur Foundation Mangroves . 10 in Marovo Lagoon from 2004 to 2013 with additional support through an AusAID funded community based adaptation project led by The Nature Conservancy. Marine invertebrates ....................................................................... 13 Corals . 18 Photographs: Simon Albert, Fred Olivier, Chris Roelfsema, Anthony Plummer (www.anthonyplummer. Bêche-de-mer . 21 com), Grant Kelly, Norm Duke, Corey Howell, Morgan Jimuru, Kate Moore, Joelle Albert, John Read, Katherine Moseby, Lisa Choquette, Simon Foale, Uepi Island Resort and Nate Henry. Crown of thorns starfish . 24 Cover art: Steven Daefoni (artist), funded by GEF/IWP Fish ............................................................................................ 26 Cover photos: Anthony Plummer (www.anthonyplummer.com) and Fred Olivier (far right). Turtles ........................................................................................... 30 Text: Simon Albert, -
Of Spermonde Archipelago, South Sulawesi
Jurnal Iktiologi Indonesia, 10(1): 83-92, 2010 THE SNAPPER (LUTJANIDAE) OF SPERMONDE ARCHIPELAGO, SOUTH SULAWESI Andi Iqbal Burhanuddin1 and Yukio Iwatsuki2 1 Laboratory of Marine Biology, Faculty of Marine Science and Fisheries, Hasanuddin University 2 Division of Fisheries Science, Faculty of Agriculture, Miyazaki University, Japan Faculty of Marine Science and Fisheries, Hasanuddin University Jl. Perintis Kemerdekaan Km 10 Makassar 90245 correspondence author e-mail: [email protected] Received: 12 Mei 2010, Accepted: 15 Juni 2010 ABSTRACT Fish diversity monitoring could be used as a basis for formulating management of the fisheries resources. This study was conducted to describe the snapper of the family Lutjanidae from the Spermonde Archipelago, South Sulawesi. Spe- cimens were collected in Rajawali and Paotere Fish Landing Port Makassar, South Sulawesi from November 2005 to August 2009. The result showed that there was 42 species representing eight genera of family Lutjanidae inhabiting the area were examined and identified: Aphareus furca, A. rutilans, Aprion virescens, Etelis carbunculus, E. radiosus, Lut- janus argentimaculatus, L. bengalensis, L. biguttatus, L. bohar, L. boutton, L. carponotatus, L. decussatus, L. fulvus, L. sebae, L. fulviflamma, L. fuscescens. L. johnii, L. kasmira, L. gibbus, L. lemniscatus, L. lunulatus, L. lutjanus, L. mala- baricus, L. monostigma, L. quinquelineatus, L. rivulatus, L. russelli, L. sebae, L. timorensis, L. vitta, Macolor macularis, M. niger, Paracaesio kusakarii, Pristipomoides argyrogrammicus, P. auricilla, P. filamentosus, P. flavipinnis, P. mul- tidens, P. typus, P. zonatus, Symphorichthys spilurus, S. nematophorus. The local name available of each species was given. Key words: Lutjanidae, Snapper, South Sulawesi, Spermonde. INTRODUCTION diversity monitoring and could hopefully be used Spermonde archipelago (Spermonde shelf) as a basic data for formulating management regu- located in the Southern Makassar Strait, south- lation of the fisheries resources for the Spermon- west coast of Sulawesi Island. -
Annotated Checklist of the Fishes of Wake Atoll1
Annotated Checklist ofthe Fishes ofWake Atoll 1 Phillip S. Lobel2 and Lisa Kerr Lobel 3 Abstract: This study documents a total of 321 fishes in 64 families occurring at Wake Atoll, a coral atoll located at 19 0 17' N, 1660 36' E. Ten fishes are listed by genus only and one by family; some of these represent undescribed species. The first published account of the fishes of Wake by Fowler and Ball in 192 5 listed 107 species in 31 families. This paper updates 54 synonyms and corrects 20 misidentifications listed in the earlier account. The most recent published account by Myers in 1999 listed 122 fishes in 33 families. Our field surveys add 143 additional species records and 22 new family records for the atoll. Zoogeo graphic analysis indicates that the greatest species overlap of Wake Atoll fishes occurs with the Mariana Islands. Several fish species common at Wake Atoll are on the IUCN Red List or are otherwise of concern for conservation. Fish pop ulations at Wake Atoll are protected by virtue of it being a U.S. military base and off limits to commercial fishing. WAKE ATOLL IS an isolated atoll in the cen and Strategic Defense Command. Conse tral Pacific (19 0 17' N, 1660 36' E): It is ap quentially, access has been limited due to the proximately 3 km wide by 6.5 km long and military mission, and as a result the aquatic consists of three islands with a land area of fauna of the atoll has not received thorough 2 approximately 6.5 km • Wake is separated investigation. -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................ -
Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Perciformes: Haemulidae) Inferred Using Mitochondrial and Nuclear Genes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256288239 A molecular phylogeny of the Grunts (Perciformes: Haemulidae) inferred using mitochondrial and nuclear genes Article in Zootaxa · June 2011 DOI: 10.11646/zootaxa.2966.1.4 CITATIONS READS 35 633 3 authors, including: Millicent D Sanciangco Luiz A Rocha Old Dominion University California Academy of Sciences 26 PUBLICATIONS 1,370 CITATIONS 312 PUBLICATIONS 8,691 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Mesophotic Coral Reefs View project Vitória-Trindade Chain View project All content following this page was uploaded by Luiz A Rocha on 20 May 2014. The user has requested enhancement of the downloaded file. Zootaxa 2966: 37–50 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A molecular phylogeny of the Grunts (Perciformes: Haemulidae) inferred using mitochondrial and nuclear genes MILLICENT D. SANCIANGCO1, LUIZ A. ROCHA2 & KENT E. CARPENTER1 1Department of Biological Sciences, Old Dominion University, Mills Godwin Building, Norfolk, VA 23529 USA. E-mail: [email protected], [email protected] 2Marine Science Institute, University of Texas at Austin, 750 Channel View Dr., Port Aransas, TX 78373, USA. E-mail: [email protected] Abstract We infer a phylogeny of haemulid genera using mitochondrial COI and Cyt b genes and nuclear RAG1, SH3PX3, and Plagl2 genes from 56 haemulid species representing 18 genera of the expanded haemulids (including the former inermiids) and ten outgroup species. Results from maximum parsimony, maximum likelihood, and Bayesian analyses show strong support for a monophyletic Haemulidae with the inclusion of Emmelichthyops atlanticus. -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S. -
Newcastle University E-Prints
Newcastle University e-prints Date deposited: 3 June 2011 Version of file: Published Peer Review Status: Peer Reviewed Citation for published item: Lavides MN, Polunin NVC, Stead SM, Tabaranza DG, Comeros MT, Dongallo JR. Finfish disappearances around Bohol, Philippines inferred from traditional ecological knowledge . Environmental Conservation 2009, 36 (3), 235-244. Further information on publisher website: http://journals.cambridge.org/action/displayJournal?jid=ENC Publishers copyright statement: Copyright © Cambridge University Press 2009. This paper is published by Cambridge University Press, and is available with access permissions, from the DOI below: http://dx.doi.org/10.1017/S0376892909990385 Always use the definitive version when citing. Use Policy: The full-text may be downloaded for personal use only provided that: • A full bibliographic reference is made to the original source • A link is made to the metadata record in Newcastle E-prints • The full text is not changed in any way. The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Robinson Library, Newcastle University, Newcastle upon Tyne , NE1 7RU. Tel. 0191 222 6000 Environmental Conservation 36 (3): 235–244 © Foundation for Environmental Conservation 2010 doi:10.1017/S0376892909990385 Finfish disappearances around Bohol, Philippines inferred from traditional ecological knowledge MARGARITA N. LAVIDES 1,2 , ∗, NICHOLAS V.C. POLUNIN 1 , SELINA M. STEAD 1 , DON GEOFF TABARANZA 2 , MIA THERESA COMEROS 3 AND JESUS RAY