Review Shaping a Sustainable Food Future by Rediscovering Long
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt
fermentation Article Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt Alice Fujita, Senay Simsek and Paul B. Schwarz * Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; [email protected] (A.F.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-701-231-7732 Received: 25 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan. Keywords: arabinoxylan; brewing; einkorn; enzyme activity; emmer; malt; phenolic acid; spelt; and sprouting 1. -
Nutritional Value and Bioactive Compounds in Andean Ancient Grains †
Proceedings Nutritional Value and Bioactive Compounds in Andean Ancient Grains † Ritva Repo-Carrasco-Valencia Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Avenida La Molina s/n Lima 18, Lima 15024, Peru; [email protected] † Presented at the 2nd International Conference of Ia ValSe-Food Network, Lisbon, Portugal, 21–22 October 2019. Published: 3 August 2020 Abstract: Quinoa (Cheopodium quinoa), kañiwa (Cheopodium pallidicaule), kiwicha (Amaranthus caudatus) and tarwi (Lupinus mutabilis) are ancient crops from the Andean region of South America. Recently, interest in these crops has grown, and worldwide demand for them has increased considerably. The aim of this study was to study the bioactive compounds and nutritional compositions of different varieties/ecotypes of quinoa, kañiwa, kiwicha and tarwi. Proximate, mineral, dietary fibre, fatty acid and amino acid compositions were evaluated. The content of phenolic compounds, tocopherols and phytosterols, and the folic acid and antioxidant capacity, were determined as well. The protein content of the grains was between 13.00% and 20.00%. More important than protein quantity is protein quality, which is demonstrated by the composition of the amino acids. All analysed grains, and especially the kañiwa, had very high lysine content. This amino acid is especially important in vegetarian diets because it is the limiting amino acid in cereal protein. The content of the total phenolic compounds in the studied grains was 27–58 mg gallic acid/100 g of sample. In quinoa, the principal flavonoids found were quercetin and kaempferol, in kañiwa quercetin and isorhamnetin. In kiwicha, no detectable amounts of flavonoids were found. -
Amaranthus Caudatus L.) T ⁎ Alicia Martinez-Lopeza, Maria C
Journal of Functional Foods 65 (2020) 103735 Contents lists available at ScienceDirect Journal of Functional Foods journal homepage: www.elsevier.com/locate/jff Nutraceutical value of kiwicha (Amaranthus caudatus L.) T ⁎ Alicia Martinez-Lopeza, Maria C. Millan-Linaresb, , Noelia M. Rodriguez-Martina,c, Francisco Millanc, Sergio Montserrat-de la Paza a Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain b Cell Biology Unit, Instituto de la Grasa, CSIC, Ctra. de Utrera Km. 1, 41013 Seville, Spain c Department of Food & Health, Instituto de la Grasa, CSIC, Ctra. de Utrera Km. 1, 41013 Seville, Spain ARTICLE INFO ABSTRACT Keywords: Amaranthus caudatus L. (Amaranthaceae), commonly known as kiwicha, is considered as one of the few multi- Amaranth purpose pseudocereal crops which supply higher nutritional seeds in huge quantities. A. caudatus is rich source Seed of proteins, β-carotene, vitamins, minerals, and dietary fiber. Amaranth starch is of promising use by its high Plant protein solubility and digestibility, compared to wheat, rice, and oat, seeds of amaranths are gluten-free and contain Nutraceutical 30% more protein with complete set of amino acid, offering new possibilities for food processing, pharmacology, Kiwicha and cosmetics. In addition to its nutritional value, several studies have highlighted the importance of this A. caudatus as potential sources of biologically active compounds with anti-diabetic, anti-hyperlipidemic, and anti- hypercholesterolemic effects and antioxidant and antimicrobial activities. Therefore, the introduction in the diet of A. caudatus seeds could be associated with health promotion and prevention of diseases. 1. -
Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: a Mini-Review
applied sciences Review Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: A Mini-Review Olusanya N. Ruth 1,*, Kolanisi Unathi 1,2, Ngobese Nomali 3 and Mayashree Chinsamy 4 1 Disipline of Food Security, School of Agricultural, Earth and Environmental Science University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa; [email protected] 2 Department of Consumer Science, University of Zululand, 24 Main Road, KwaDlangezwa, Uthungulu 3886, South Africa 3 Department of Botany and Plant Biotectechnology, University of Johannesburg, Auckland Park, Johannesburg 2092, South Africa; [email protected] 4 DST-NRF-Center, Indiginous Knowledge System, University of KwaZulu-Natal, Westville 3629, South Africa; [email protected] * Correspondence: [email protected] Abstract: Amaranthus is a C4 plant tolerant to drought, and plant diseases and a suitable option for climate change. This plant could form part of every region’s cultural heritage and can be transferred to the next generation. Moreover, Amaranthus is a multipurpose plant that has been identified as a traditional edible vegetable endowed with nutritional value, besides its fodder, medicinal, nutraceutical, industrial, and ornamental potentials. In recent decade Amaranthus has received increased research interest. Despite its endowment, there is a dearth of awareness of its numerous potential benefits hence, it is being underutilized. Suitable cultivation systems, innovative Citation: Ruth, O.N.; Unathi, K.; processing, and value-adding techniques to promote its utilization are scarce. However, a food-based Nomali, N.; Chinsamy, M. approach has been suggested as a sustainable measure that tackles food-related problem, especially Underutilization Versus in harsh weather. Thus, in this review, a literature search for updated progress and potential Nutritional-Nutraceutical Potential of uses of Amaranthus from online databases of peer-reviewed articles and books was conducted. -
An Overview of Buckwheat (Fagopyrum Spp)-An Underutilized
Available online at www.ijmrhs.com al R edic ese M a of rc l h a & n r H u e o a J l l t h International Journal of Medical Research & a n S ISSN No: 2319-5886 o c i t i Health Sciences, 2020, 9(7): 39-44 e a n n c r e e t s n I • • I J M R H S An Overview of Buckwheat (Fagopyrum spp)-An Underutilized Crop in India-Nutritional Value and Health Benefits Aneesha Nalinkumar* and Pratibha Singh Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Haryana, India *Corresponding e-mail: [email protected] ABSTRACT Buckwheat is one of the pseudocereals grown annually in hilly regions of India. It belongs to the family Polygonaceae and genus (Fagopyrum spp.) Buckwheat is adaptable to extreme cold temperatures, stress conditions of water, less soil fertility and varying climatic conditions, making it a sustainable crop. A literature search on Buckwheat was done using PubMed and Google search engines and reviewed to prepare an overview of its cultivation, nutritional and health value. In India, twenty species of Buckwheat are cultivated across various hilly regions. Out of these only nine species have desirable nutritional value and two are commonly grown. They are Fagopyrum esculentum Moench (Common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). However, the cultivation of Buckwheat has declined in the 20th century making it an underutilized crop. Buckwheat has good amount of nutrients and many health benefits. There is a need to research about this under-utilized crop and create awareness as this crop has many nutritional and health benefits. -
Qualitative Composition of Amaranth Plants Depending on the Altitude Zone of Mountains and Foothills by Bekuzarova S
Global Journal of Science Frontier Research: D Agriculture and Veterinary Volume 20 Issue 2 Version 1.0 Year 2020 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Qualitative Composition of Amaranth Plants Depending on the Altitude Zone of Mountains and Foothills By Bekuzarova S. A., Kuznetsov, I. Yu. & Dzampaeva M. V. Gorsky State Agrarian University Abstract- Amaranth is a multifunctional culture that surpasses many others by the amount of high-grade protein, vitamins, macro- and microelements from a unit of sown area. Amaranth grains (mature seeds) contain 14-18% of protein, up to 8% of oil, about 7% of N-free extractives and up to 4% of ash. It is used as dietary cereal, for the production of baby food, medical products, in the bakery and confectionery industries, as well as in feed production. Amaranth protein in its amino-acid composition approaches the ideal protein. Amaranth protein concentrates are not inferior to soy ones. Leaves of amaranth of vegetable cultivars are used for preparing salads, soups, fried, baked, boiled and dried food products. The green mass of amaranth is a valuable feed for pigs, cattle and other animals rich in proteins and vitamins. Keywords: altitudinal zonation, highlands, foothills, photosynthesis, foliage, quality. GJSFR-D Classification: FOR Code: 070199 QualitativeCompositionofAmaranthPlantsDependingontheAltitudeZoneofMountainsandFoothills Strictly as per the compliance and regulations of: © 2020. Bekuzarova S. A., Kuznetsov, I. Yu. & Dzampaeva M. V. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Unit Quantity and Handling Charge for Distribution of Plant Genetic Resources
Appendix Unit quantity and handling charge for distribution of genetic resources Handling charge 2) Standard Plant species Bank transfer Credit card 3) quantity 1) US$ EUR JPY Wild rice (Oryza), Aegilops, pea, winter squash, cucumber, water melon, hyacinth bean, scarlet runner bean, melon, 10 seeds gourd, peanut Vigna, kidney bean, okra, burdock, cowpea, winged bean, Fagopyrum cymosum, soybean, radish, wild soybean, sugar 20 seeds beet, maize, Job's tears, spinach, wild wheat, lima bean, mung bean, cotton Plant Brassica, flax, rice, Lolium, wild perilla, wheat, edible chrysanthemum, sorghum, buckwheat, Fagopyrum tataricum, genetic 50 seeds resources chili, tomato, eggplant, parsley, sweet pepper, ground cherry, 14 11 518 lettuce Foxtail millet, quinoa, millet, grass, clover, sesame, perilla, celery, amaranthus, onion, carrot, leek, barnyard millet, 100 seeds Chinese lespedeza 3 tubers or Potato, sweet potato 3 stolons Strawberry, chrysanthemum, azalea 3 Plants Lily 3 bulbs Fruit trees, mulberry, sugar cane, tea 3 shoots (Core collection) 142 115 13,636 1) The standard quantity for distribution of non-listed plant species is determined equivalently to that of a related species, genus or family. The composition and the maximum distribution of the core collections are determined elsewhere. 2) The handling charge is valid from April 1, 2021 (start of Japanese fiscal year) based on a fixed exchange rate. In case of bank transfer, the handling charge includes the foreign currency conversion fee charged by the Japanese bank. Additional bank charges must be paid by the user. Shipment cost is usually included in handling charge. However, some vegetative accessions are shipped freight collect. 3) Payment by credit card is temporarily unavailable. -
Fagopyrum Esculentum Ssp. Ancestrale-A Hybrid Species Between Diploid F
ORIGINAL RESEARCH published: 16 July 2020 doi: 10.3389/fpls.2020.01073 Fagopyrum esculentum ssp. ancestrale-A Hybrid Species Between Diploid F. cymosum and F. esculentum Cheng Cheng 1,2,YuFan 1,YuTang 3, Kaixuan Zhang 1, Dinesh C. Joshi 4, Rintu Jha 1, Dagmar Janovská 5, Vladimir Meglicˇ 6, Mingli Yan 2* and Meiliang Zhou 1* 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China, 2 School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China, 3 Department of Tourism, Sichuan Tourism University, Chengdu, China, 4 Indian Council of Agricultural Research- Vivekananda Institute of Hill Agriculture, Almora, India, 5 Gene Bank, Crop Research Institute, Prague, Czechia, 6 Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia Fagopyrum cymosum is considered as most probable wild ancestor of cultivated buckwheat. However, the evolutionary route from F. cymosum to F. esculentum Edited by: remains to be deciphered. We hypothesized that a hybrid species exists in natural Natascha D. Wagner, University of Göttingen, Germany habitats between diploid F. cymosum and F. esculentum. The aim of this research was Reviewed by: to determine the phylogenetic position of F. esculentum ssp. ancestrale and to provide Angela Jean McDonnell, new thoughts on buckwheat evolution. Different methodologies including evaluation of Chicago Botanic Garden, morphological traits, determination of secondary metabolites, fluorescence in situ United States Kyong-Sook Chung, hybridization (FISH), comparative chloroplast genomics, and molecular markers were Jungwon University, South Korea deployed to determine the phylogenetic relationship of F. esculentum ssp. ancestrale with *Correspondence: F. cymosum and F. esculentum. The ambiguity observed in morphological pattern of Mingli Yan [email protected] genetic variation in three species revealed that F. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
Productive and Qualitative Traits of Amaranthus Cruentus L.: an Unconventional Healthy Ingredient in Animal Feed
animals Article Productive and Qualitative Traits of Amaranthus Cruentus L.: An Unconventional Healthy Ingredient in Animal Feed Fabio Gresta 1, Giorgia Meineri 2, Marianna Oteri 3, Carmelo Santonoceto 4, Vittorio Lo Presti 1, Annalisa Costale 5 and Biagina Chiofalo 1,* 1 Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; [email protected] (F.G.); [email protected] (V.L.P.) 2 Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; [email protected] 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; [email protected] 4 Department AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy; [email protected] 5 Department of Drug Science and Technology, University of Turin, 10125 Torino, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-09-0676-6833 Received: 28 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Simple Summary: Amaranthus cruentus (red amaranth) can be considered a very interesting crop for its high nutritional and functional value. In this study, agronomic traits, oil content, fatty acid composition, quality indices, antioxidant activity, and total phenolic compounds were studied on eight A. cruentus accessions grown in Southern Italy. Data showed a valuable seed yield (0.27 kg/m2, on average) comparable to the main cereals used for animal feeding, a higher oil content compared to that of conventional cereals such as maize with a fatty acid profile composed approximately for the 60% of unsaturated fatty acids, and a valuable antioxidant potential and phenolic compounds that are far superior to corn and wheat. -
The International Footprint of Teff: Resurgence of an Ancient Ethiopian Grain by Annette R
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2015 The nI ternational Footprint of Teff: Resurgence of an Ancient Ethiopian Grain Annette R. Crymes Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Food Security Commons Recommended Citation Crymes, Annette R., "The nI ternational Footprint of Teff: Resurgence of an Ancient Ethiopian Grain" (2015). Arts & Sciences Electronic Theses and Dissertations. 394. https://openscholarship.wustl.edu/art_sci_etds/394 This Thesis is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS University College International Affairs The International Footprint of Teff: Resurgence of an Ancient Ethiopian Grain by Annette R. Crymes A thesis presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Master of Arts May 2015 St. Louis, Missouri © 2015, Annette R. Crymes Table of Contents List of Figures ................................................................................................................................ iv List -
Help Prevent Medical Errors
9.2017 Overview: The Omegas By Cara Rosenbloom, RD Dietary fat is an essential part of our diet. But, some types of fat are better for you than others. Here’s what you need to know about the omega fatty acids. We need omega-3 fats for our bodies to function properly. We have to get omega-3s from food, since our bodies can’t make them. Help Prevent Medical Errors There are 3 main types of omega-3 fats: DHA and EPA from fish such as salmon and trout Thousands of Americans die each year as a result of medical errors. (eat 2 to 3 times a week), and ALA from plant- Common errors include medication mix-ups, unnecessary blood transfusions, based sources such as walnuts, flax and canola. health care facility-contracted infections, patients not reporting side effects Because there are limited sources for omega-3, and inadequate patient preparation before and after surgery. many people do not get enough in their diet. The places where errors most often occurare in hospital patients’ rooms, Adequate omega-3 intake is associated with operating rooms, emergency units, delivery rooms, primary providers’ offices >> less inflammation. Lowering inflammation is and intensive care units. important if you have an inflammatory condition The single best way you can help prevent errors is to stay closely involved such as Crohn’s, colitis, rheumatoid arthritis, in every decision of your medical care. For example: gout or psoriasis. Chronic inflammation is also Keep your health care officially coordinated by a single practitioner. linked to an increased risk of cancer.