<<

Bioaerosol field measurements: Challenges and perspectives in outdoor studies Tina Šantl-Temkiv, Branko Sikoparija, Teruya Maki, Federico Carotenuto, Pierre Amato, Maosheng Yao, Cindy E. Morris, Russ Schnell, Ruprecht Jaenicke, Christopher Pöhlker, et al.

To cite this version:

Tina Šantl-Temkiv, Branko Sikoparija, Teruya Maki, Federico Carotenuto, Pierre Amato, et al.. Bioaerosol field measurements: Challenges and perspectives in outdoor studies. Science and Technology, Taylor & Francis, 2020, 54, pp.520-546. ￿10.1080/02786826.2019.1676395￿. ￿hal-02319383￿

HAL Id: hal-02319383 https://hal.archives-ouvertes.fr/hal-02319383 Submitted on 17 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, To linktothisarticle: To Technology, DOI: Measurements: ChallengesandPerspectivesinOutdoorStudies,AerosolScience P Pierre Amato,MaoshengYao,CindyE.Morris,RussSchnell,RuprechtJaenicke,Christopher citethisarticle: To Huffman ChristopherP Jaenicke, CindyE.Morris,RussSchnell,Ruprecht Amato,MaoshengYao, Pierre Tina Perspectives inOutdoorStudies Challengesand FieldMeasurements: Bioaerosol ö hlker, PaulJ.DeMott,ThomasC.Hill&AlexHuffman(2019):BioaerosolField Š ISSN: 0278-6826(Print)1521-7388(Online)Journalhomepage: ScienceandTechnology Aerosol antl-Temkiv, Branko Sikoparija, Teruya Maki,FedericoCarotenuto, Teruya Sikoparija, Branko antl-Temkiv, View Crossmark data Crossmark View articles related View 33 Article views: Submit yourarticletothisjournal Oct 2019. Accepted authorversionpostedonline:08 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 https://www.tandfonline.com/action/journalInformation?journalCode=uast20 10.1080/02786826.2019.1676395 Tina Comment citer cedocument: Full Terms &Conditionsofaccess andusecanbefoundat Full Terms

https://doi.org/10.1080/02786826.2019.1676395 Š antl-Temkiv, BrankoSikoparija,TeruyaMaki,FedericoCarotenuto, ö hlker, PaulJ.DeMott,ThomasC.Hill&Alex hlker,

https://www.tandfonline.com/loi/uast20 Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and 10 Montfavet, France 9 Environmental Sciencesand Engineering,University,Beijing, Peking China 8 7 6 5 Novi Sad, NoviSad, Serbia 4 Change,Climate 3 2 Aarhus, 1 Christopher Pöhlker Amato ŠantlTina Bioaerosol Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, Plant PathologyPlant Res LaboratoryState Key Joint Environmental andPollution Control, Simulation of College of Université NationalItaly Research of Institute (CNR), Council ofBioeconomy (IBE),Italy BioSenseInstitute DepartmentInterdisciplinary Science, Aarhus ofEnvironmental iCLIMATE University for Centre Department Astronomy, ofPhysicsand Stellar Astrophysics Centre Aarhus University,Department ofBioscience, Microbiology Arctic Section and Research Center Institute National OceanicAtmospheric Boulder, and Organization; Colorado, USA P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, 7 Denmark , Maosheng ofEngineering, ScienceandUniversity, Kanazawa Japan Kakuma, Clermont Auvergne, CNRS, SIGMA Clermont, ICCF,Clermont Auvergne,Clermont, SIGMA CNRS, C - Temkiv Field 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Roskilde, Roskilde,

Accepted Manuscript -

Measurements: Challenges andPerspectives earch Unit, French National Institute for Unit,FrenchInstitute earch NationalResearch Agricultural (INRA), Research InstiResearch 1

,2,3 Yao 1 2 , *

Comment citer cedocument: , Paul Paul J. DeMott Denmark

8 Branko SikoparijaBranko , Cindy tute for Information Technologiestute for inBiosystems, University of

E.

Morris 1 3 , Thomas C. J.Hill 9 4 , , Teruya Maki Russ SchnellRuss 10 5 , , Aarhus, Denmark, Aarhus, 1 lermont , Ruprecht Jaenicke 3 Federico Carotenuto ,

J. J. Alex HuffmanAlex

-

in Outdoorin Studies Ferrand

, F ,

rance

1 11 4,12

6 , , Pierre *

,

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and i.e. distinguish bioaerosolsabiologicalgiveWe . from regions extra to focus specific interest, of biogeography human hydrological cycle; bioaerosol are field measurement important gr from the atmospheric sciences. The reviews of scientific each owngoals, disciplines, withits assumptions Outdoor Denver,Departme Ny Munkegade, 8000 CONTACT 14 1 12 11 Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, 3 Colorado State University, Department Science ofAtmospheric UniversityDepartment ofDenver, and Biochemistry ofChemistry Max PlanckInstitute Institutethe Atmosphere, forGermany ofMainz, Physics University, and for challenges, cross and needs forests, polar regions, marineforests,regions, rural and deserts, polarandand environments, coastal urban areas, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, field outdoor Tin

measurements ofbioaerosolsmeasurements are performed withinand awidebasic applied range of and biodiversity. a Šantl s 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

and national security and national Accepted Manuscriptnt ofChemistryBiochemistry; and C Denver, field bioaerosolthesefield research fromdiverse interests (ii)

Aarhus, DenmarkAarhus, - for Chemistry,Chemistryfor Multiphase Department atmospheric chemistry; Temkiv Comment citer cedocument:

We We [email protected]

concisely focus - disciplinary collaboration.disciplinary The

;

; (v) J. J.

is , Alex Alex Huffman

airborne airborne

on a highon a level of discussion pressing questions, scientific include include

review bioaerosol impacts and discusspropertiesreview bioaerosol that and impacts (iii) airborne

Aarhus University,Bioscience,116 Department of livestock (i) atmospheric [email protected] ,

and terminology. contains Thispaper brief allergen

and crop pathogensand crop O 80208 ,

Fort Collins, Colorado, USA Collins, Fort ,

physics, physics, - Denver, Colorado, USA Denver, research topics research containing

, with emphasis onperspectives , with , USA , ,

Mainz, GermanyMainz, clouds, .

particles ;

University of and and ,

climate, and in which (vi) ; (iv)

airborne airborne

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and salt particles. exudates and environments inactive inthe atmosphere butserveas reproductive ordispersal betweenplants, units propagules, colonize new environmentsorhosts which may fraction composition environment, exist al. associated with 1. ; and (viii) (iv) atmosphericaging include: (i) thediverse we within scientific suggest pressing questionsposed communities, that questions scientific transport, bothstationary and from and vessel summarize keyconsiderations related measurements, tobioaerosol as long offluxes, such Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato,

(2012) The term encompassesprimary abroad bioaerosol range of atmospheric Introduction P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, is comprised of

that canon their ownor be attached aerosolized tonon . Atmospheric emission sourceemission catalyse i.e. s , Into the fraction that aerosols addition of

and size

fungal ,fungal bacterial spores, pollen and emitted fromand 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 ;

Accepted Manuscript (iii) in air above

biochemical theatmosphere, reactions in change their climate ; s

T .

(v) metabolic(v) a living organisms b From a functional he lastfraction of are bioaerosols microbial, plant ioaerosols can Comment citer cedocument: s

- and relevant properties virtually flux estimates flux both ;

(ii)

living

ctivity originate all locations onthe globeall locations T ,

such as ,such asarchaea, fungi, lichens he perspective and dead ; second second -

driven platforms. Keeping in mind a platforms. mind series Keeping of in driven (vi) ; . (ii) spatial distribution

fromevery sources interrestrial urbanization of transport allergies; (vii) of human fraction of bioaerosols ,

, thereare ofbioaerosols threetypes and organisms can

influence a host throughinfluence a a host infection, - biological particles, or biological suchas mineral , as defined rigorously, as defined by Despr ,

that are considered metabolically and exhibit avastand diversity exhibit oftype ;

(iii) changes , own

or animal fragments are components organic surface properties ,

and and microalgae,

particles

in distribution; pathogen hosts pathogen hosts marine marine - range :

(i) such as such as key T ll

and and he é ,

s et s and and first first

s , Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and bioaerosol field measurebioaerosol field health, climate, inordercommunities tobetter understand impacts chemistry onaerosol ofbioaerosols the areas is biogeography human hydrological cycle application to associated For assumptions. terminology and example,areas scientificresearch withestablished of thatfosterdisciplines research toward bioaerosols a within tremendously are performed widespread appliedand scientific ofbasic set 1887; De Bary 1887;Paste nucleation active compoundsATP, NADH), (e.g. structural molecular tracers properties (shape properties) and spectral identified environmental processes bioaerosols, their regardless viability, of molecules may carry thatare with associated Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, The ofreview intention this igniteglobal isto collaborative effort Bioaerosolsthe first were types among of P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill,

pathogen discus by their

s outdoor and role biodiversity.of The ed in Section 2. ed inSection agriculture, s 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

proteins). such as information molecules energy as (e.g.DNA, RNA), such

and , (ii) atmospheri , Accepted Manuscript characteristic national bioaerosols (i) veryatmospheric physics, clouds include: broadly , are, toxic ments Comment citer cedocument: ur 1862;Ehrenberg 1847)

and ecology.

.

security

Instead, w chemical composition chemical composition c chemistry, (iii) c chemistry, (iii) ,

or separate provoke reactions allergic

, (v) , their B

e ergosterol, cellulose)ergosterol, rief, reviews updated

outdoor outdoor airborne focus on focus atmospheric aerosols to be to atmospheric aerosols identified

scientific goalsscientific andwith growth nutrient in/on media, airborne bioaerosol for field each measurements of

livestock . a high of discussion pressing level scientific Contemporary (ratio oforganic orelements) physical allergen

and crop pathogensand crop or . are included, are included, B

functional compounds(e.g.functional ioaerosols areioaerosols particles - outdoor containing particles a cross disciplines and cross disciplines distinct - carryingcompounds (e.g. or

f restrict ield measurements of through thepresence of

sets ofcommunity ,

and (vi) (Carnelleyet al. ed a variety of

, to climate ,

(iv) and physics outdoor outdoor that

these these airborne airborne ice are , and -

-

, Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and actingas either immense diversity Reponen et al.1996) et 2012;Ghosal al.2015;Griffiths etal. etal. 2010; 2013) subsaturated conditions,i.e. hygroscopicity, can basedand absorb ontheabilityscatter bioaerosolsto light. of Atmospheric b respect measurement to challenges. Here 2. issue of the atmospheric sciences authorsof withdiverse background sets and Madelin Harrison 2004; al. Jones 1994) 2009; 2013; Desprésal. Xuet et al.2011;Womack 2012; al.2010;Georgakopoulos al.2011;Morris et et and Amato 2017 collaboration. questions, grand challenges, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato,

D m Research P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, ifferent of communities focused methodology allareas measurement.on standardizing bioaerosol across of . The hygroscopic properties of bioaerosols haveproperties. The ofbeen hygroscopic bioaerosols 2.1.

A tmospheric physics tmospheric Comprehensive reviews can be found elsewhere reviewsComprehensive canfound be ioaerosols canioaerosols direct exert andindirecteffects climate. on

cloud condensation nuclei (CCN), whichcloud nuclei nucleate condensation (CCN), otivation , ; Núñez et; Núñez al.2016b,2016a; Fröhlich 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

we summarize comments around six broad categories commentssix bioaerosolwe around summarize impacts of with . Indirect. climate effects ofb Accepted Manuscript , mainlydue totechnical challenges related totheir relatively large sizes s

in ambientair.

Comment citer cedocument:

than sampling recommendation bioaerosol , others,

clouds

s

e.g.

researchers have , climate and expertise health scienceshealth ioaerosols influence their , and hydrological, and cycle . Contributions wereContributions from compiled a

Leeal. Rubel et1997; 2000; al.2002;Koet - , Nowoisky et al. 2016; Sofiev and Sofiev Nowoisky Bergmannet al.2016; s, with

and needs cross for are ontheir based widely . This paper fits within awithin journal special fits. Thispaper

onlyrarely more

The aerosols ability atwater of take to up (Yao 2018; Buters al. Delort 2018; (Yao 2018; et direct climate direct different questionsand motivating liquid liquid emphasis added emphasis from the perspective

assessed

cloud droplets, Direct are effects primarily

interact - - disciplinary effects

(Tang et al. 2019; Lin(Tanget al.2019; ion (Bou

with o group

r

cher et al. etcher ice

cloud

and of their their s by Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and of INPsof athigher temperatures and abundance also becomingclear that pollen 2015; Huffman Morris etal. et 2013) al.2013; 2017 of often 2016; Kanji et al.2017;Huet al.2018;Knopf2018) et has been made precipitation, to use temperature range (degreeofsupercooling) are bio freshwater by and differ sea, ecotype naturalvs.anthropogenic), (e.g., and cycle by season;what over INPsINPs organismscan of produce howdoemissions asvary act andwhat them; land, over and complement those recently outlined al. 2007 althoughCCN, may thelatter gianta CCN key as play role and potentially transform more 2017) reflectivity nucleating(INP particles Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, quantify Gram negative - change affect emissions? Before mapofINPschangecan bioaerosol affectemissions? constructed,a worldwide be need we P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, ; Makietal., 2018 abundant . Ice. (Dreischmeier et al. 2017; Augustin et al. 2013; Pummer et Augustin 2017; Pummer (Dreischmeier al.2012;vonBlohnal. et etal. etal.2013; 2005) ) . R - ,

nucleati

the and esearch raised priorities across atemperatureacross wider previously rangeassumed, comprising than often themajority

humidity ir

( organisms producingorganisms lifetime and and lifetime

S sources and sources 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 ee reviews byee INA bacteria

Accepted Manuscript on active , )

and strongand we these winds.While arefromgoals, far rapid fulfilling progress , f , biogenic s ) ungi Comment citer cedocument: , which

can also effect (INA) understand how they areunderstand dispersed howthey ative (Fröhlich (Morris etal.(Morris 2004) Després et al. 2012; Morris etal.et 2014a;Fröhlich al.2012; Després

INPs typically mineral over predominate

promote bioaerosols down to

almost ago adecade role upon cloudsrole upon bio

- (Coluzza et al.2017) (Coluzza - INPs been have revealed Nowoisky et al. et O’Sullivan etNowoisky 2015; al.2015;Pummer et al.

the initiation andefficiencythe initiation ofprecipitation (see cloud droplet freezing.cloud - 23°C 23°C ,

have beenhave to hypothesized microalgae - (Hartmann etet al.2018;McCluskey al.2019;Suski , INPs

including bacteria Grampositive , precipitation,

(DeMott and Prenni 2010) andPrenni (DeMott important; andimportant; howwill climate . To mentiona (Tesson and(Tesson Šantl (Fröhlich . Questions include: what biomol , such as , such

in addition to thewell to in addition Ice

and - Nowoisky et et al.2016;Möhler particles regional e.g. few

exert aexert muchmore dramatic s , interms of their via - examples, diverse and Temkiv 2018)

modifycloud fire and weather, andfire - climate than bio Nowoiskyet al.

remain pertinent (Failor et al.(Failor et - - known group known group

and land Kanji et al.Kanji et ,

and numeric numeric ecules - . It is Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and wind needed ofallerg diagnosis toassist The quantitative spa processes still and understanding ofthe varietyofmicroorganisms Šantl Recently, their sourcesand drivers 2002; transformation compounds oforganic living microorganisms Chemical processesbe can affected particular presenceofbioaerosols,in metabolically by the microb Sahyounal. 2016) et cloud vital need for numerical et al.2018;Pettersand Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato,

of P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, - -

driven) Temkiv etal. et al.2018;Amatoet2014) al.2017;Krumins and precipitation

Herlihyet al.1987) their ial cells

2.3. 2.2.

direct observations direct observations

Airborne Airborne A metabolic rates metabolic tmospheric chemistry tmospheric pollen need .

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript s

ti (Sofiev et al.2013) (Sofiev , from regional, from global and to scales, to be to be al and temporalalairborne and understanding of allergen

such as bacteria such Wright 2015) Masonet 2015; al. properties modelling (Passananti et al. 2016; Vinatier(Passananti et et etal. al.2016; al.2016;Vaïtilingom 2013)

evaluated and Comment citer cedocument: . Overall, the extent ofOverall, theextent biological impactsatmospheric chemical on detail

- in the scavenging and detoxification of free detoxification oxidantsin the scavenginglike and radicals and containing particlecontaining as well asas well

ies ed studies toinvestigate theof impact

quantitatively. . Seasonal

the (Tina Šantl

.

T and m hey were indeed were identifiedhey as potentially involved inthe microbial activity inthe atmosphere

climate (e.g.,climate onitoring networks across theglobe across networks onitoring conduct frequent

that that allergies - Temkiv et al. 2013; Amato etal.Temkiv et 2007a;Ariyaal. al.2013;Amato et s

can maintain

or even by are Hummel et al. 2018; Hoose etHummel et al.2010; al.2018; considering driven primarily fungal and spores colder activity .

However, w different types of (Tobo et al.2014) (Tobo biogenic under atmosphericconditions under

by anemophilous by anemophilous (Amato etal. (Amato 2019; e still have e still little

INPs beyond whole pollen isurgently bioaerosols . There is a . There . - active (i.e.,

on

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and uncertainty thresholds. ofthe symptom a more personalized continuous long However, there for need proving thatnew isstill Huffmanet al.2018;Swansonet and 2015; Kiselev al.2016; Oteros 2018;Crouzy et et al. al.2013) autonomous detection what currently scale is a limited beenreal shownthat a monitored inthe outdoorair 2015) of airbornefungal taxa more specifically Ho effortssupporting themodelling abundant airborne allergen 2010; Elbert et al.2007) the coarseatmospheric mode mass of patterns include airborne fungal whicha spores, (Buters etet al.2012) al.2018; Papadopoulos measurementsairborne of Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, wever, toresolveof peculiarities P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, ,

while enzyme

(Grinn - Gofroń et al.2019;Damialis etal.et Gofroń 2015) - term outdoor Inmonitoring. the specificity responsetermimmune of the outdoor addition, calls for 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscriptis

needed. Recently,needed. approach - linked immunosorbent assay - of potential of time monitoring time (Banchi et(Banchi al.2018) .

Long pollen Comment citer cedocument: - containing particles (Grewling et al. 2016; Butersal.(Grewling Galanet 2012,2015; al.2016; et (Werchan et al. Yamamoto(Werchan 2018; etal. 2015) - term continuous monitoring calendarsterm effortsof delivered themost

(Crouzy et(Crouzy al.2016) , (Šikoparija et al. 2018a; Gehriget D’Amato(Šikoparija al. et al.2018; 2016) with allergen

human particulate matter particulate high

the results usedas forthatinform health inputs forecasts public re abundant more

of pollen - -

containing dose response, and DNA s throughput . Only recently thefocus

and describedand their spa grass season species throughout the

methodologicalapproaches with ahighcan be resolution temporal achieved s

proved thatreactiveproved . Much effort is particles (Fröhlich .

than pollen Fungal comprise can from spores 5 the capability to equencing helped identify equencing helped

in real - Nowoisky et al. 2016; Pöschl etal. Pöschl al. Nowoisky 2016; et also and different have occurrence - t of research time ial and temporalial and variability, pollen pollen being investedon improving

detect airborne allergens , which resolve should the (Huffman et al. 2019; Wu Wu (Huffman et al.2019;

arerobust enough for allergens could be also expandedto

et al.2013) (Kraaijeveld et al. (Kraaijeveld et

the

diversity – . It has .

80% of 80%

on on . .

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and pesticides or agricultural other preventative H practices. modelsthat help farmers incorporatedplant pathogens has been into simulation active ofairbornecollection (impaction) commercial a ofair rangepassive samplersfor samplers (deposition) ledto and development has of bysymptomsmissed thatcouldbe field scouts ofdetectingcan andconstraints limits overcome the or spatiallydiscrete heterogeneously distributed Monitoring ofairborne military safety events.dust (Rodó et al.2011) health microorganisms impacts ofairborne H detected atmospheric samplessuggesting from pathogen through ofbioterror acts he pathogens hazardous tohuman and culture experiments indicate detecting infectious andpossible mitigating viral, bacterial fungal or threats. tasked with preserving health public The rapid ofmicroorganisms infectious inairagencies detection isofcriticalimportance suspended to Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, owever, thereare P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill,

2.5. 2.4.

Airborne Airborne Airborne Bioaerosol monitoringalso systems playhuman an important rolein , to 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

assess the probabilityassessexposure of

Accepted Manuscript China and occurrences measles inwestern only only livestock human plant and livestock plant . The virulence . few Comment citer cedocument: animal and assay epidemiological surveys pathogen

and and crop pathogens

that alth

and security

atm (Griffin 2007)

s - related genes, synthesis,related suchas enterotoxin also been have

and and pathogens pathogens o s , for example , for pathogens pathogens p heric national (Mahaffee 2016) and Stoll . Asa result, many. rese microbial communities

(Mahaffee 2016) and Stoll , predictand

, and pathogens individual can be spread facilitates

security owever, decision

s the dispersion of Kawasakithe dispersion ofdisease inhumans

dispersal in air in dispersal (Ma et al.2017)

early detection of disease early detection because it reduce that that a or prevent or - (Kobayashi etal.2016) rchers are focused solely on rchers are focused solely . Asa consequence, making solely on based can include directly M

. Data of onaerial spread associatedwith Asian etagenomic analyses strategicallyapply - health care exposure. demonstrate

potential

and

actively

. the the

- Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and increase their chance of colonization successincrease theiralready colonization chancein of habitats. occupied 2009) precipitation UV radiation ordesiccation dispersingduring enabling microbes, others togrow some taxa aree.g. their while dispersal by killed Itdispersion. thu is al. 2011) properties abundancerelies and inthe source community factors,such onneutral as taxon mutation) four fundamentalprocesses thatunderlie biogeographic patternsdrift, dispersal, (selection, and involved inmicrobial aerial dispersal andthe biogeography ofmicroorganisms. knowledgeOur limited o informed reduc decisions that allow 2018) airborne ofsoybean rust spores pathogento monitor Rainf arrival. airborne propagules pathogen by dependsonwashout rainfall,collectionrain avery of is means useful decisions monitoring direct thepresenceof plantpathogens application has limited Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, . leading to significantgains farmer financial the and benefits environmental for because of I

2.6. t has not not t has . restricted to Atmospheric play dispersal (Hanson2012) et al.

Biogeography , therebyreduc 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 yet Accepted Manuscript s no surprise that the s nosurprise

determine the scalethe of f

and biodiversityand bioaerosolsmore impedes comprehensive a ofprinciples understanding Comment citer cedocument: ing (T. Šantl d whethercertain dispersing taxa might through air have that properties

. their atmosphericresidence their time (Isard et al.2011) The likelihood of dispersal casesThe insome independent of is likelihood oftaxon all collection been arrival has successfully tomonitor of deployed individual individual ed - s Temkiv et al. 2013) Temkiv et al.

pesticide applications applications pesticide

a as crucialtypes role one ofthe dominant ofmicrobial atmosphere was found boundaryatmosphere tobea was selective for

fields fields

and of cucurbits downy mildew of (Mahaffee 2016) and Stoll . INA. strains microbial can their induce own (Isardal. et201 (Amato et al. 2015; S MBurrowsal. S 2015; al. et (Amato et ,

and mostly it concerns

1) . When thedeposition. When of .

Dispersal one is ofthe (Neufeld et al.(Neufeld et (Nemergut et (Nemergut Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and particles can generallyparticles collected can be efficiency with higher than smaller particles heavilyis thus by influenced massand size tens of mass distributionsbioaerosol μm, ofmost typesrelatively Particle at largesizes. peak speciesINA of microorganisms largely unknown. phy large involve sp HooseChristner et and Möhler 2012;al.2008;Möhler al. et 2004) al.2007;Morris et (Conen etal. Hiranumaet et 2017; al.2015;Jol al.2017;Pouzet INAsuch as tension by thepresence ofbiosurfactants, affiliations catalytic activit amino Bioaerosols possess 3. Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato,

e cialized INAcialized t proteins, While b While siolog Current

P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, - scale scale - acids, peptides, saccharides,

3.1. (NoziereRenard 2016;Pettersand et Petters 2016; al.2016) multiplication throughmultiplication secondary formation ice y

p and ioaerosols include a largevarietyparticle classes from of thatrangeseveral insize to nm and Important Important ositive proteins considerations relatedconsiderations to

y genetic chemical composition, the composition, chemicalchemical ofbioaerosols andphysical remain properties , 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 to AcceptedFor example Manuscript - feedback whole immense chemical diversity ,

active active physical, and chemical, biological potential Comment citer cedocument: he rainfall triggered effectspotentially by biological ice nucleators may dead, dormant from s

, (Bigg et al. 2015; Huffmanal.(Bigg et2013) et al.2015;

the sequence and . (Tesso The i.e. - 2 carboxylic acids,

to amphiphilic moleculesamphiphilic responsible a for decrease ofwater surface formation of cloudformation droplets of

n and Šantl - bioaerosol field 1 , 3

or ºC - related effe metabolically ,

or structuralmolecules that :

structureINA remain ofproteins unknown from - Temkiv 2018;Fröhlich etc cts, simple simple (Lauber et al. 2018; Sullivan et(Lauber Sullivan al.2018) et al.2018; .

) measurement varying in properties - i.e. active cells

or sedimentation andLarger inertia.sedimentation y Burrowset et al.2013; al.2014;

complex complex on bio .

solubility, charge,solubility, Other Other of bioaerosols . Due totheir extremely. Due complex

s of various

genic genic - are biological molecules Nowoiskyet al.2015) molecules

usually active< CCN (Morris et al. (Morris 2014b; et

taxonomic taxonomic

may be . can Aside from

polarity

nucleate ice nucleate

favoured for behaviour - 15ºC

,

(lipids, (lipids,

most

and and .

,

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and stress assemblage complex physiological shocks contain a hi of metabolicsome extent activity: presence they react the ofsubstrates to (Vaïtilingom etal. 2013) Temkiv et al.2015) bioaerosols toxicity ofbioaerosols aging the may alter microphysical processes effects atmosphere can diethrough Estillore et al.2016;Santarpia et al.2012) nitrificationoxidation, or accumulation species surfaces of condensable ontheir temperature cycles of Wiedensohler VonDer et2009) Weiden et al.2014; al. characterized can help thus and inletminimize system quantify intheresults biases frequently misse Reponen et al.2001) Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, Bioaerosols P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, (Temkiv et al.2012) ,

activation/evaporation since they

s gh ribosomes number of

can affectcan (Amato et al. 2019; Womack et 2019;Womack al.2010;Sattler et etal. al.2001) (Amato can changecan may possess a degreemay possess of these processes, but these are d 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript particle causeddue loss to

, gene, expression, dynamic components ofthe toabiological atmosphere. Similar dynamic aerosols, consist ofmixes ofcellsconsist ofdifferent , though largeparticles(especially, though bacterial spores,are agglomerates, and pollen) (Amato et al.201 (Amato their own their (Liu et 2005) al.2017;Franze(Liu al. et chemical or .

Recently,also confirmed been bacterial has thatc it airborne Comment citer cedocument:

or even limited interactions betweenor even interactions cells limited aging by or freeze/thaw, withoxidants, reaction have have (Šantl physical properties. surface

functional stabilityfunctional ability acquired environmental viathe toresist and by degrad

9) . Finally, a . Finally,

modify also . - Temkiv et al.2018) Unlike non Unlike by poor samplingA wellby poor strategies. been hypothesizedbeen to ing irborne (Attard et al.2012)

ing oxidative species and atmospheric speciesingand organics oxidative their properties physical - . living however,living aerosols, microorganisms

taxa taxa . The microbial assemblagesmicrobial and physiological states. , and respond to oxidative stress and tooxidative , and respond physiologically Bioaerosols mayBioaerosols through age drying, metabol .

, UV radiation,

. allergenic potential Additionally (Krumins etal.(Krumins 2014) ise , surface properties

and active fraction of (Liu etal. 2017; - designed anddesigned are (Mainelis 2019; (Mainelis 2019; grow and changes in and changes in ,

also high ells maintain T atmospheric hese

in the , repeated and

, ly ly

(Santl

- Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and BiggLeckand 2001; et al.2015; M.Creamean 2016;Wilson etTobo et al.2017;ConenetIrish al.2019;J. et al. al.2018a; et al.2009) (Šantl new terrestrial surfaces and glacial retreats, areas preindustrial atmosphere states ofthe other Furthermore, ismostly it unexplored driven by forests rain tropical energy the intensecycling hydrological in al. Whitehead 2012; et et al.2010;Pöschl Graham etal. 2003) et al.2016;Fröhlich our understanding ofbioaerosol T and are, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, he number of bioaerosol studies i he studies number of bioaerosol [ [ i: i P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, . i

land use change - : U F , has major importance, has major to Temkiv et al. 2019, 2018;CrawfordTemkival. etPearce 2017; al.2019, etet al.201 Polar regions 3.2. nconstrained orests therefore

. Study regions Study So far, a few studiesproposedINP far,a biogenicSo few sources the Arctic in of ] T 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 ropical ,

Accepted Manuscript important

are -

Nowoisky et al.Nowoisky 2016; et ] feedback processes Bigg 1996) s ) have populationsrelative altered theabundanceandto of properties bioaerosol Due to for for affecting - rain

of special interest Comment citer cedocument: coloniz

, ecosystems for in

synoptic boreal is largely unassessed is largely unassessed - related processes intheserelated locations processes has remained limited the Earth climate system, climatethe Earth bioaerosol the role of

the and in volving ation n forested still comparatively is locations small ,

polar polar as and temperate forests are locations of intense biological are forests andactivity ofintense temperate locations (Moran

atmospheric patterns, polaratmospheric patterns, regions . Therefore, polar regions

to what extent humanactivities deforestationto what (i.e., extent Antarctica Antarctica , caused by , caused changes inalbedo, sea

radiation budgetradiation tropical raintropical forests

Womacket et et al.2013;Huffman al.2015;Schumacher

- Zuloagaet etal.2014a; al.2018;MorrisAndreae 2007) - depth bioaerosol analysis depth (Saxena and Weintraub 1987; Saxena 1983) (Saxena1987; Saxena and Weintraub (Pöschl et al.2010;Prenni etal. 2009) s . M ,

with its large exchanges of water and exchanges largeand with its ofwater elting of terrestrial ice elting ofterrestrial are specialaerobiology interest of for . 6; Barbaroal. Pearce et2015;

While (Andreae and 1997) Crutzen are - ice ice extent,

geographically isolated

it isacknowledgedit that - cloud interactions (Wex et al.2019; (Wex , however,

also - (Whitehead . ,

sheet melt, melt, sheet

opens up fires

and thus and thus . ,

Also and , . .

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and stabilize terrestrial biome onEarth control these rates. emission the emissionrate Ladinoet et al.2016;Wilson al.2015) exhibits produced soluble DeLeonet al.2018;Maki etal. 2014; the free change troposphereairborne could microbial over thecontinental compositions regions 2014) both Marks etal. Monahan al.1983) 2001; and in polar regions fragmented highly and is Creamean2019; J. al. 2018) et Cuthbertson etal.Harding 2017; et al.2011) 2009, 2016) have anincolonizing Antarctic important role environments terrestrial several Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato,

[ [ organiccompounds i i P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, atEurope the seashores of v ii

: suggest : s Deserts

Marine andcoastal environments s potent tudies

desert soil .

T

inland

here are have investigatedhave ice nucleation ]

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 The ofdesertssoils surface the constitute INP these which marine arereleaseds with which tothe atmosphere processes and

Accepted and particulate Manuscript (Pointing transport of marine microorganisms. In of marinetransport microorganisms. marine line withthis, bacteria to carried s carceArctic studieson as well as (Peel etal. 2007) Comment citer cedocument:

activity

. and Belnapand 2012)

As such, (Polymenakou et al.(Polymenakou 2008) et organic material airborne micro

micro - (McCluskey et al. 2018; Wang et al. 2017; Irish et(McCluskey al.2018;Wang 2017; et et al.2017; Rodriguez et Rodriguez .

There is .

bial cells our knowledge of how biogenic INP our knowledge ofhow biogenic Detection of Detection ] lacks alacks

Marine aerosols containMarine aerosols . Surface biological cover

and biogenic INPbiogenicand

bioaerosols , however, organisms ,

mechanistic and quantitative , is both in seawaterboth in and

fragments

al. 2013; Amato et al. 2007c)al. Amato 2013; etal. disturbed

marine bacterial groups in air in samplesmarinegroups collected bacterial

most most in Antarctica and at altitudes inJapan high still very still little

(Šantl

and exudates and naturally (Šantl abundant and - Temkiv et al.2018,2019; Temkiv et

largeamounts of

- ( Temkiv et al. 2019; Wex et al. etal. Wex 2019; Temkiv i.e.

(Archer et al. 2019; Pearce et al. et(Archer et al.2019;Pearce in the sea by high and and

quantitative biological which crust),

(Kuznetsova et al.2005; have suggested that s seasonally consistentseasonally

foundation. - impact cloud dynamics wind . surface surface M icrobial

s inorganic salts

understanding of understanding during (Maki et al. (Maki etal. microlayer microlayer

ly ly

desert desert (Cáliz (Cáliz they

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Overall enhancement inurban environments 2013; Oliveira 2010;Kaarakainen etal.Worek Kasprzyk 2006) al.2009, 2008; etand highlightan increase in 2009) et al.2007) 2008; Wu analysisgreatera richness detected therural in environment yieldculturability oftencounts inurban higher environments revieweddifferences vs.ruralaerobiome urban inthebacterial betweenenvironmentsrural affecting and in urban the of cultural heritage relate tohuman, plant arriving strainssensitive of (Maki etal. Puspitasariet 2017b; al.2016) concen terrestrialand atmosphericconditions Microorganisms terrestrial includes which highlycommunities, bacterial diverse andstorms Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ v P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, : . There tration of tration Urban and rural areasUrban andrural ,

attached to sand particlesattached tosand it seems that the relationship seemsit between thatthe land

sources anthropogenically

i s also ambiguity

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 airborne airborne in desert habitatsin desert ,

such as plants as such Accepted Manuscript bacteria (Sterflinger and Piñar(Sterflinger 2013)

and animal pathogen , the distribution thedistribution animalofand pathogen allergens transmission, or nosignificant betweenenvironments differences thetwo fungal bacteria Comment citer cedocument: , derived lessextreme from

] by

spore regarding of certain theconcentration fungal While spores. studies Urban and affect rural bioaerosols and indoorair outdoor quality and

human activities activities human and animal f

remain have been shown toincrease shown been have frequently sho (Rathnayakeet al.2016;Bauer Pei et2008; concentration concentration (Essoussi etal. 2010)

unaffected . After dust events,dust stressors atmospheric eliminate. After a ec . w Multiple studies haveMultiple investigated difference the es (Griffin 2007)

- close to resistance tostressors (An et et al.2013; Puspitasari al.2016). use and

(Maki etal. 2017b) werefound to atmospheric environments

rural . bioaerosols (Bowers Kaarakainen etal. al.2013; et

During events, dust Incontrast, s

compared to and that showed . areas A microbiome. microbiome. irborne bacteriairborne desert area over predominatelyfrom originate , while the , while

(Lin et al.2018;DiFilippo etal.(Lin

is not is not . methods based ongeneticmethods that are shared between

backgroundconditions well understood and polyresista

Despréset al.(2012) the diversityand methods based on

(Negrin et al.2007, - Chih etal.Chih 2000) ,

, and deprivation others see an others see nt

members more

the the

s

.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and boundary height layer increase energy ofturbulent kinetic oftime theday b al. Huffman 2014; al. Schumacher 2013; et etet al.2017;Wang al.2017;Wolf and etWright Hader al.2016;Petters et 2015; al.2014;Wright both passiveand active processes bioaerosols including are b lower and Harrisonet Jones al.2012;Evanset 2004) al.2006; wind have significantobserved bioaerosolabundance on effects and diversity and Harrison2011, 2012;Jones 2004) oftime theday al. 2008) interest temporal becarefully resolution should considered al. Kaarakainen 2013; et al.2008) etand al.2017;Rathnayake2019; Wolf environments” rural etBowers al.2016;Morris et al.2014a;et assembly effect of Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, ioaerosol [ P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, i: Choosing the i: Choosing .

3.3.

Large, short , and meteorological factors still needs determined be still to s, including fungal spores, bacteria, and pollen, and fungals, including bacteria, spores, oth during and shortlyoth duringand afterrainfall

Issues Issues

the performanceas isaffectedaofparameterssuch ofbioaerosolmonitoring number by , influenced bya combination of processes biological emissions meteo and , season, 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscriptrelated measurements tobioaerosol - temporal resolution term temporalterm variations inbioaerosolsfrequently have been observed fungal frequently andcan bacteria to spores after rainfall duringdue increase and (Šikoparija etet al.2018b;Healyet al.2014; Huffman al.2012;Fanget al. Comment citer cedocument: , season . (Joung et al. 2017; Morris et(Joung etal.2017;Rathnayakeet al.2017; al.2017; Conen rological factors rological factors

,

and also atmospheric dilution effects caused by daily changes in effects dilution alsoby caused daily atmospheric changesand in

(“The distributi .

, For example, humidity,Foratmospheric radiation, example, temperature, and

and environment thelocal ] For a particular bioaerosol campaign, monitoring

et al. 2013) et (Issanova and2017) Abuduwaili

in connection withthe type ofbioaerosols (Wei etal. Saari al.2015;Bowers 2016; et al. on variance airborne microorganisms of inurban .

. Concentrationsvarious classes of of Unlike inorganic dust concentrations,Unlike inorganicdust which

are also known

on the airborneon the community

to to change onthe depending (Hu et al. Després(Hu 2018; et , , concentrationsof e.g. relative humidity, the (Fierer et

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and microbial aerosols, downstream varyingfrom ~10 the atmosphere (e.g. and single diversity ofmicroorganisms Therefore,cultiva damaged,growth orsuitable orappropriate cultivationbecause techniques media were notused. 2007b) bacteriaculturableafter fromcollection the atmosphere <1%e.g. range widely,from cultivated thefact efficiently,areviable that despite they aerosols waters and atmospheric (e.g. long for thereferenceinvestigating inthe methods communities environment, microbial including and2015; Holt Bennett Huffman Xuet al.2011) et 2014; al.2012; (minutes orless) and certainwindows into atmospheric processes emission byat providing data high resolution time sensorstime thatdetectrelativelyand continuously a bioaerosols occurexpression, shorter onago timethan thus scales much thesamplingand could unnoticed. Real 2007) Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ [ii: P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, i . ii Finally, the speed of microbial atmosphericFinally, and activity, the speed asgene dilution growth such or

: The problem oflow to >10% C ultivation dependentultivation and - cell approaches havecellappliedprovided been approaches insights and the true of into microbial diversity analyses (Temkiv et al. 2012; Tong and Lighthart et(Temkiv al.2012;Tongand 2000) 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 (Šaulienė et al. 2019; Huffman et al.2019;Huffman etSantarpia(Šaulienė et al.2019;Huffman andal. 2017;Oteros et 2 tion dependenttion techniquesthenumber and significantly underestimate both the

to ~10 Accepted Manuscript t he Bowers et al.2009;DeLeon

should comprise should high volume filter samplers volumehigh filter samplers 6

Comment citer cedocument: cells (T. Šantl biomass m - 3 independent techn

of air ] - Lighthart 1997) Temkiv et al. 2013; Temkiv et 2013; Temkiv etal.2012) al. In

collecting bio the atmosphere, microbial cells are found at cells atmosphere, concentrations microbial are found the . Hence, - Rodriguez etRodriguez al.2013;Temkivet 2012) a repres (Domm aerosols from i . Most environmental microorganisms environmental. Most cannot be ques] (Amannal. 1995) et e ntative sample ntative sample ergueet al.2019)

Cultivation . This is either. Thisis due cells being tomost utonomously can help can provideutonomously . >1 toseveral 100

- dependent techniques were with

and . Proportionsofviable . Recently, molecular sufficient

high

m (Amato etal.(Amato - 3 flow of air.

biomass - rate .

For

for for - Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and use of impingers allows ora samplinginphysiological thus liquid fixative, preserving in bioaerosols organisms, for examplebypassing large vol cultivation allow relevant applications, suchas downstream including viability, physiological state,ice the chemical lower information from suffer strategy devices for resolution lower methods can qualitative or semi spectrometricanalyzers)as acom 2012) et al.2017;Temkivet verify are thatmeasurements notinfluenced by contamination et al.2013;Temkivetal Lever2018; al. et 2015) sterilization contamination issues A areas,characterized biomass withlow impingers Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, erosol concentrators of differenterosol concentrators of design in [ P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, i - v situ (Kim et al.2001) : Preserving storage duringsampling, state the insitu

(Šantl , ormicroscopy state ofbioaerosols, sampling or also s baking of . Asideh from - 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Temkiv et al.2017) Temkiv offer real

Accepted Manuscript- quantitative results at quantitative . Another implication of thelow . , sterile techniques, handling when and . 2012) . the sampling equipment . Comment citer cedocument:

- Long times sampling time windows atmospherictime can into processes that help inform the sampling igh good samplevolumes, stringent practices cleaning include . as well as performing Finally, u ponent of the study can complement other work studyponent by providing ofthe complement can other , though all techniques thatrelyall onlight, thoughtechniques primarily

are ,

and specificity

and storage , currently currently a e.g. sing realsing -

much higherresolutionmuch time nucleation activity nucleation cancoupled with be u mes of desic mes

virtual impactors, virtual DNA/RNA affect (Dommergue et al. 2019; Šantl (Dommergue et al.2019; . - the

time samplerstime (e.g. fluorescence ormass process periodical most appropriatemost instruments the biomass c atedacross air filter physiological state andphysiological state - es base ,

, or mixing state, ormixing

(Dommergue et al.2019;Šantl and transportation

analysing should preserveshould

molecular,microbial also handling and operationalhandling and blanks to is the high is thehigh d analyses allow overcomallow

(Huffman et al.2019)

the samples , viability assays, susceptibility as much as possible, andas muchas possible, - bound particles. sample - ] Temkiv et al.2017, For understanding viability of viability of

ing for sampling in ,

(T. Šantl and INPand analysis - scattering or integrity,

low biomass low biomass to ,

- . These These . Temkiv Temkiv - Temkiv Temkiv

The . Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and microbial etWeil al.2017;Mazar et al.2016) represent oflocal amixture andlong 2002) electrostatic that state preserveauthentic precipitation) thetheir biologicalrely tomineralthus grains) attached ‘soft’ dust particle (e.g. techniques sampling on quantification ofaerosols. bacterial Microscopic states investigations ofthe(e.g. mixing bioaerosol Lighthart(Turnbull et al.1998; etal. 1993) aerosolsexample arerarely for floating, butoftenattached free clumped or together toother particles, of additional freezing/thawing ofsamples. frozen for uptoseveral days. with frozen ice keep can packs samplescool analyses, future might but culturability affect assessment. (< Cryopreservation Inaddition, numerous microorganismsto grow at therefore altering are known 4°C, quantitati the samples at4°C,whichisacommon short 1998; Nemeck evidence the ice that their Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ An additional challenge characterizingmixing theircomplex is to bioaerosols Bacterial state. i: P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, in situ .

Wind

3.4. aerosol release has a more complex relationship has wind aerosolcomplex amore with release

Emission

states speed - Marshall et al.1993) Marshall 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 (Šantl ] Accepted Manuscript Originating from diverse souces, bioaerosol diverse areOriginating populations often from heterogenous souces, and - nucleation activitydue temperature tostarvation and nucleation increases low /deposition - Temkiv et Comment citer cedocument:

Consideration should always should Consideration for bemade,and effects reported, possible

- fluxes l and 20

. al. 2017)

. Thus, when quantifyingINP, storing. Thus,when environm biogenic o - While While C or C range transported biological particlesrange transported

- - storagestrategy during campaigns, sampling problematic. is

80 , thus breaking up of aggregates canaggregates breaking upof, thus introduce inthe biases the emissionof . and s

ong o of microbial aerosols of For example, for some INAexample, for somemicroorganisms, For there is C) C) - mightadequate bean procedureforthe many of range hipment ondry CO (solid ice

transport inorganic dust (Zavala et al.(Zavala Mainelis etal. 2014; et

(Donegan et al.1991) (Waggoner 1973) increase (Šantl 2 ) - can keep sampl Temkiv et al. 2018; Temkiv et al.2018; s

with wind . For example, (Fall and Fall (Fall and Fall .

Shipment Shipment ental ental

speed, speed, es v , e Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and to 100 surfaces. Yamaguchial. Polymenakou 2012; et al.2008) et spray particles marine environments over originatingagricultural from long aerosols change dynamicallyactivity withnew due air tomixing masses, microbial the continent 2019; Moran etal. 2013;al. Smith 2017; Vaitilingom etal. Bowers 2012; et al.2012) that can atfree least sample occasionally identify long range (>>1,000 scales km) the long layer et et al.2015;Wilkinson Kellogg 2012; and Griffin2006) Burrows et al. 2009) diameter of~1 µm (O’DowdLeeuwand2007) de plant canopies wind minimum Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ - ii: ii: P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, , such as , such range transported - fold Long - range transport byrange wind transport Dust events been have abundanceairborne increased by10 showntohave microorganisms of (HaraZhang andLim Prospero et et 2012; al.2005) al.2011; - - - range transport andm (de Weger et(de al.2016;Šikoparija et al.2013) Weger range sources ofbio range sources Zuloaga et al. 2018; Jeon etZuloaga al.2011) al. Jeon 2018; et turbulence and wind, turbulence (Jones and and (Jones speeds ofapproximately 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript have beenhave , but are, but also observed microorganisms athighaltitudes withmicroorganisms are mixed anthropogenic often particles Harrison 2004) Comment citer cedocument: , e.g.

(Suski et(Suski al.2018) modelled .

Afteraerosolization, microbial cells with dust eventswith dust s

aerosols, bacteria, including at samplingperformed isfrequently sites (Iwasaka et al. 2009; Maki etal.(Iwasaka et 2008) al.

transport microbial populations into the into transport populations microbial freeatmosphereand induce ixing process

to spend

- 0.4 ms

, whereas tropospheric air, such as: mountaintop observatories as:tropospheric air, mountaintop such (Maki et al. 2019; Mazar et al. 2016; Maki al.2019;Mazar et etal.et 20 al.2016; (Maki and

modelled and industrial processes industrial and - 1 o (Weil et(Weil al.2017;Mazar et al.2016) es

n average 3 or are

] 4 ms and roof over networksdistributed levelstations of

Microorganisms particles from derived

required -

1 to be

. is required viasea for spray emission During long . - Active mixingat the boundary processes 4 days aloft in theatmosphere aloft4 days in for airborne microbial aerosolmicrobial

and other bioaerosols and other

are known to are known

, tall towers , tall - over (Maki et al.2017a)(Maki range transport, range transport, . . In .

freshwater and plant

area longer periods s

downwind of dust ofdust downwind , disperse onlong

(Uetake et al. and aging. and emission fromemission . In seeking to microbial

with

, (Barberán with sea with (S. M. 14;

(Weil et (Weil The a

- - -

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and method also LighthartLindemann2013; Lindemann Upper etand 1985; 1994; al.1982) andShaffer dependent techniques maycases with associated thechoi inmany be parameterization of thediffusivity coefficient. coefficient a measured heightsat gradientconcentrations through different a a of so to flux rates.deposition and theatmosphere isquantifiedflux by its measuring been et al.2009) larg from several uncertainties. half environmental life of or UV flux microorganisms thefact viable despite that agglomeration can protectio withdust provide byduring atmosphericstressors their long from events Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ e - i P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, lives

ii performed the dustevent uncertaint , ~ : Assessing fluxes regional 4 hours for 4 hours for (Wirgot et al. 2017; Joly etal.et(Wirgot et2011) al.2017; al.2015;Smith (Baldocchiet al.1988) (Har from the factthat veryfrom direct thefew

tends tofail inspecific casesunder suchascanopies, as factors will factors will ies a and Zhangand a 2012) (Sesartic et2007) al.2012;Elbert et al. airbornemicrobial communities 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Past attempts toestimate bioaer Past attempts

Accepted Manuscript 80 (e.g.

Pseudomonas syringae Pseudomonas (Weil etal. (Weil (Carotenuto etal. Mayol et 2017; et etal. 2014;Huffman Crawford al. 2014; ]

Models thattry environmental ofbioaerosols the impacts tosimulate suffer - Comment citer cedocument: have additional adverse e S 870%) tudies

2017; Maki etal. 2014)

. These are. These estimationdepends measurements, notdirect as on the the in emission . have Experiments in atmospheric in Experiments chamber

estimate -

range transport with dust, e.g. withdust, range transport leaving ~20% only of bacteria measurements measurements

c Varying estimates e of specifice and parameterization thecultivation

osol fluxosol d are

concentrations classes ofvarious of but bioaerosols,

(Amato et al.2015) ffect changed ,

. results were obtained by results technique, werethis which obtained taking and accountboth emission into .

In many cases, microorganisms are damaged arise The aerosols exchange between a surface of s on es

relied onthegradient method,which scales of

bacteria after (S M Burrows (S M

bioaerosol emission bioaerosol .

mixing with mixing in l cells, resultingl cells, ineven shorter . In theatmosphere, many. forests, due of forests, tothe formation s

allowed estimati et al. 2009; S. M.Burrowset al.2009;S.

- bioaerosols callededdy

or have deposition . The gradient The n from heat on of originating - diffusivity diffusivity - a

half - Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and results meant characterize to theregiongenerally. more plants can spores, overwhelm emit pollen, mislead orbacteria could and interpretation of a that sampler Savage et Ruske al.2017) and 2018; Huffman andin instrumentation analysis reducecontinue strategy to uncertainties these is the provide sensor covariance approach the real particle likely concentrations are improvement measurementsflux maybe possible generalforat bioaerosol different concentrations use no currently available to enableat normally meaningful statistics by using least per tentimes second eddy 1988) countergradients Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, - i: Ch covariance method , which analytical s are - 3.5. time bioaerosol sensors are suitable for flux measurements areflux suitable for sensors following bioaerosol time thedisjunct eddy the opportunity real o

osing the osing capable of Stationary -

, such as UV time bioaerosol sensors, but bioaerosol time is thebest uncertainty withclasses linking aerosol advancements of but fluorescent bioaerosols, 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript (Baldocchi etal. 1988) (Crawford et(Crawford al.2014;Whiteheadet al.2010;Haugen1978) location sensors sensors providing bioaerosol research to available , . This bio -

Comment citer cedocument: directly measur laser inducedfluorescence aerosol concentration ] can Bioaerosolbe sources can hyperlocal nature.For in exampleindividual may be

environmental concentrationandenvironmental valuestherefore could potentially not

measure enable enable

using sufficient for direct forsufficient eddy measurement by the

possible possible . In contrast,t . bioaerosol bioaerosol

e these sensors these sensors real low atmospheric fluxes,for

fluxes fluxes - .

time time in specific cases with high specific cases high in with e.g. should optical methods flux measurementsflux byeddy the .

is based ondirectmeasurements. Further i (Huffman et al.2019) (Huffman he eddy of of most The amount of the upw amount oftheThe fluorescent , however, bioaerosol

often - mprovements mprovements covariance method covariance sample withinsufficient flowrates

that are constant under be measured be measured aerosols. aerosols. concentration bioaerosol . that wouldallow While thedetectedWhile

(Huffman et al. 2019; (Huffmanet al.2019; An associated challenge ind area that contributes ind area contributes that . at - As such, (Baldocchi etal. covariance method, covariance method, - a covariance method s

frequency ( concentrations concentrations

< To apply 10 0

real

L direct direct - - 1 - ). Thus,

time of at of the

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and have toresult health effects exposure to breathing at roof provide data apparent of by bioaerosols achieved is introduction of new meth achieved ofstandardization level bioaerosols could introduce notable errors effortstoensure are and of qualityregarding high identification made measurements 201 the atmosphere (Vesalaet al.2008) elements to minim practicesareencouraged. T environmental conditions there asingle isnot “recipe”correct for sampling al. 2019) to the collected sample will theconcentrationheight depend (i.e. footprint) onthe ofsampling Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ 9

i P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, ) i: Monitoring networks i: Monitoring .

- level level

, windspeed ize influence local from turbulentdisruptions, that what that what ) (Raupach et al. 1991) (Raupach et al.

level level ,

which iscommonly done resulting in representative of representative in ,

which must ensure reproducibility. and which comparabilitysamplingBothanalysis must and the can (Rojo eta health impact 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Acceptedis Manuscript

. be assessed throughsamplingassessed replicate be

Aside from Aside measure ,

and atmosphericand stability

notabl ods that involve ods that involve . Also l. 2019) Comment citer cedocument: he ideal location sampling ] computational d

Providing management datahealth for requires , a relatively large geographicala large relatively region

e as was seen is often not the same asis oftennotthesame whatbreathe we and with as much as homogeneous surface areaasand homogeneous as withasmuch possible surface upwind it seemsit to thatexposure choosing underestimat ( . BritishInstitution Standards As a result, personal and personal As a portable are result, link important samplers to manual

a an appropriatean sampling thespatial location, heterogeneityof

notable portionofautomatizationand where identification with respect to

tools tools ion l y

(Sikoparija et(Sikoparija al.2017;Galán et al.2014) (Vesala et al(Vesala et

of (Šaulienė et al.2019)

bioaerosol concentrations should be should i.e. 2 allergen

mugwort pollen, where sensitization occur wheremugwort pollen, sensitization (Temkiv et al.(Temkiv 2012 et - . 2008) 5 times theheight5 times roughness ofthe

EN 16868:2019)

located above theroughness sublayer - containing particles , . Due to this strong this . Due dependenceon to

measurements are . . It becoming is increasingly For example,whilea , though certain, sampling

a

at

, see also Mainelis widespread of network

is nowchallengedby the street

alone does not often . The . The ( i.e. performed performed

iming to to iming (Rojo et (Rojo s

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Under such pristine conditions Under conditions such pristine and different thus sampling are strategies frequently requiredconcentrations toachieve detectable microbial significantadvances inth trans 1977; Bigg 1973) et DeMott al.2015;Bual. McCluskey 2018; etal. 2019; Wilson al. 2016; et Leck2010; Bigg and 2008) et(Chance 2013;OrellanaMeskhidze et al.2017;Gantt al.2018;Aller and etal. al.2011;Russell et al.2005) (Könemannal. Mayol 2018; etal. Fröhlich 2014; et bioaerosols term measurementapproach measurements real in immunological reaction fungal simultaneousidentificationand spore) and requires cofactors. This support onlycontaminated from pollen withbacteria Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [

i: P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, - climatological studies oceanic research understand programs designed tobetter ocean Marine sampling 3.6. health impact concentrations

, their excretions (e.g.,, their excretions exopolymergels, carbohydrates)productsand decomposition . Vessel

Ship strategy 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 - . borne measure has sampling inaerosols usedmarine been to intact entities -

AcceptedRecently, a number of Manuscript driven bioaerosol research bioaerosol driven -

time tosupportmodelassimilation time assessment es

. Inaddition, the . ] go

Ships over ese areas are should beshould compatible wi es Comment citer cedocument: , (Ziska et al.2019)

CCN CCN beyond of identification remote oceans , both preferably s , (Gantt 2013;Orellanaal. and 2011) Meskhidze et outdoor powered and sailing, expected

allergen scientific scientific > 50 m field measurements data provide onall should important l

are often extremelyare often l endotoxins endotoxins .

in coming yearsin coming 3

modelling community bioaerosol requires should beshould sampled th historical datasets consortiacontributing tolarge have begun - Nowoisky et al. 2012; Leck Nowoisky et al.2012; allergen . (Oteros etal. 2019)

At t are quantificationmodulators of of he - excellent containing particles

(Behrenfeld et al.2019) (Behrenfeld same time ow compared with ow

- to atmosphere interactions, and so atmosphere interactions,and so in order tointegrate withlong platforms forplatforms sampling marine allow , however, rrows et al.2013;Schnell .

molecular In toadequately order

and Biggand 2008;Aller

(i.e. pollen grain(i.e.and pollen

and INPsand terrestrial values

new new , microbial . INP - and scale (Irish et (Irish . ,

or , Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and While While attempted cryopumps Ligler(Andersonet al.1999; et al.1998) etal. 2015)al. Smith 2016; et al.2008,2012;Ayloret al.2011;Gonzalez 2011) dishes cases new to placed indisturbance can thegroundtransport, whileavoiding 2015) Yamaguchial. Kourtev 2012; et et al.2011) by aircraft altitude troposphere, and crucial information identityto provide onthe amount ofbioaerosolsbeing transported spatial variabilityBioaerosol particularly inasinglesample. profiles, spanning thelower across throughair,allow for they of the also collection volumes ofair t spatial dynamics in contamination also plume should betakenexhaust toavoid INPanalys Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, [ also ii: P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, , ,

physical collectors

and altitude Aerial sampling spore collectors s

be used to explore hazardous toexplore areas. be used where the with drones sampler (Smith etal. Ziemba(Smith 2018; et al.2016;Maki etal. DeLeon 2015; e (Harris et al. 2002) (Harris etal. s , and hence , and hence 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 s - Accepted Manuscripty

controlled balloons controlled both horizontal (i.e. transects)horizontal and vertical(i.e.both profiles) have been have could influencecould (Powers et al. 2018; Lateran et et(Powers al.2016;Techy al.2018; al. Yang 2010; etet al.2008) ] - (Jimenez free areas to ensure representative measurementsfreerepresentative toensure areas Aerial vessels such as high

can integrateinformation only over bioaerosols Comment citer cedocument: ,

to moreand complex specialized methods - flow . developed specificallydeveloped for Simultaneous - Sanchez et al. 2018; PowersSanchez et et al.2018; al.2018; - rate samplers should

- aerosol surface surface

(J. M.Creamean(J. al. 2018b) et , surface plasmon resonance , surface , -

When rotaryWhen wings are employed,sensors’ inletshave the cloud processes. contamination. helicopters

recovery different ofbioaerosolsfrom been has altitudes planes, dronesplanes,

(Maki et al.2017b) (Maki be use on drones, from si ondrones,use from ,

and (Thomson et al. 2018) (Thomson et al. employed

D , and balloons Bioaerosol samples haveBioaerosol samples collected been rones and

filters hat awide represent spectrum of

(Crazzolara et al. 2019; Lateran et et (Crazzolara al.2019;

(Palframan et al.2014) to investigate long their (Šantl paired with other other a givena (Villa et al.2016) (Villa LinIII etal. Schmale 2013;

- , blimps facilitate the of exploration facilitate - dimensions Rodriguez etRodriguez al.20 Temkiv et al.2017) unpiloted unpiloted mple impaction onPetri

sampling time, time, sampling .

immunoassays

(Perringet al. . aerial vessels aerial vessels While movingWhile .

, In some

- and range range 13; .

Care .

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and multiple scientificmultiple disciplines. scientific need climate change, cover/use change land interests are 2) 2015) and are climate effects, related toseveral which U The increased bioaerosol in interest 4. transcontinental example, viable airborne laboratories since they to are able Maki et al.2008;Kakikawa et al.2008) collect bioaerosols onfilters Harris2014; Yanget and al.2008; etal.Rogers Meier 2002; lower carried troposphere,explore devices balloon can dimensions airborne allowing outdoormeasurements, 2019) opticalgive wouldbe methods able to real Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato,

areguided by a varietyof motivations

further further Research future needs and P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, . . The inter D 4.1. . These fall within motivations rone

the behaviour airborne of fluorescent particles biological driven driven

. Pressing scientificPressing questions While scientificWhile drones s able to s s .

- flight Many ideasMany 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 related communities that conductrelated communities

Acceptedprimarily Manuscript carr across theU across y Comment citer cedocument:

by real (Maki et al. 2017a, 2015, 2013; Chen et al. 2011; Iwasaka 2013;Chenetal. al.2011; (Maki 2017a,2015, et et al.2009; concern of several

some combination of some combination - time time concerning concerning nited States s generally

has motivated by been health, agricultural, their environmental, sensor ,

inter and public health.and public . , Other kinds of Other kinds

br the retrieval of information at high spatialretrieval three resolution in ofinformationthe athigh - time information onairborne bioaerosols information time s oadly - related

outdoor for would bioaerosols have short have

(Perring et al.2015)

these

perform speeds flightsatlow long . summarized as N outdoor

scientific and social . scientific, economic

topic areaseach topic and Sustainable Development Goals bioaerosol measurements all theway to airships

endurance and are ableenduranceand toexploreonly are the Below we summarize eightBelowareaswe ofpressing summarize bioaerosolmeasurements field 1937) such as blimps orzeppelins such as blimps coloured was characterized ina was

. and

represent

the stratosphere h grand challenges, including , ave frequentlyave used been to

and

circles

a game

societal and safety can

in

. In such. one have relevance to relevancehave to

(Huffman et al. (Huffman et al. Figure -

changer in changer (Bryan et(Bryan al. (United Nations (United Nations ( see 1 could be ,

which which Section Section Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and

Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, cytosolic uponcell content) processes’‘multiplication inthe atmosphere, function of atmosphericresidence d survival, aging,activity their isnecessaryit to to bridge strength distributions, emission thesource vertical thebioaerosol andhorizontal with relatethis environme v distributed [2] such as thunderstorms, caused by wheat harvesting well as orprocessing silage) propagules wind), orrelease passive ofbioaerosolsdue to marine and terrestrial sources question atmosphere challenging to sources [1] etermin

Emission sourceEmission Spatial distribution long

at the s e 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

- s

concern range dispersal, range dispersal, the rateof n

to the climate, environmental,to the climate, economic

Accepted Manuscript ts, bioaerosol ertical

surface surface pristine polarpristine and marine assess :

(i) bioaerosols thetransfer understand of higher to atmospheric layers and ing ly Comment citer cedocument: s and flux estimates flux s and

. This

bioaerosol bioaerosol and over differentand interest habitatsof the to the

: exchange strong t , Another question important andrelated

and growthas as intera well mechanisms and

(i haslack ledtoasignificant of

lys i lowest ) obtain , including natural , including h i

s ermals depletion .

or particlerupture Direct assessment of fluxes offluxes Direct assessment time

layers the atmosphere, of i.e. a m , ,

: and winds and environments, forestsenvironments, echanisti T

through drythrough he strength ofbioaerosolstrength

(i e.g. upward v )

emissions (e.g.emissions active due tothe release of quantify the

releas c dynamics: understanding ofbioaerosol their . , emission of, emission ,

c and effects health vertical transport of tion with water in the atmosphere inthe withwater tion or e of

wet deposition qu

and ant (

emissions caused byemissions including smaller particles (fragments,smaller particles a

importance of their importance of ntitative is ,

grasslands,

concerns important to resolve

emission membrane vesicles emissions fromemissions h ropogenic emissions(e.g.ropogenic

urban urban estimates of estimates

of the particlesof the

or cell deathor

how bioaerosols how

bioaerosols flux and deserts and rural ,

is

extreme events the diverse dynamic technically

surface ,

major

leaching

as a as . from )

In order , (ii and how - are i ) Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, of impact different suchas functions, theirhygroscopicityand their bioaerosol nucleation, allergenic [4] orbacterialassociatedinvasion ofplant, fungal, and species, changes inbio asrelatedassess changes distribution, inbioaerosol togeographyairborne pollination, of agricultur Changes ofasecology plantpathogens, related patterns and indispersal natural toboth bioaerosol through emission driven alterationof landuse by climateactivity. and human been patter proposed that airborne timing focussing onin change, cycl Continued changing climate, and [3] bioaerosols thatas can allergens and serve in clouddroplets, airborne microorganisms

Changes in Atmospheric agingAtmospheric ing has been altered byactivitiesingaltered ( been human has , of arechanging pollination

asability wellhosts. as new their tocolonize surfaces or alterations human 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 e, arealso Thus,e, effected. monitoring inavariety requiredecosystem is of types to

Accepted Manuscriptstudies are - distribution depth bioaerosol sites. atdepth studies ‘pristine’ allergies or reproduction Comment citer cedocument: in

the waterthe cycle, required : as a result,as

There is a necessity to understand how atmospheric agingaffectsThere howatmospheric isanecessitytounderstand the , ecology, agriculture, ns in precipitationns in andthe hydrological be influenced cyclemay by :

Ecosystems world a facepressure the from across mounting exhibit to assessthenatural what bioaerosol to extent (preindustrial)

patterns of of microorganism

aswarms, theclimate and hasimportantfor this implications

under differentrealistic bedetermined. conditions should

changes in cloud nuclei cloud distribution arefor changingdistribution e.g. , and the timing of release of pollen INPs thetimingpollen , and ofrelease of

species throughchange, large climate , each of

(also see points [4] and(also [5]) see [4] points

distribution

Geographic distribution and Geographic distribution which may alter concentration may alter which of Finally, the , and air pollution , and air all kingdoms oflife all diversity. viability half - scale land use landscale use .

), by . seasonal It has - lives

. Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, butalso individuals) to viability. relate tonaturally from questions These notonly aerosol dispersed sick (e.g. pathogens can travelwithi role of viral andbacterial aerosol [7] health. mult change,Longer and urban urbanization, pollution. required allergic withclimate from influence of factorsassociated tounderstand diseases physicalan properties atmospheric soot, combustion reac allergies inrecent and inurban decades areas [6] environme and nucleation potential organic and compounds, inorganic activity water availability inthe atmosphere. [5]

Metabolic activity Transport ofTransport humanpathogens of allergiesUrbanization iple factors

outdoor

in airborne microorganisms andin airbornetheir microorganisms thus ability to 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscriptn ts.

air for lesswell is understood,air ofpathogens dispersal including how fardifferent are Comment citer cedocument:

also required to study the complex relationships thatinfluencealso requiredtostudycomplex the human : d emission rates Additional from topollution. stud d emission plantsexposed

This unique aspect unique beThis should evaluated ofbioaerosols as of afunction intentionally ,

and their (iii) colonizenew toxicity,ability and pathogenicity to s n a city and region oroccupied ) isgenerally totake understood plac : A v

ariety of : The of transmission airborne pathogens tion with urban pollutant gases pollutant withurban tion (ii) their surface properties impacting their - There is an urgency to understand the extent of There isanurgency extent tounderstand the aerosolized aerosolized causes , including internal mixtures ofpolleni.e. internal, including with mixtures

harmful agents. have been - term epidemiological studies linkingterm epidemiological studies

the factors that influence pathogen

change: hypothesized for theincreased for hypothesized e largely in indoor spaces.e largelyin The

as well as (i) budgets of atmo budgets of to human hosts to human hosts

alteration hygroscopicity

metabolic of spheric ies

are (e.g. Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and fractionation, efficiency, choi microbiologicalevents theair in are difficult capture. to The research questions interactions they with have can representativea challenge sample divers inlight is ofthe The atmosphere isdynamic Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, ce ofsampling P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, 4.2. of distributions streamline ofthe cloud efforts most for inclusion necessitates cycle,meas expanded of input of bio activation andonbioaerosol ice surfaces nucleation effects colonization. on ice their spatiotemporal distribution thus have health impacts. t hygroscopicity, understanding of [ he hygroscopic of properties 8 ] Climate nucleation nucleation

Technical - INPs andevolution, cloud on cloudradiative formation the hydrological forcing, and 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript -

and analytical and relevant properties close collaboration close activityresidence atmospheric and impact time which rates, deposition leads to

challenges INPs at temperatures). active specific cloud droplet activationcloud droplet the environmental and sample Comment citer cedocument: ,

with high fluctuations in bioaerosolwith high in fluctuations A better understanding the of agingeffects Hygroscopicity anddeposition also thus influences allergenic pollen , recommendations, technique volume. bioaerosols urement tobothglobalregional are data and models :

between Finally, there is a pressinFinally, there isa (Sofiev et al.2006) , climatic, health s . The atmosphere. The . The Samplers influenceresultsSamplers due todifferen ,

modelling and ice , for example, impactthelungs, forin can deposition and se effects conse have

and needsand nucleation - ity relevant size (i.e. properties simplified

and measurement communities to and measurement communities

. is required , bioaerosols bioaerosols

Finally, l and economical physico also g toobtain need a

quantities

. has acapability, strong dilutinghas thus

Aside climate from their impacts, s - equences onthe equences iquid wateriquid activation droplet chemical processesof water .

To better understand theeffectsTo better represent and types.

importance of strongly orient

and the multitude of and themultitude fun

Obtaininga reliability of c tional ces in needed b ioaerosol ioaerosol

size size the . This

and Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and consistency each within approach users and across experiments. is necessary 2018) Thus, there is a inter Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, - P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, study comparisonsstudy . Whil eas D printing technologies include: measurements.timescale ofthese of examples emergingand bioaerosol Some improving [3] acquired techniques, thequality e.g. sensors,improve bioaerosoldata further fluorescence will of Standardization of methodologyreduction detectionreal positive and infalse by detecting key sensingtime technolog [2] e (Cox technique withconcentrate highand allowingaccess rate)techniques microbial to losses inducts andtubes replicated controls, sterile improved practicesand sampling, appropriate [1]

ier Further development of Further development Standardization of Improved e thediversityresearchof objectives

customization of samplingcustomization instruments t al.2019;Mainelis 2019) distinct

(Savageet al.2017) 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 )

, Accepted Manuscript

and

real moments

need for standardization , especially , micro - time measurementstime Comment citer cedocument:

unpiloted aircraft andunpiloted fluidic detectionfluidic collection strategiescollection ies

that bioaerosols exhibit inthat bioaerosols theatmosphere exhibit , increased (i.e. high samplebiomass sampling volume bioaerosol which will new

if the studies to be compared if the studiesto .

t . echnologies allow : fast technologies

of measurement practices implies the needa for broad implies

concerning the reliable high time drones, tethersondes, drones,

. are expected toimproveare thequality,expected quantity,and

real

(i.e. - resolution monitoring necessaryfor - time quantification time lab

do s patial and -

not have thesamenot have objectives. on - a

- additive manufacturingadditive (i.e. (Huffman et al.2019) (Huffman chip

(e.g. Environmental Agency

Needs include: ly temporal )

which will allallow which divers intake efficiency,

and e

resolution,

specificreal approaches, - time time in situ

.

states - 3

- Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, organism classe improvedof understanding specific periods at high generally resolution time (but withlow [7] bioaerosols [6] of airborne well established is in Europe pollen that purpose throughdistributed science citizen [5] meteorological, chemical inlargebioaerosol measurements well measurement complement docum campaignsto the to link broad [4]

Simultaneous deploymentSimultaneous of real Develop sp of spreadatA network different observatories Long context context aero ity ), as for off - 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 term atselectedsites measurements sampling

(i.e. organism (i.e. organism

Accepted Manuscript physicochemicalbiological and observations (i.e. fluxes). ment of was developed through developed was of complementary meteorological, ecological,aerosolgas and traceobservations - line analysis s .

Comment citer cedocument:

( standardized

, identification

and biological physical with descriptions information.

spatiotemporal variability specific ortaxonomic functional of . T his will allow his will

)

or establishingbioaerosolor monitoring ne methods

FluxNet/Ameriflux forFluxNet/Ameriflux CO - time instruments instruments time

via

molecular biological techniques)toobtain

for estimatingsurface the specificity

characteriz .

atial that can information provide quantitative , in .

scales ( This couldbe achieved by ) partic with samplers ation 2

ul e.g. or for continuous monitoring of - ar to bioaerosol

- low at atmosphere exchanges

supersites supersites - cost detectors,cost that collect forthat longer tworks for climate s with higher

that have a including an ented

of

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and in the interest andabilitytoshareexperience results and commun across andcitizens military personnel directly funding from federal e.g. rese somewhatnature atmospheric morecloud basicbiodiversity) (i.e.physics, chemistry, in and secure all researchWhile Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, 4.3. processes propertiescrucialfor improved intheatmosphere, understanding whichan is ofnucleation (i.e., [11] sources, aging. [10] growth inair. contribution by [9] and biology [8] e.g.

Develop for bioaerosoldetection, New examplebased for solutions specific ondirectmolecular

n Needs m and Complementing bulk measurementsComplementing bulk by Pinpointing by companies morphology, properties,andstate) as mixing transformation ofthese surface well as the ext

techniques - gene 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Acceptedis Manuscript ment of

ultimatelysome questions are or motivated byeconomicfactors, societal r

ation mass

local, regional andregional distan local,

of eans for

,

Comment citer cedocument: for by profit investment or

t h methods for methods racers tobe used for determininglong age: bioaerosol and local igh arch agencies, while others arewhile arch agencies,

(Fig. - throughput screening -

spectra interdisciplinarity and interdisciplinarity 1 ) . These differences in motivation and differences. These inmotivation

s - ource tracking of based detector t

sources ambient ambient national security methods methods s .

cross as well as the bioaerosols analyses ofsinglebioparticleproperties more applied in nature applied andmore in - community collaboration community targeting

to addressthe questionsofthe agencies

contribution ofmicrobial contribution ity lines specific specific fundingcan lead todivides

. For example,the for the protection of for of theprotection groups groups funded more of

- interest range

,

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and collaborative funding opportunities meet community cross and network, disciplines and inorder approachesand exchange to identify ideas Consequently could thatuse techniques, beapplied moreallergen such traditional tofields and as pathogen detection. molecular microbiology techniques currently u particles example, theidea for ofmonitoringnetworksallergen quantifying initiated airborne ideas,and approaches technicalthe different advances studying between disciplines to could designchamber,field laboratory complementary andexperiments inmicrobiology,expertise physics,aerosol meteorology, and chemistry, aerosol bioaerosol engineers strengthemission anddistribution. obtain a mechanistic whichiscrucial understandingofbioaerosolfluxes, forecasting for their future research fields. for carrying out the lackbetween ofcollaboration approachresearch questionsfrom differentAsa result perspectives. proprietaryhave various These somewhatindependently, developed innature. communities and thus behind security clearance development detection of improved against technologies agents ofbiowarfare hidden isfrequently Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, interdisciplinaryefforts, cross P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, eventually

could be applied tostudyingapplied pathogeniccouldclimatic and be oradvanced aspects ofbioaerosols , we D outdoor 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 introduce edicated field edicated

Accepted identifyneedor where establishappropriate anew to an platform, researcher Manuscript bioaerosol field studies s,

Comment citer cedocument:

exciting an d information related toagriculturald informationcan related practices orfarming be measurements besupported should by chamber order experiments, in to - community discussion andcommunity promoteof collaboration exchange discussion should communities. communities.

Therefore . research

ideas andideas ,

there isa sed in the studyseddiversity ofmicrobial inbiogeography , these Due tothe

should beshould directions need tobringresearchers theoretical andtechnical needed resources

approached to trad . Inway this

there are i tional discipline from often ,

the together with together

inter

b discrepa - ioaerosol fieldioaerosol bioaerosols. Forbioaerosols. containing disciplinary s . Inaddition ncies due to due ncies s could s could

to Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and charges Planck DigitalLibrarywereMax paid the by (MPDL). Science Scholars Plancksupport by theMax Society(MPG). TechnologicalIII oftheRepublic (project ofSerbia no. Development 44006). (researchgrant 23175) Aarhus University National Research (Grant Foundation DNRF106, no.: agreement tothe Stellar Astrophysics Centre, Louis,Conference September in Missouri 2018. inSt Bioaerosol Working andInternational Group theBioaerosol at StandardizationWorkshop the Aerosol and Perspectives The authors organizers acknowledge “ of issue special this Acknowledgements Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, s

Fund (21725701). and Mathematics and the Max Planck Institute Planck and theMax forand Mathematics Chemi 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 ” , including Shanna, including Ratnesar Accepted Manuscript AUFF), by program (AUFF the Nova

. BS recognizesBS The Science Ministry supportfrom ofEducation, and Comment citer cedocument:

JAH JAH

acknowledges by Denver support CollegeNatural University of of

MY is supported by the NSFC Distinguished supported by Young NSFC MY is the - Shumate and Alex Huffman, and Alex Shumate

TST - E

Bioaerosol Research: Methods, - is grateful for the 2015

- FLS s try. - 9

Open accessOpen article processing - 1 0)

as well as and support byThe Danish CP acknowledgesCP

by the Villum Fondenby theVillum

the AAAR AAAR Challenges , Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Amato, P., Parazols,Sancelme,Laj,Amato, M., P., M.,Mailhot,G.,and (2007b). Delort, P., A.M. Joly,Amato, P., M.,Schaupp, A. Y.,and Attard, O.,Morris, C., Brunet, Delort, E.,Möhler, C.E., Joly,Amato, P., L., M.,Besaury, N.,Moné,L., A., A.I., Oudart, Taib, Deguillaume, Delort, A. Demeer,MartinAmato,Melaouhi, S., P., F., A.,Fontanella, Besaury,L.,Amato, P., M.,Penau Joly, Ludwig,Amann, R.I.,and Schleifer,Phylogenetic W., K.H. (1995). identification detection and insitu Aller, and C.J., Kemp, Kuznetsova, Jahns, P.F. M.R., (2005).surfaceAller, The J.Y., a microlayer as sea References Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, groups and growthgroupsand atlowtemperatures. abilities Microorganismsfrom the phase water troposphe isolated of Atmos. Chem. Phys., (2015). Survivaln andice water. Debroas,(2017). Active microorganisms among D.extremely thrive incloud communities diverse biotransformation micro by Delort, A.M.(20 Metatranscriptomic exploration of inclouds. microbial functioning of microbial individual cells cultivation. without 347. polysaccharidic sea andcomponentsaerosol. proteinaceous of spray Murray, Coffman,P.K., D.J., and (2017). B.J., Knopf, D.A. Size source enrichment andbacterial ofviral aerosols. marine in

J.Y., Radway,T.W., Bothe, Vaillancourt, W.P., Wilson, D.W., J.Y., Kilthau, R.D.,Quinn, J.A.C.,

PLoS One,PLoS

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript 07a). A fate A foracids,07a). organic formaldehydecloud in andwater: methanol their

12(8):e0182869.

15(11):6455 Comment citer cedocument: ucleation chamber. activitysimulation as bacteria a in aerosols cloud of - organisms. –

d, B., Deguillaume, L.,B., Deguillaume, A.M. (2019).d, Delort, and

6465.

Atmos. Chem. Phys.,

FEMS Microbiol. Ecol.,FEMS Microbiol. Rev., - Biesse, A.

ric clouds at the Puyatric the de clouds Dôme: Major J. Aerosol Sci.,J. Aerosol

(7):4159 -

resolved characterizationresolved of the 59(1):143 - S., Sancelme,Laj,S., M.,and P., Sci. Rep.,

Atmos. Environ., Atmos. – 4169.

59(2):242

36(5 –

69.

9(1):1

– 6):801 – – 254. 12.

(154):331 –

812. - M., and M., - M. M.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Aylor, D.E., Schmale III, D.G., Shields, E.J., Newcomb, M., and Nappo, C.J. (2011) Newcomb,Aylor,III, D.G.,D.E., E.J., and M., SchmaleShields, Nappo, C.J. H.,Niedermeier, Augustin,B., D., Wex, H., Hartmann, Grothe, S., Pummer, Attard, A. E.,Yang,Delort, H., Ignatova,Ariya, O.,Amyot, Nepotchatykh, and P.A., (2002). O., M. Microbiologicaldegradation of Lee,Archer,Lee, S.D.J., Caruso, T.,Maki, T.,C.K.,Cary,Cowan,F.T., K.C., D.A., S.C., and Maestre, (1997).Andreae, Atmospheric M.O.and P.J. Crutzen, Biogeochemical aerosols: sources a Andreae, beforeAerosols pollution. M.O.(2007). Ligler, D.S.,Whelan,Anderson, Cuttino, J.P., G.P., King, K.D., F.S., MacKrell,Bovais, J.F., C.S., Parazols,Sancelme,Laj,Amato, M., P., G., M.,Mailhot, and Delort, P., A. Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, modeling. potato late blight inthe atmosphereLagrangian pathogen aerial and unmanned using vehicles washingwater. Ignatius,T., Voigtländer, K.,and J., Immersion Stratmann,(2013). F. freezing pollen ofbirch Chem. Phys., (2012). Effectsatmospheric ice ofconditions on activity nucleation Pseudomonas. of atmospheric organic compounds. Microbiol., Nat. Pointing, S.B. (2019). limitation to isolatedAnta Airborne microbial transport atmospheric chemistry. biosensor. (1999). BiologicalIndyke,R.J. and Foch, D.K., agent detec 41(37):8253 oceanic source of

Agric. For. Meteorol., F. Anal. Chem. Technol.,F. Anal.Chem. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 –

8263. Accepted12:10667 Manuscript

Atmos. Chem. Phys.,

(4):925 micro

Comment citer cedocument: –

Science (80 Science - – 10677. organisms at for the cloudPuy Dôme water (France). de 932. - M.,

Amato, P., Pöschl, U., Glaux, C.,Koop,T.,and U., Morris, Pöschl, Glaux, Amato, C.E. P.,

151(2):251 Geophys. Res. Lett.,

-

. ).,.

3(4 (13):10989

-- 276(5315):1052 5):307 –

Science(80 260. – – 314. 11003.

29(22):34

– - 1058. . ).,. tion with the use ofan withthe use airbornetion

315(5808):50

- 1 - 34 – - 4. M. (2007c). An important M. (2007c). An important S., Tomsche, L., Tomsche,S., Clauss,

– 51. rctic habitats. soil . Tracking the

Atmos. Environ.,

nd role in role in nd Atmos.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Bigg, E.K. (1996). IceBigg, E.K. forming (1996). nuclei inthe hi Behr Bauer, H., Schuell K.S., Pollard, Barberán,Ladau, Leff,A., Menninger, and J., J.W., R.R., Fierer, H.L., N. Dunn, (2015). Barbaro,T., Zangrando, E., M.,Piazza, R.,Barbante, Kirchgeorg, Vecchiato, R., C.,and A. Gambaro, Banchi,Lazzarin, Stanković,Moretti, D.,Ametrano, F., P., O.,Gabrielli, Verardo, C.G., E., Borney, S., Baldocchi,B.B., D.D.,Hicks,Biosphereand Measuring T.P.(1988). Meyers, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, enfeld, M.J., Moore, R.H., Hostetler, C.A., Graff, J., Gaube, P., Russell, L.M., Hostetler, R.H., Gaube, Moore, enfeld, C.A.,Graff, Chen, Russell, G.,Doney, J., P., M.J., 48(2):223 Overview. and(NAAMES): Mission Science Motive L.Ziemba,Martin, M.Y.,andAtlantic Aerosol (2019). North The and Ecosystem Marine Study Hu,Y., Sa Hair, Redemann,S., J.W., Janz, J., Morison, F., Anderson, Scarino, Quinn,P.K., B., A.J., Crosbie, Chowdhary, E.,Ferrare, J., R., Carlson, Halsey,Harvey, C., K., Hu, C.,Karp E.L., Westberry,Bates,Bell,T.S., Boss,T.K., T.G.,Br K.D., Bidle, E.S., Liu, Giovannoni,L.M., S., S.C., H.,Proctor, Baetge, C.,Bolaños, N., Davie the urban atmosphericaerosol. Significantof fungal carbon and spores contributions tothemassbalance aerosol totheorganic of 112(18):5756 Continental aerosol.(2015). Sugars inAntarctic uncovers airborneItaly. fungaldiversityofmixed samplesin M.F.,F., M.,Pallavicini, Tassan, A.,and Tretiach, Muggia, L. of B iologically Related Gasesiologically Related Micrometeorological with Methods. – 233. - 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 scale ofdust distributions er, E., Weinke, G.,I.L.,Weinke, Hitzenberger, Berger, E.,A., R.,Marr, er, H.(2008). and Puxbaum, Accepted Manuscript– 61.

Comment citer cedocument:

Atmos. Environ.,

Atmos. E - associatedbacteriaand fungi. ghArctic. nviron., ltzman, M.,Siegel, D.A., E.,Shook, Wisthaler,A.,

42(22):5542 -

Tellus, Ser.Tellus, BChem. Phys. Meteorol., Boss, L.,Boss, M.,Menden Kleb,

118:135 Front. Mar.Sci.,

– PLoS One, PLoS – 5549. (2018). metabarcoding DNA 144.

Ecology,

ooks, S.D., Cairns,ooks, S.D., B.,

Proc. Natl. Acad.Natl. Sci., Proc. .

- 13(3):1 Atmosphere Exchanges -

69(5):1331 Martin, C., - – Deuer, S., 20.

– 1340.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Bowers, R.M.,McLetchie,Knight,Fierer, S., (2011). andSpatial N. R., variability ina Bowers, Lauber,Bowers, R.M., C.L., C Wiedinmyer, Bowers, R.M., Boucher, Bretherton, D.,Artaxo,P., O., Feingold, Kerminen,C., Randall, P., G.,Forster, V. andBigg,S., Morris, E.K.,C Soubeyrand, Bigg,Leck, E.K. and Cloud (2001). C. IceBigg,Remote ConcentrationsAreas. E.K. Nucleus (1973). in Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, bacterial atcommunities ahigh their potential toact asatmospheric ice nuclei. Fierer, of airborne Characterization N. (2009). ata communities microbial high Sci. Technol., Seasonal Variability inBacterialand Fungal Diversity the Near of NY,Kingdom USA. York, andNew Xia,V.BexNauels, andP.M.(eds.)]. Y. Midgley Change[Stocker,on Climate D. Qin,G. T.F., ofWorkingIContribution Group Assessment tothe Fifth Zhang, andIn: Clouds X.Y. Aerosols. (2013). ChangePhysical Climate Basis. 2013:The Science Kondo, concentrations ofice andbiological rainfallsuggest nuclei a cause. 106(D23):32,155 The from time differences theice transport with edgewere lessmarked. the range

R.M., McCubbin, I.B., McCubbin, Fierer,R.M., and Seasonal N. variability A.G., Hallar, (2012). inairborne Y., Liao,Y., Lohmann, U., Stevens, Rasch, H.,Satheesh,B., P., Sherwood, and S.K., S., - Clements, N., Emerson, J.B., Wiedinmyer, C., Hannigan, M.P., andClements, Fierer, N.,Emerson, Wiedinmyer, J.B., N. M.P., C.,Hannigan, (2013). 3 but of IFN3 butofat ranged the beginning from the attheend theice pack expedition . of 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript 47(21):12097 - 32,166. Comment citer cedocument:

– 12106. - elevation site. -

activecentral Ocean particles over theArctic were typically

.E. (2015). Persistent after ., Hamady,Fall, A.G., M.,Hallar, R.,Knight, and R., -

S.K. M.Plattner, Tignor, Allen, J. Boschung,K. A. Atmos. Environ., Atmos. Appl. Environ.Microbiol., Appl. . CambridgeUniversity Press, Cambridge, United , Report ofthe Interg

J. Atmos. Sci., J. Atmos.

- 50:41 effects ofheavyeffects on rain -

Surface Atmosphere.Surface Atmos. Chem. Phys.,Atmos. – 49.

J. Geophys.J. Res.,

75(15):5121

30:1153 overnmental Panel - elevation site and site elevation irborne bacterial bacterial irborne – 1157. – - 5130. M.,

Environ. 15(5).

in in Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Buters, J.T.M., Thibaudon, M., Smith, M.,Kennedy,Buters, Thibaudon, M.,Smith, J.T.M., R.,Rantio Buters, Antunes, Galveias,Bergmann, C., J.T.M., A.,K.C.,Thibaudon, M.,Galán, C.,Schmidt AnnesiButers, Prank, R., M.,Pusch, M.,Sofiev, G.,Albertini, J., Burrows, Hoose, S.M., C.,Pös Lawrence,Burrows, M,Elbert, S W., and U.Bacteria Pöschl, (2009). inthe global M.G., atmosphere Tost,H.,Kerkweg,Burrows, M.,Butler,P., Lawrence,T., Jöckel, S. A., Pöschl, U.,and (2009). M.G. Bryan, Granger,N.C., Stewart,D.,B.C. T.G.,and Amethod M., Guzik, (2014). Christner,for sampling British Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, C., and(2018).C., Oteros, and Pollen J. spore monitoring i 136(1):87 geograp L. Variationgrass of thegroup (2015). allergen 5 pollen inrelation pollen ofairborne to content Rantio H., Berger, Celenk, U., Brandao,R., S., particles ordust? 9(23):9263 Part 1:Review and synthesisofliteraturedifferent forecosystems. data ecosystems. Bacteriaglobal inthe atmosphere microbialhigh aerosols altitude balloons. using fungal networks related spores for toallergy source environments. acrosscommunities land - Standards - Lehtimäki,I.,B., Thibaudon, M., M.,Weber, and A.,Reese, G.,Sauliene,Smith, Cecchi, hic location and time in season the HIALINE working group. inseason working the and HIALINE hic location time – – 95. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

9280. - Atmos. Chem. Phys.,Atmos. Chem. Accepted Manuscript Institution (2019). Ambientair

Atmos. Chem. Phys.,

Comment citer cedocument: ISME J.,ISME - use types and their relationship tothe bacterialuse types of potential and their communities relationship chl, U., and Lawrence,chl,Ice U.,and marineBiogenic in M.G.(2013). air: nuclei

5(4):601

(9):9281 -

Part ofemissionsbetween 2:Modeling and transport different .

– Galan, C.,Grewling, B., Ł.,Jackowiak, Kennedy, R., 612. – 9297. - -

Sampling andairborne analysis of pollen Volumetric Hirst method.Volumetric

J. Microbi J.

n theworld. ol. Methods, - Lehtimäki, A.,Albertini, G., Reese, R., - Maesano, I.,Maesano, Antunes, Behrendt, C.,

Clin. Transl. Allergy,Clin.

J. Allergy Clin. Immunol., Clin. J. Allergy

107:161 Atmos. Chem. Phys., Atmos.

BS 16868, – 8.

.

grains and grains and

8(9). - Weber,

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Coluzza, I., Coluzza, Wex,H.,Alpert, M.J., Rossi, Creamean, Bianco, J., P.A., V., Boose,Y., Dellago, C., Christner, Foreman, B.C., andC.E., R., Sands, D.C.(2008). Morris, C.M.,Cai, Chen, B.,Yamada, Kobayashi, F., Y. M.,Kim, Hamilton, Chance, andJ.F.,L.J., Hackenberg,Wilso R.J., Carpenter, Andrews,S.J., S.C., Leyronas,Carotenuto, B., T.,Gioli, F., Georgiadis, Carnelley, andIV. Anderson.,(1887). acid, T.,Haldane, A.M. carbonic J.S., The organic and matter, Triadó Cáliz, J., Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Felgitsch,L., Fröhlich ice nucleators insnowfall. TetheredBalloon. of Collected CulturableinNorthwest over Bioaerosols Observation Dryland China: a using with ice nucleation ability. (2018). Water Atmos. Chem. Phys., modeling ofsurface 178. micro circulations. strong theairborne patternsgeneral seasonal coupled in toregional microbiome and atmospheric fromEuropeancountries. the HIALINE Results study. L. Cecchi,Prank,Bet pollen from M.,and birch M.,Sofiev, of 5 (2012). v1from Release Jackowiak, B Weber, B., Antunes, Jäger, R., C.,Brandao, C.M., S.,Grewling, Galan, S.,Berger,U., Ł., Celenk,

- organisms air,especially dwellings more and schools. of - Margarit, X.,Camarero,Casamayor, Along L.,and(2018). E.O. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Proc. Acad. Sci., Natl. ., Sauliene, I., Weichenmeier, I.,I.,., Sauliene, Pusch,G.,Sarioglu, Weichenmeier, H.,Ueffing, H., M.,Behrendt,

Accepted- Manuscript soluble organic composition of the Arctic organicsoluble ofthe composition surface sea microlayerassociation and

Asian J. Atmos.Environ., Asian –

14919 Comment citer cedocument:

- atmosphere microorganisms exchange of inMediterraneangrassland. Nowoisky, J., Herrmann, Kanji, S., Z.A.,H., Jungblut, Nowoisky, J.,

Science, Environ. Sci. Technol.,Environ.Sci. – 14936.

319(5867):1214. 115(48):12229 - H., Iwasaka, H., Y.,and Shi,

5(3):172 C., andC., Morris,(2017). C.E. Measurements and

– DOI: 10.1021/acs.est.7b04072. 12234

180. Atmos. Environ., .

Philos. Trans. R.Soc. London., Trans. Philos.

G. - Y. (2011). IdentificationY. (2011).

55:496 Ubiquity ofbiological - term surveyterm unveils Menzl, G.,Moffett,Menzl, – 505

. n, T.W. n, T.W.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Creamean, J., Solomon, Creamean, Iii, Solomon, A., Hanlon, Kirpes,Pickart, J., J., R.,Mcraven, R., Spada, R., N.,Cross, D.S., Crazzolara,A., Miranda, C.,Ebner, M.,Platis, T.,Bange, and A.(2019). Junginger, Anew J., I.,Crawford, Foot, N.H., Robinson, Flynn,V.E.,Gallagher, Huffman,Stanley, M.W., M.J., W.R., J.A., I., Bower,Listowski,Crawford, Ruske, S., M.W., Flynn, Gallagher, K.N.,T.W., C., Choularton, M.J., Mbareche,Lindsley,J.D., Cox, H., indoorfield andBioaerosol sampling. W.G., Duchaine, C.(2019). Conen,V., Yttri, F.,K Yakutin, M. Conen, F.,E.,and Zimmermann, Stopelli, CluesthatdecayingL.(2016). leavesArctic enrich air with Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, continuous springtime measurements an in Arcticoilfield location. 20:17882. L., Marine V.(2018). influences and and Phillips, terrestrial nucleating onice particlesdur boundary layer. multicopter froResults fromand emissions aColorado Kaye,(2014). pineforest: Characterisationof bioaerosol P.H. 14307. detection of airborne fluorescent inAn bioparticles Brough,Lachlan N., Aerosol Sci. Technol., increase when inautumn. leaves fall ice nucleating particles. (Basel).,Atmosphere Researchand Unansweredidentif needs questions Grothe, D.G. (2017).onthe H., future and Perspectives research: Schmale, oficenucleation A., E.,B., C.,Mutzel, U.,Stopelli, Pöschl, Schauperl,M., Scheel, Stratmann, Moritz, F., J.,

m the BEACHON - 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Acceptedbased aerialfor unmanned system pollen andcollection spores inthe atmospher Manuscript

Atmos. Meas. Tech.,Atmos. -

Cope, T., Fleming, Z.L.,Cope, T.,Fleming,Foot, V.E.,and(2017). Stanley, Real W.R. 8(8). Comment citer cedocument:

i n review.

Atmos. Environ.,

- RoMBAS experiment. RoMBAS .E., and Hüglin, C. (2017). Ice(2017). C. .E., and Hüglin, particleconcentrations nucleating

Atmosphere (Basel).,Atmosphere 12(3):1581

129:91 – – 1598. 94. ied from twointernational workshops. tarctica.

Atmos. Chem. Phys.,

8(10).

Atmos. Chem. Phys., Atmos. Chem.

14(16):8559

17(23):14291 – 8578.

- time time ing ing ic

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and DeLeon deL.A., Weger, Šikoparija, B., C.H., C.A.,Kasprzyk, Pashley, I., Skjøth, Grewling, M., Ł., Thibaudon, De(1887). Bary, Comparative A. biology morphology and ofthe and fungi,bacteria mycetozoa Long Damialis, Gioulekas, (2015). A.,Vokou, D.,and D., Halley,J.M. D’Amato,Lanza, G.,Vitale, C., L.,Cuthbertson, Amores Crouzy, T.,Calpini, B., M.,Konzelmann, B.,All Stella, andB. Clot, (2016). Creamean, Smith, Primm, K., Tolbert,E.G., A.,Sheridan, Wendell,J., Jordan, J.M., P.J., M.A.,Hall, Pratt,K.A.,Creamean, Maahn,R.M., Spada, Kirpes, M.,de N.J., Boer, G., and J.M., Schnell, R.C., Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, A.J., Ziemba,L.D., K.T.(2013).A.J., Bergin, M.,Nenes, Microbiome ofKonstantinidis, the A.,and UK andfrom theNetherlands Central andsouthEurope. Magyar, (2016). M. and The D.,Smith, distance long Ambrosia of pollen tothe airborne transport Comparative morphologyandbiology mycetozoa ofthe fungi, andbacteria spore concentrations: Acomparisonpollen. with 16(5):434 and allergicpollution, respiratory diseases: Anupdate. 6(2):29. Characterisation of Arctic Bacterial Communities in the Airabove Svalbard. identification: Towards operational an system. interactions. and (2018b). Schnell, R.C. J., HOVERCAT: springtime inanArctic measurements oilfield location. S.(2018a).China, Marine andonice terrestrial nucleating influences parti - Rodriguez, N.,Lathem,Rodriguez, T.L., Rodriguez

– 40. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript Tech.,Atmos. Meas.

- Arrocha, H., Malard, L.,Arrocha, Els,N.,Sattler, B., Pearce, H.,Malard, andD. (2017). Comment citer cedocument: M., Molino, A., and D’Amato, change,Climate A.,and (2016).M., Molino, M. air

11:3969

– 3985. -

R, L.M., R, Barazesh,B.E., Anderson, J.M., Beyersdorf, A novel aerial evaluationA novel ofaerosol for system

Atm

Fungal Ecol., os. Environ.,

Curr. Opin. Allergy Clin. Immunol., Opin.AllergyCurr. Clin.

Atmos. Chem.Discuss., Phys.

I nt. J.Biometeorol.,

13:150

140:202 - term trends term in – - 156. optical automatic pollen – 212. cles duringcontinuous cles .

Biology (Basel)., 60(12):1829

airborne fungal

1 – 28. – ,

1839.

- cloud cloud

-

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Donegan, Seidler, R.,and Por K.,Matyac, C., Dommergue, Tignat P., A.,Amato, Pomata, D.,Riccardi,Di Filippo, P., C. Burrows,Després, J., Huffman, Hoose, S.M., C.,Safatov, V.R.,Alex and Prenni, (2010).DeMott, New P.J. A.J. Need Directions: for thenumbers and defining sources of Hill, T.C.J.,DeMott, P.J., McCluskey, K.A., Prather, Col C.S., Delort, A. Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, recovery,enumeration ofbacteria and phylloplane. applied tothe Front. Microbiol., Zhang,Larose, (2019).Q., andglobalatmospheric Methodstoinvestigate the C. microbiome. K., Vo size aerosol particlesintheatmosphere: Areview. U., andNowoisky, Andreae, Elbert, Primary W., Jaenicke, biological M.O.,Pöschl, R.(2012). J., biological as ice acting aerosols nuclei. 113(21). (2016). Sea as aerosol nucleating spray aunique source particles. ofice Bracero,V.H., andO.L., Bertram,Franc,Bertram, B.F., A.K.,Moffett, Grassian, G.D. T.H., J.L., Martinez, Diaz M Lewis,Dhaniyala, Wentzell, Lee,J.J.B., S., Abbatt, E.R., J., Axson, Ault,A.P., C.M., C.,Sultana, Lee,Irish, Mason, R.H., McMeeking, V.E., T.,Hwang, C.Y.,Rhee, Snider, T.S., J.R., G.R., atmospheric implications. upper troposphere: Speci - segregatedmeasuredaerosol through biomarkers. - M. and Amato, P. (2017). P. Microbiology ofAerosols.Amato, M. and gel, T., Sonke, J.E., Jaffrezo, J.L.,I.,gel, M.,Moreno,Labuschagne,L., T.,Sonke,J.E., Andrade, C.,Martin,

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript

10:243. Comment citer cedocument: ., Venero, I.,Venero, Santos ., es andprevalence, composition andstorms, effectsoftropical

Proc. Acad. Sci., Natl. - Perrier, R., Magand, O., Thollot, A., Joly, M., Bouvier,O., Thollot,A.,Joly,Perrier, R.,Magand,L., M., Sellegri,

, Buiarelli, F., C.(2013). and Fungalcontribution Perrino, to

Atmos. Environ., teous, A. (1991).of methods for Evaluation sampling, - Figueroa, G.,Stokes, M.D.,Deane,Figueroa, G.B.,Mayol

Tellus, Ser.Tellus, BChem. Phys. Meteorol.,

110(7):2575

Atmos. Environ.,

44(15):1944 lins, D.B., Sullivan, R.C., Ruppel, M.J., Ruppel, M.J., R.C., D.B.,lins, Sullivan,

– 2580. A.S., Buryak,G., Fröhlich A.S.,

Appl. Environ. Microbiol., Appl. Environ.

– 1945.

Proc. Natl. Acad. Sci Natl. Proc. 64:132

– 140.

64(1).

- -

.,

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Fall, A.L. an Failor, Vinatzer,C.L.Monteil, K.C.,Schmale,B.A.,andIce D.G., (2017). nucleation active in bacteria and Dunstan, R.H. (2006).rainEvans, Coombes, Wind, andbacteria: P.J., effect C.A., The ofweather V.,and Grassian,Estillore, A.D.,(2016). J. Trueblood, chemistry V.H. Atmospheric bioaerosols: of I., Essoussi, Ghodhbane Environmental Tay Elbert, W., Ehrenberg,Passat (1847). C.G. Dreischmeier,L.,Budke, Wiehemeier, C., K., BorealKottke, T.,(2017). and cont Koop,T.pollen Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Phosphate Starvation and LowPhosphate Starvation and Temperature. J., precipitation aregeneticallyand diverse mechanisms. nucleateby ice employing different on themicrobial ofroof composition Sci., Heterogeneous and multip adaptability stonesand toSahara desert monuments. Boudabous,and M.(2010). Gtari, Esterase A.,as an of bioaerosols facilities. at regulated ions. biogenicaerosols theatmosphere: in wet anddry discharged carbohydrates, and spores, inorganic Lebenund Atmosphäre,Berlin. indered. Königliche. ice 57(1):51

- 11(12):2740 nucleating asice nucleating well as

7(11):6604 Atmos. Chem. Phys., d Fall, High R.(1998). d – - 56. lor, P.E., Andreae, U.(2007). offungi M.O.,andprimarylor, P.E., Contribution to Pöschl, Agency Techn (2018). 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript – – 2753. 6616. - Gtari, F., Amairi, H., Sghaier, H., Jaouani, A., Brusetti, L.,Gtari, F.,Brusetti, H.,Sghaier, Amairi, H.,Jaouani,A., Daffonchio, D., Comment citer cedocument:

- hase reactions atmosphericand with othergases. trace oxidants 7(17):4569 Staub undBlutStaub - binding ‘antifreeze’binding polysaccharides. - Level Expression of IceLevel of Induced Expression herbicolaIs inErwinia Nuclei by ical Guidance Note (Monitoring) M9: Environmental Guidance Note monitoringical (Monitoring) M9:

- harvested rainwater. – 4588. - Regen: ein großesRegen: ein unsichtbares organisches Wirken

Curr. Microbiol., Curr.

enzymaticGeodermatophilaceae signatureof J. Appl.Microbiol.,

Wate

36(6):370 r Res.,

Sci. Rep.,

40(1):37

– 108(5):1723 376.

7:41890.

– 44.

– 32.

Chem. ISME ain Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Galan, C.,Antunes Fröhlich Fröhlich Fröhlich Franze, U.(2005). Niessner,by T.,Weller, M.G., air. Protein R.,andPöschl, nitration polluted Fierer,Liu,Z., N., Rodríguez Fang,Z.,Z.,L.Zheng, H.,Wang, Ouyang, X.,and Culturable Hu, airborne (2007). bacteria Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, representativeexposure tothe major of olive allergen Ole e 1. B.,I.,Buters, (2013). G., and Weichenmeier, Airborne olive pollen counts Pusch, J.T.M. are not Kennedy,S., R.,Rantio Sofiev, M.,Albertini, Berger,L., R., L.,Celenk, Jackowiak, S.,Grewling, B., U., Cecchi, Jäger, ecosystem interactions. Després, U.(2016).inthe Earth Bioaerosolssystem: Climate, V.R.,andPöschl, health, and Elbert,Burrows,Yona, Gunthe, W., S.S., H.,Hoor, N., Su, P.,Thines,E.,Hoffmann, S.M., T., 12(4):1057 Ice activity nucleation inthe widespread fungusMortierella soil alpina. 1136. (2012). Biogeographythe air: Fungalover in land diversity and oceans. Bracero, P.,O.L., Begerow, Artaxo, Andreae, R., V.R.,andPöschl, D.,Conrad, U. M.O.,Després, Environ.Sci. Technol., Microbiol., Short environmentsChina. Beijing, in - - - Nowoisky, J., Hill, T.C.J., Pummer, T.C.J., B. Hill, Nowoisky, J., Z., Fraser, Burrows, Xie, S.M., P.A., Engling,G.,Solomon, Nowoisky, M J., Nowoisky, J., Kampf, C.J., Weber, B., Pöhlker, C.,Andreae,Lang C.J., Huffman,M.O., J.A., Kampf, Nowoisky, J., -

term temporal variability andfungal inairborne bacterial populations. –

74(1):200 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 1071.

Accepted, C.,Brandao, Garcia Torres, R., C., Manuscript

Comment citer cedocument: –

207.

39(6):1673 - Atmos. Res., - Lehtimäki,I., Sauliene, M., A.,Reese, G., Smith, Hernández, M.,Knight, Henn,Hernandez,Hernández, M.T.(2008). R., M.,and

Microb. Ecol.,

– 1678.

182:346

G., Yordanova,G.D.,Franc, and U.G., Pöschl, (2015). P., – 376.

54(3):487 -

Mozo, H., Caeiro, E., Ferro, H.,Caeiro, R.,Prank,Mozo, M., – 496.

Allergy Eur. J. Allergy Clin. Eur. Allergy

Biogeosciences, Biogeosciences, Thibaudon, M.,Weber,

Appl. Env .P., Mayol.P., iron. in outdoor in outdoor

9:1125

- - – Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Grewling, Jenerowicz, D.,Czarnecka Bogawski, P., Graham,Maenhaut,B., Taylor, Ebert, Guyon, P.E., W., P., M.,Matthias F.,Gonzalez, Narayan, Castro,M.P.G., Zeller, Walker, P., R.,and DevelopmentL.(2011). an of Leighton,I.D.,Ghosal, Wheeler, S., and (2010). K.E., T.J., Hutcheon, Weber, Spatially P.K. resolved Georgakopoulos,Després,Fröhlich D.G., V., Gehrig, Schwierz, C.(2018). F.,and R.,Maurer, Designing automatically generated new pollen Gantt, B. N.(2013). and Th Meskhidze, Galán, C.,Smith, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, variability aerosol.Amazonian natural ofthe Van, Glovsky,M.M.,Flagan, and And R.C., Meixner, P., F.X.,Moura,O.L., Artaxo, C.H.E.D., M.A.L.,Grieken,Godoi, R.H.M., Rocha, R. localize potentialpathogen sources. autonomous unmanned aerial collect systemto time 76(10):3275 characterizationandBacillus ofionincorporation water in spores. 737. Biological,chem physical and Ahern, (2009). H.E., Microbiology B.F., Moffett, and and T.C.J. processes: atmospheric Hill, calendars Switzerland. for thepublicin organic aerosol: Areview. Aerobiologia (Bologna)., Brandao,(2014). requirements monitoring: R. Pollen reproducibility minimum and analysis. of Immunol.,

68(6):809 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 – M., Thibaudon, M.,Frenguelli, Gehrig, G.,Oteros, Berger, J., and U., B., R., Clot,

Accepted3282. Manuscript

– Comment citer cedocument: 12.

30(4):385

Atmos. Chem. Phys., ical of characterization aerosol particles.

e physical and chemical characteristicse ofmarine physical primary

– J. 395. F. Robot.,

Ae - Nowoisky, J., Psenner, R.,Ariya,Nowoisky, J., Pósfai, P.A., M.,

robiologia (Bologna).,robiologia reae, M.O. (2003). Composition andM.O. (2003). diurnalreae, Composition

J. Geophys. Res. Atmos., - Operacz, M., Šikoparija, B., C.A.,and Operacz, Skjøth, M.,Šikoparija,

13:3979

28(6):961 - stamped samples from the atmospherestamped samplesfrom and – 3996. – 976.

34(3):349

Appl. Environ. Appl. Environ. - Maser, S.,Mayol

108(D24). Biogeosciences, – 362.

Microbiol., - Bracero,

6:721

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Harris, M.J., Wickramasinghe, N.C., Lloyd, Wickramasinghe,Harris, V,Rajaratnam,Turner, P., N.C., Narlikar, M.P.,Al M.J., J. D., Lovejoy, Harding, inhigh A.D., (2011). C.,andVincent,W.F. T.,Jungblut, arctic Microbes snowand Hara,Zhang,K. andD. (2012). HornerJ.A., Hanson, Fuhrman, C.A., Hader, Wright, and ofpollen J.D., Contribution toatmospheric T.P., Petters, M.D. (2014). ice Grinn Kalberer,Griffiths, Gallimore, Borlace, P.T., P.J., Pope,Herzog, F.D. J.S., M.,and (2012). M., Griffin, (2007).microorganisms movement D.W. Atmospheric ofincloudsdesert dustand Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, samples. Ramadurai, M.K., Wallis, S., andF.cells Detection Hoyle, S., (2002). instratospheric of living forimplications thecold biosphere. Atmos. Environ., biogeographic Processes patterns: microbial shaping landscape. the concentrations. parameters. fungal sporesForecasting inEurope: possibilities and relationships meteorological with D., Fernández Ianovici, V., Sadyś,Rodinkova, C., Tormo N.,Manzano, J.M.M., M.,Skjøth, Lett., Hygroscopiccloudgrowth Alaboratory activation and of pollen: and study. modelling forimplications humanhealth. uninfected areas. (2016). M. MesoscaleSmith, atmosph - Gofroń, A., N Gofroń,

13(4):289 , inProc.SPIE,

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Sci. Total Environ.,Sci. Total

Accepted Manuscript- Rodríguez, S., and S., Airborneand Damialis,Alternaria Cl A.(2019). Rodríguez,

owosad, J., Bosiacka,I.,Linares,B., De J., owosad, Camacho, J., C., Pashley, C.,Belmonte, – Atmos. Chem. Phys.,

295.

47:20 Int. J. Biometeorol.,

Comment citer cedocument: – . 25.

Bacterialabundance andinlong viability

Clin. Microbiol. Clin.

653(November 2018):938 - Devine, M.C., andDevine, Martiny, M.C., Beyond (2012). J.B.H.

Appl. Environ. Microbiol Appl. Environ.

14(11).

60(10):1493 eric transport of ragweederic transport from pollento allergensinfected

Rev., – 1500.

20(3):459

– 946. .,

77(10):3234 –

77.

Nat. Rev. Microbiol., Rev. Nat.

- range transporteddust. – 43. - Molina, R.,Vokou, Molina,

adosporium

Atmos. Sci. . nuclei nuclei

- Mufti, Mufti,

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Huffman, J.A., Perring, A.E.,Huffman, Perring, Savage, J.A., N.J. Zhang, Z., T., Niu,H.,Murata, K.,Wu, andHu, W., Bacteria (2018). Hu,M.,Kojima, D. in Hoose, (2012). C.andMöhler, Heterogeneous O. ice onatmospheric nucleation a aerosols: reviewof and Burrows,Hoose, J.E., C.,Kristjánsson, K.D.Holt, K.A.and (2014). Bennett,methodsfor Principlespalynology. automated and Hiranuma, Yamashita, A.,Kiselev,Hoffmann, O., T.,Saito, N., K.,Tajiri, A., C., Möhler, N.,Hoose, L.J., Galloway, Herlihy,J.N., Healy, Pöhlker, O’Connor, D.A., D.J., J.A., C Huffman, Haugen,(1978). Effects D.A. of Hartmann, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, B., Schneider, J., Sivaprakasam,I.,B.,Zawadowicz,M.A., Crawford, J., Schneider, V., Gallagher, M.,Topping, D., atmospheric Detection,characteristics waters: implications. and results from laboratoryexperiments globalclouds ona scale? icecontribution inclouds. to formation E.,Koop, T.,andJantsch, Murakami,Ic M.(2015). rainwater. fluorescencetime and techniques. microscopy measurements particlesKillarney,Ireland: aerosol ofbiological near Acomparison betweenreal and Instrumentation,Denver, 4th, Colorado, measurements(turbulence and data). windspeed Centuries. IceStratmann, F. ofVariation (2019).NucleatingParticles Arctic Last intheEuropean the Over M., Blunier, T., Brügger, S.O., Schmale, J., Schwikowski, M., Blunier, H.,andT., Brügger, J., Vogel, S.O.,Schmale, M., A.,Wex,

Atmos. Environ., Geophys. Res. Lett., Geophys. Res. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript Comment citer cedocument:

and Mills, A.L.and Mills, Bacterial of (1987). formicaceticin acid utilization and Environ.Res. Lett., . sampling rates and averaging ratesand sampling of meteorological periods

46:1

, Atmosph – 10. , Clot, B., Crouzy, B., Tummon, F., Shoshanim, O., Damit, F., B., O.,Damit, B., Shoshanim, , Clot, Crouzy, Tummon,

S.M. (2010). How biological (2010). important is S.M. in nucleation ice

Nat. Geosci.,Nat.

5(2). eric Chemistry andPhysics pp. 15 pp.

Atmos. Chem. Phys., Atmos. , in Symposium onMeteorological Observations , in

., Pöschl, U.,(2014).., Pöschl, and Ambient Sodeau, J.R. e and potential by cellulose nucleation its –

8(4):273 18.

– 277.

Atmos. Environ.,

14:8055 .

– 8069.

179:201

New Phytol., – 221.

- .

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Irish, V.E., Hanna, S.J., Irish, S., M.D.,China, V.E.,Willis, Hanna, S.J., M., Thomas, Cirisan,A.,Si, J.L., J.J.B., Wentzell, Irish,V B.,Hummel, M.,Hoose, Fröhlich C.,Pummer, Schaupp, C., Garland,Huffman, Sinha, B., Snee J.A., R.M., (2017).Huffman, and OnlineTechniques J. Santarpia, and J.A. for Characterization of Quantification Demott, P.J.,Huffman, Prenni, Robinson, Pöhlker, C.,Mason, A.J., R.H., N.H., J.A., Fröhlich Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, nucleatingin the Canadian particlesmarine boundary Arctic layer during inthe summer 2014. Laskin,Leaitch, Murphy, Abbatt, W.R., J.P.D., A., Girard, J.G., and Bertram,A.K. E., Atmos. Chem. Phys., Ice(2017). Miller, Polishchuk,L.A., E., Abbatt,Gosselin, J.P.D., M.,Murray,B.J., Bertram, and A.K. nucleation. Simulating theinfluenceof primaryparticles biological onclouds by aerosol heterogeneous ice fluorescenceduring techniques AMAZE rainforestaerosol particlesintheAmazon characterizedby real and microscopy An Biological Aerosols. nucleiaerosol duringand particlesand afterrain. ice Kreidenweis, Bertram, S.M., (2013). ofbiological A.K.,and U. High concentrations Pöschl, Ruzene, C.,Schmer, B., Harris,Nowoisky, Tobo,Y., Gochis, Després, D.J., E.,Müller J., E., V.R.,Garcia, persp Doughty, Pan, Y.(2019). and D.,Hill, Real S., .E., Elizondo, P., Choul, P., Lizotte,L.A., Charette,C., .E., Elizondo, Chen,Ladino, J., J., M., T.W., Wilson, dreae, U.(2012).distributions M.O.,and Size temporal Pöschl, ofbiological variations ectives. -

Atmos. Chem. Phys.,Atmos. Chem. nucleating particlesinCanadiannucleating Arctic sea 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript Technol., Sci. Aerosol , inMicrobiology ofAerosols,

17(17):10583 Comment citer cedocument:

Sinha, B., Sinha, Day,Andreae,Jimenez, J.L., D.A., M.O., Gallagher, M.,

18:15437

10595. accepted. - 08. - Pollmann, A., Gunthe, S.S., Artaxo, P., Martin, S.T., Martin, P., S.T., Artaxo, A.,Gunthe, S.S., Pollmann, –

15450.

Atmos. Chem. Phys.,Atmos.

- time sensing bioaerosols:Review and current of time

.

Atmos. Chem. Phys., - - surface microsurface Nowoisky, J., and Möhler, O.Nowoisky, J., (2018).

12(24):119 layer and bulkseawater. layer

13:6151 97 - – time UVtime 12019. - – Germann, I.,Germann, 6164. (2019). Ice(2019).

- -

APS APS

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Joly, Sancelme,Abrantes, M.,Amato, P., V., M.,Vinatier, L.,Joly, Deguillaume, M.,Amato, P., Monier Jimenez E.M.,Kim, Jeon, Iwasaka, G. Y.,Shi, (2017). Natural CentralIssanova, of and J. L Abuduwaili, Conditions Asia G.and Tenuta, Hambleton,Isard, Ariatti,J.M., A.,Russo, S., S.A., Barnes,C.W., A.,Gay,and Szabo, D.A., Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, (2015). Survival isolates from ofmicrobial cloudstoward simulated atmospheric stress factors. atmospheric station. of iceactive 0°c nuclei temperatures at near inlow Aircraft System inFranceStates. (sUAS) United and the IceDiversity Activityand a Nucleation Microorganisms Collected With Unmanned of Small Environ., Asian events dust airborne on bacterialanalyses. community by assessed molecular of long atmosphere withballoon the particles over Kosa sourceregions Tobo, Y., a Singapore, 29 Singapore, pp. inthe Desertsin AeolianProceses AsiaandKazakhstan, Storms ofCentral asDust 1357. SporeUsing Trapping,Aerobiological Monitoring, Crop and Modeling. L.J. (2011). Pr Atmos. Chem. Phys., - Sanchez, Aho,K.A., C.,Hanlon, R., Powers, C.,Mor

- range transport.

45(25):4313 nd Hong, C.S. (2009). Mixture of Kosa (Asian dust) and bioaerosols detected (Asian (2009).ofKosa nd Hong,and dust) C.S. Mixture inthe bioaerosols 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted H.J., Impact (2011). Jung, Kim,J.O. M.Y.,Kim,Y.P.,andKa, K.,Kim,of J.H., Manuscript edicting Soybean Rust Incursions into the North American Continental InteriorIncursionsedicting Continental the SoybeanNorth American Rust into - Y., Yamada, F., T.,Naganuma,Y., Kakikawa, B., M.,Kobayashi, Maki, T., Chen,

Atmos. Chem. Phys.,Atmos. 19:1027 Comment citer cedocument: – 4321.

Air Qual. Atmos. Heal.,Air Qual.Atmos. –

– 49. 1039.

, M., Hoose, (2014). C.,andDelort, Quantification , M., A.M.

14(15).

2(1):29

- altitude cloudsDôme at de the Puy M., Deguillaume, L., M., Deguillaume, and Delort, A. –

38. Front. Microbiol., ris, C.E., and Schmale III, Schmale and ris, C.E., D.G. (2018).

- borne measurements: possibility

Plant Dis., Plant

9:1667. and - Cover Changes.Cover

95(11):1346

Atmos. Springer - M. M.

– , Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Kiselev, D.,Bonacina, (2013).L., J.P. and A Wolf, Chang, (2001).Kim, S., andFroines, C. P.A., Sioutas, Jaques, Versatileaerosol M., J.R., concentration K I.Kasprzyk,M. (2006). and Airborneand fungal Worek, inurbanrural environments Poland. in spores H.,Boose,Ladino,Kanji,L.A., Z.A., Wex, Y.,Burkert Kakikawa,Kobayashi, F.,M., Maki, T.,Yamada, M., Kaarakainen, T.,Rintala, H.,Hyvärinen, A.,Kärkkäinen, P.,Meklin, P Joung, Y.S.,Ge,Buie,Bioaerosol Z., (2017).and generation onsoil. C.R. by raindrops A.M.and (2004). Harrison,R.M. Jones, The effectsofmeteorologicalfactors onatmospheric Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, ellogg, (2006).andglobal D.W. Griffin, Aerobiology ofdesert C.A.transport and the dust. P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, and identification ofpollen grains. individual Aerosol Sci., ultrafine,andambient finecoarseI: particlesDevelopment Partcharacterization. andlaboratory enrichment (VACES system Ecol. Evol., Aerobiologia (Bologna)., Ice(2017). OverviewNucleating of Particles. source Dunhuang. region, Iwasaka,Y., andintheatmosphere Dustborne (2008). microorganisms over Y. an Asiandust diversity and urban rural at landfill, sites. M., andNevalainen, A. Seasonal (2008). inairborne variation concentrations microbialand 8:1 b Atmos. Environ., ioaerosol concentrations – 10.

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 21(11):638

32(11):1281 Accepted Manuscript

117:92 Comment citer cedocument: – – 44.

98. – 22(3):169. - Air Qual. Atmos. Heal.,Air Qual.Atmos. 1297.

A review.

) for evaluation effects vivoandinvitro simultaneous in oftoxic of

Sci. Total Environ.,Sci. Total

CLEAN

Rev. Sci. Instrum., Meteorol. Monogr., Meteorol. flash

Higashi, G.,Hong, Shi, B., C.,Tobo, T.,Chen, –

- 1(4):195 Soil, Air, Water, Air, Soil, Kohn, M., Cziczo, D.J., and Krämer, D.J., Kohn, M.,Cziczo, M. - lamp based device forlamp based fluorescence detection

326(1 – 202. –

84(3).

3):151 ., Vepsäläinen, A., Hirvonen,

58:1.1

36(7):556

– - 180. 1.33.

563.

Nat. Commun.,Nat.

Trends Trends

J.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Ladino,L.A., Yakobi Lee, of (2005). andKuznetsova, theproteinaceous M., Aller, Characterization J. C., inmarine matter Krumins, V.,Mainelis, G.,Kerkhof, D.E.L.J., and(2014). Fennell, Substrate Kraaijeveld,L.A., Hiemstra, and K.,de P.S., M.,Buermans, Weger, J., Ventayol H.,Frank, den García, K.A.,Kourtev, Hill, Shepson, P.B., P.S., and A.(2011). Konopka, cloud Atmospheric Könemann,N., Beall, Rodriguez C.M., T., Savage, Iwata,Kobayashi, Maki, T.,KakK., F., InfluenceBurge,Ko, G., and First,H.A.relative (2000). M.W., of humidity andon particlesize UV IceKnopf, inAtmosphericThe P.A.,and D.A., of Wang,B.Role Alpert, OrganicAerosol (2018). Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, aerosols. Production inanAirborne Bacterium. using next (2015).Dunnen, Efficientand J.T. identification sensitive and quantifi diverse bacterial community. Cruise around Peninsula. theArabian and Pöhl Walter,D.,Lelieveld, Weber, B., Andreae,Pöschl, J., U., P., Yordanova, M.O.,Huffman, J.A., during May poisoning: Kosa observation real cloud of and behavior Y. (2016). of thetoxicity Evaluation eventKosa duststorm) ofa view (Asian of from food 80(4 sensitivity BCG bovis aerosols. and ofSerratia Mycobacterium marcescens Nucleation: A Review. – 5):217

ker,Online Bioaerosol C.(2018).Measurements theAQABA and Dust Research during Mar. Chem., - generation DNA sequencing.

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 2011 in Kanazawa, Japan. 2011 inKanazawa, –

Accepted Manuscript 228. - Hancock, J.D., Kilthau, W.P., M., L.A.,Hancock, Mason,Si, R.H., J.D., Miller, Li, J., Schill

Comment citer cedocument:

96(3

ACS EarthSp. ACS – 4):359

Atmos. Environ.,

ikawa, M., Higashi, T., Yamada, M., Ichinose, Higashi,Iwasaka, M., ikawa, T.,Yamada, M., T.,and – 377.

10th Int. Aerosol Conf. , St. Louis, ,St. 10th Int.Aerosol Conf. Missouri, USA,

Environ. Sci. Technol. Lett., Environ.Sci.

Chem., Air Qual. Atmos. Heal.,Air Qual.Atmos.

Mol. Ecol. Resour.,Mol. Ecol. . -

Caballero, Dorf,F., M.,Harder,H., E., Ditas, 45(30):5399 - time PCR analysesof Kosa PCR time bioaerosols –

5405. 15(1):8

9(1).

1(9):376

– 16. cation of airbornecation pollen -

Dependent rRNA Dependent rRNA

– Tuber. Lung Dis., Tuber. Lung 381.

water contains a contains water .

er, Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Ligler, F.S., Anderson, G.P., Davidson, P.T., Foch, R.J., Ives, Davidson, Foch, Page,Ligler, R.J., P.T., King, G.,Stenger,F.S., G.P., K.D., Anderson, J.T., L Lighthart,B., Marthi,B.T., B.,Ganio, Shaffer, and Lighthart, from B.T.B. chaparralBacterial (1994). andflux Shaffer, the atmosphere into in mid Lighthart,B. ecologyThe (1997). ofbacteriaalfresco atmosp inthe Lever, A.B., Michaud, A.,Eickenbusch, P., M.A., Šantl Torti, (2002).Lee,B.U., Hygroscopic Kim,S.S. and Kim, S.H., growthcoli and ofB. bioaerosols. E. subtilis Leck,Bigg,andE.K. Comparisonof C. (2008). sources the aerosol tropical and natureof withthe Lauber,Pander,Kiselev, A., A., Lateran, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, D.A., and Whe microbial bioaerosols previously deposited onplants. summer at location. ahigh desert 23(4):263 diverse types. environmentalsample A modularRNA,of and extractionDNA methodforofand theseparation DNApoolsfrom the J. Aerosol Sci., summer high Arctic aerosol. during droplets. oflevitated freezing Ser. Mater. Sci.Eng., altitudevehicle balloonplatform (HAB) sampling. for (UAV) high activeaerosol based laboratoryfield and measurements. Addressing theice mode deposition of Acombination abilities aerosol: nucleating of marine Knopf,C.L., Aller, J.Y., D.A.,Abbatt, (2016). Huffman,Bertram,A.K.,andJ.P.D. J.A., S., Sedan, M.F., Harithuddin, and A.S.M., Azrad,ofunmanned (2016). Sedan, S. S., M.F., Development aerial – 274. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript lan, J.P. (1998). Remote sensinglan, J.P. an using airborne biosensor.

33(12):1721

Comment citer cedocument: 152(1):12018.

T., Handmann, P., and Leisner, andT., Handmann,P., Secondary (2018). formation T. ice –

T 1723. ellus, Ser. BChem. Phys. Meteorol.,

Atmos. Sci.,

Atmos. Environ.,

Front. Microbiol., J. Atmos.Sci.,

28:1267 .M. (1993). Artificialwind .M. (1993).

75(8).

132:1

Aerobiologia (Bologna)., –

1274. 6(476). - Temk

– 10.

here.

iv, T., and Jørgensen,B.B. iv, T.,(2015).

60(1):118

FEMS Microbiol. Ecol.,FEMS - gust of liberation

Environ.Sci. – 126.

9(2

– 3):189

IOP Conf. - – 196.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Madelin, T.M.( Zhou, Yang,Ma, Y., Zhao,S., Zheng, J., andX. (2017). Y., the Assessment impact for of dustevents Lakey,Liu,F., Berkemeier, T., P.S.J., Lindemann, C.D.(1985). andAerial dispersal Upper, ofepiphytic J. over bacteria bean plants. andLindemann, H.A.,Barchet, Upper, as Constantinidou, Plants sources C.D.(1982). J., W.R., of Lin, W. Lin,Lizarraga, (2015).L.,L.A.,Bottomley, Meredith, H., Effectabsorption J. on andofwater Carson Lin,B., andIII, Bozorgmagham, S.D., Schmale A.,Ross, fluctuations Small the D.G. in (2013). Lim,G.E., O’Loingsigh, N.,Munday, T.,De C.I., Allison, Tapper, Deckker, (2011). P.,and N.J. Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, on measles incidence in westernon measles incidence China. in oligomerization u Atmospheric and nitration protein influenced by anthropogenicair chemistry pollutants: Lai,Nowoisky, (2017). Weller, S., U., J., M.G.,Pöschl, andC.J. Shiraiwa,Kampf, M., Env. Microbiol, 1063. airborne bacteria, airbornegradient.along floraan fungal torural urban pollen adhesion. ground level. recoveryacross consecutive offusaria intervals sampling aircraft unmanned with 100mabov Environ., Total Microbiological andmeteorologicalAustr analysis oftwo Technol., - R., Wang,R., P.

32(16):2461 1994). Fungalaerosols:1994). A review. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript (Bologna).,Aerobiologia

412 - 50:1229 J. Colloid InterfaceJ. Colloid Sci., H., Tien, C. H., pon exposure to ozone andpon exposure toozone nitrogen dioxide. including nucleation ice – 413:223 Comment citer cedocument: – 2466. – 1232. - –

J., Chen J., 31.

Tong, A.T., H.,Kunert, Cheng, Meusel,Fröhlich H., Y.,Su,H.,

, W.

29(1):45 Atmos. Environ.,

442:133 - - activebacteria. Y., Yu,Y.

J. Aerosol Sci., – 54. – 139.

-

J. Aerosol Sci., A., and Hsu, L.Hsu, A., and

157:1 alian inApril2009. storms dust

Appl. Environ. Microbiol., Appl. Environ. .

Faraday Discuss., – 9.

- 116:116 Y. (2018). Changes in – 123.

200:413

44(5):1059

– Appl Sci. 427. e

– - Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Maki, T., Lee,Iwasaka,Maki, T., M.,Kai, Kurosaki, K.,Hong, K.,Onishi, K., Y., C.S., Shinoda, K.C.,Kawai, Lee, K., Maki, T.,Kurosaki,Onishi, Y.,Yamanaka, K.C.,Pointing, S.B.,D., N.,Hasegawa, Jugder, H., A.,Hasegawa,Iwasaka,M., Matsuki, Kobayashi,Maki, T.,Kakikawa,Yamada, M.,H.,and F., Y. Maki, T.,Hara,Kakikawa, K.,Kobayashi, A.,Chen,F., B., Y., Kurosaki, G., Shi, M.,Matsuki, Lee,Iwata,Maki, T.,Hara, A., K., Kai, Pointing, S.B., K.,Kobayashi, K.C.,Kawai, F., Archer, K., S., Mainelis, K.,Adhikari, G.,Willeke, T., and A.,Reponen, Design Grinshpun,(2002). S.A. and Mainelis,Bioaerosol G.(2019). sampling: Mahaffee, Stoll, R.(2016). W.F. and TheFlowin EbbandMonitoring of Airborneand Pathogens: Use Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, dispersalassociated ofbacteria dustandanthropogenic with desert over continental particles and Lacap Y., Archer, S.D.J., Ovoo of during area Gobidesert events. dust Variationsand M.(2017b). Shinoda, thestructure in ofairborne Japan. andorigin(2013).composition Assessment of of an Asian Iwasaka,Hasegawa,and Y.(2015). distributio H., Vertical 17(19):11877 altitudes ove Iwasaka,Hasegawa, atand Y.(2017a).Variationsairborne high in H., communities bacterial Technol., collectionnew efficiency electrostatica precipitator offor collect bioaerosol Sci. Technol., Disease Management Decisions.

Atmos. Environ., -

dust downwind area,Noto Peninsula. downwind dust 36(11):1073 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 r the (Japan) NotoPeninsula toAsian dustevents. inresponse

Accepted Manuscript– in review. 11897. Comment citer cedocument:

– 1085.

74:73 ‐ Bugler, D.C.,

– 82.

Phytopathology,

classical approaches, and advances perspectives. Hasegawa, H.,and(2019). Pointing, Aeolian S.B.

Air Qual. Atmos. Heal.,Air Qual.Atmos.

Atmos. Environ., airbornefree bacteria troposphere intheover

106(5):420 n ofairborne in communities bacterial – 31.

bacterial communities in Tsogt communities bacterial 119:282

10(3):249 – 293.

Atmos. Chem. Phys., ion.

Aerosol Sci. 260.

Aerosol Aerosol -

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and McCluskey, M.,At Rinaldi, Ovadnevaite, C.S., J., Mazar, Y., theAtmospheric on Cytryn,E., Erel,Y.,and Y. Effect Rudich, (2016). ofDust Storms (2014).Mayol, and M.A.,Herndl,Duarte,Resolving Arrieta, J.M. G.J., the E.,Jiménez, C.M., Li, Chou, M., Mason, R.H.,Si, Dickie,C., J., Marks, Kruczalak, K.,andBacteria R., Jankowska, and M.(2001). K., Michalska, fungi airthe in over Kobayashi, S., Maki, T.,Susuki, M F., Kakikawa, Maki, T.,Puspitasari,Hara, F.,K., Yamada, M Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Influenced Northe MarineIce and Organic Terrestrial Lohmann, (2018). Z.A.,T.C.J., P.J. U.,O’Dowd,Kreidenweis, C., and Kanji, DeMott, S.M., Microbiome intheEastern Mediterranean. Microbiol., abundance and air with a Bertram,Ice A.K.(2015). nucleating coastal particlesata layer marine site:Correlations boundary Ladino,Leaitch,L.A.,J.D., K., Jones, Schiller, C.L.,Abbatt,Huffman, and J.P.D., W.R., J.A., Gulf andof sea. GdanskBaltic region, Dunhua of adistribution halobacterialatmosphere community (KOSA) inthe Asiandust source ofan Tobo,Y.,C., Hasegawa,H., Ueda,Iwasaka,and Y.(2008). K.,diversityand Phylogenetic vertical (Kosa)dust event. Variations thestructure ina in ofairborne downwind bacterialarea communities an Asian during oceanic surfaces. erosol type and meteorological conditions.

5:1 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript – ng City. 9.

J. Geophys. Res.J. Atmos., -

ast Air Atlantic Masses. Sci. Total Environ.,Sci. Total

sea fluxes ofairbornefluxes microorganismssea Ocea intheNorth Atlantic Comment citer cedocument:

Air Qual. Atmos. Heal.,Air Qual.Atmos.

J. Aerosol Sci.,J.

- Nucleating Particles in Pristine Marine to Continentally Marine in Pristine Nucleating Particles

488

R., Toom R., ., Kobayashi, F., Hasegawa, H., and Iwasaka,H., and., Kobayashi, F., Hasegawa,(2014). Y.

– J. Geophys. Res. Atmos., 124(10):5579 Environ. Sci. Technol.,Environ. 489:75 ., Yamada, T.,Chen,B., G.,Hong, M.,Higashi, Shi, kinson, J., Belosi, F., J., kinson, Ceburnis, Hill, D.,Marullo, S.,

32(2):237

1(2):81

Atmos. Chem. Phys., - – Sauntry,D., Pöhlker, C.,Yakobi 84.

– – – 89. 5588. 250.

50(8):4194

123(11):6196

15:12547 – 202. – 12566. – 6212.

- Hancock, Hancock, n.

Front.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Morris, C.E., Sands, D.C., Glaux, C.,Samsatly,Morris, Sands, Asaad, D.C.,Glaux, Gonçalves, C.E., Moukahel, S., J., and F.L.T., A.R., Morris, Sands, D.C.,Bardin, Vogel, C.E., Leyronas, Ariya, B., M.,Jaenicke, and R., P.A., Psenner, C., Leyronas,Morris, and (2014b). C.E., C., Nicot,Bioaerosols Movement P.C. inthe Atmosphere of and Morris, Georgakopoulos,D.C. (2004 D.G., C.E., and Sands, Huffman,Phillips,Alex Morris, Conen,F., U., J., V.,Pöschl, C.E., and Moran Monaha Möhler, O., Vali,Levin, DeMott, G.,andZ. P.J., atmospheric Microbiology (2007). and processes: the Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, of airborne micro (2011).R. Microbiologyand atmospheric Research challenges processes: conce Ltd,393 UK, pp. Chichester, the Consequencesfor and Climate Microbial Evolution. potential role inprecipitation. through biologicalnucleators inthe atmosphere. ice Bioprecipitation: a feedback cycle linking history, ecosystem dynamics Earth and landuse Chem. Phys., aerosols forestofSaharan theAmazon rain in intrusion plumes. the frequent with dust U., Pöschl, Andreae, P., Artaxo, Pöhlker, N., M.,Ruckteschler, H.,Wang, Su, Wang,Z., Y.,B., Q.,Wang, Weber, S., Wolff, I.,Baars, Heese,Godoi, R., B., H., HMLavrič,L AHolanda,V.,Martin, B.,Ming, S., J. J., 392. between whitecapsandaerosols. marine 10mwinds,ocean role incloudphysics. ofbiological particles - Zuloaga, D., Ditas, F., Walter, D., Saturno, J., Brito,Zuloaga, Ca F., J., D.,Ditas, Walter,D.,J., Saturno, n, E.C., Fairall, C.W., Davidson, K.L.,C.W., (1983). Boyle,n, E.C.,Fairall,Observed and P.J. inter

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript18:10055 - organisms ontheatmosphere climate. and organisms Comment citer cedocument: – 10088. –

415. J. Phys. IV,

M., and Pöhlker, C. (2018). Long (2018).C. and Pöhlker, M.,

121:87

Biogeosciences, – 103.

Glob. Chang. Biol., Glob. Chang.

). Ice). active nucleation and bacteria their , inAerosolScience,

Q. J. R. Meteorol. Soc., Meteorol. Q. J. R.

Biogeosciences, rbone, X.,Hrabě Chi, S., Angelis, De 4(6):1059 - Sands, D.C.(2014a). Sands, term oncoarse study mode –

1071. 20(2):341

John WileyJohn & Sons, 8:17

rning theimpact ‐ – – relations relations

25. 109(460):379 351.

Atmos.

– Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Neufeld,B.K.,A.P., Gugino, Keinath, McGr K.N., Nemergut, E.K.,Hamady,Lozu Costello, D.R., M., Nem Negrin, M.T.,and(2007). and Ronco, M.M.,Delinfluence A.E. Study site Panno, ofbioaerosols in, Negrin,M.T., Terada,Ronco, A.(2009). M., Delof C.G.,andindoor Panno, Characterization Bigg,Morris, Soubeyrand, S., Sands,D.C.,Morris, C.E., Soubeyrand, J.M., C.E., S., E.K., Creamean, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, eck cucurbit theeasternUnited States using downy mildewaerobiological in an integrated model. (2018).Langston, Ojiambo,P.S. Predicting Keever,B., A.,and risk of T., D.B., Dutta,Sims, the biogeography taxa. ofbacterial L., Stanish, Townsend, C.C., A.R.,Cleveland, Knight, and (2011). patterns R. the Global in 175(13):4062 andPseudomonas syringae lowtemperature. induced limitation is by nutrient strain Aerobiologia (Bologna)., Lathe Plata areaconventional using DNA (Argentina) (fingerprint) and based methods. 109 INC,Nova Science Publishers, 400Oser 1600,Hauppauge, Ave,Ste NY 1 based methods. outdoor 98(6):1109 SensitivityPotential Precipitation BiologicalAerosols. to of Bigg, and E.K., Sands, D.C.( Creamean, J.M., nucleation active bacteria. Bigg, E.K.Urediosporesice (2013). ofrust fungi are - – Marshall, M., LaDuca R.(1993). Fall, High M., Marshall, and R., 125.

bioaerosols and industrial using DNA urban, rural in sites (fingerprint)and conventional

– 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 1118.

Accepted– Manuscript 4070. , in Aerosols: Chemistry, Impact Effects, Emvironmental D.Peretz,, inAerosols: andHealth ed,

Comment citer cedocument:

23(4):249

Atmos. Chem. Phys.,

Environ.Microbiol.,

– 258.

ath, M.T., Sikora, E.J., Miller, S.A., Ivey, S.A., Miller, ath, Sikora, M.T., E.J., M.L., pone, C., Jiang, L., Fierer,pone, C.,Jiang, S.K., Schmidt, N., 2017). Mapping Feedback2017). toReveal Rainfall the

13(8):4223

13(1):135 nucleation activenucleation at > - level expression of icelevel nuclei expression ina –

4233. Bull. Am. Meteorol. Soc.,Bull. – 144.

- 1788 10 °c and harbor ice - 3635 USA,pp.

J. Bacteriol.,

Int.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Oteros, J., Bartusel,Oteros, J., A.,Moreno, F.,Behrendt,H.,Schmidt E.,Alessandrini, Núñez, D.A., Leck,Orellana, P.A., E.(2011).Lee, Rauschenberg, C., M.V.,Matrai, Marine Coz, C.D.,A.M.,and I.Oliveira, Delgado, J.L., M.,Ribeiro,H., and(2009).effects The Abreu, Oliveira, Umo, and D.,N.S., O’Sullivan, Ross, T.F., Murray,Whale, B.J., J.D., J.F., Price, H.C.,Atkinson, Leeuw,O’Dowd, production: G.aerosol C.D.and areview de (2007). ofthe Marine current Núñez, A.,de G.A., Paz, Rastrojo,A.,García,Alcamí, A.,Montserrat A.M., Gutiérrez Núñez, A.,Amo G.,Rastrojo,A.,García,A.M.,Alcamí, dePaz, A.,Gutiérrez Noziere, B.forget Don’t (2016). the surface. Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Traidl 108(33):13612 microgels Biometeorol., airborneconcentrationdiffering areaslevel. sporeintwo fungal inurbanisation atmosphererural ofurban and locationsPortugal. in 1 M.E.(2015).Webb, relevance The biological ofnanoscale icenucleation fragmentsfor inclouds. knowledge. Metagenomics urban appliedenvironments. to MonitoringMoreno, ofairbo D.A. (2016b). Importance, ratios. and variability Moreno,Monitoring D.A. ofairborne (2016a). biolog J. Biomet – 7.

M., Delgado, L.,I. PleosporalesM., Delgado,Fungal Ribeiro,H.,(2010). andfrom inthe Abreu, spores - Hoffmann, C., and Buters, (2019). and Hoffmann, C., Arte J. eorol., ascloud asource thehigh condensation ofin nuclei Arctic.

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Philos. Trans. R.Soc. AM Trans. Philos.

Accepted Manuscript 53(1):61 –

13617. 62(4):655 Comment citer cedocument: –

73. –

668.

Int. Microbiol., ath. Phys. Eng. Sci., ath. Phys.

Science (80 Science rne biological atmosphere. inoutdoor particles 2: Part

Int. Microbiol., Int. misia pollen isthemain misia vectorairborne for

19(1):1 -

. )., . J. Environ.Monit., ical atmosphere. inoutdoor particles 1: Part

351(6280):1396 –

13. 365(1856):1753

19(2):69

of meteorologicalon of factors

Proc. Natl. Acad. Sci., Natl. Proc. –

12(5):1187 – 80. - 1397. Bustillo, A.M.,and –

1774.

Int. J. - Bustillo, A.,and

– 1194. - Weber, C.,

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Papadopoulos, N.G.,I., Agache,Bavbek, Bilo, S., B.M., A., V.,Custovic, Braido, F., Cardona, Palframan,III, H.A.,D.G., Schmale and (2014). M.C., Gruszewski, Woolsey, Detectionof a C.A. Pusch,G.,Weichenmeier,Oteros,I., J., U., Möller, Heimann,R.,Röseler, S.,Traidl Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Z., Rudzeviciene, C., Rondon, O.,Ruëff, Quirce,C., Raulf Raap, S., U., Pala, G.,L.,M., O’Mahony,S., M., Pfaar, Papi, A.,Passalacqua, O., O’Neil, Pitsios, G.,Perkin, C., A.,Mills, Manole,Mingomataj, F., A., N Mazon, B., Mari, E.,Niggemann, Logan,Lauerma,Lauener, Makrinioti,H.,Mangina, R., Makowska, A., K., Magnan,A., J., P., Kala Hoffmann, Hoffmann H.J., Gevaert, Genuneit,Ferrer, Hamelmann, J., Flohr, Groblewska, P., E., A., C.,Gardner, M., DeJong, N.,DelS., Giacco, Celenk, Calderon,L.O., Caubet, M.,Cardell, CichockaS., J.C., Butiene, Boyman,E., Bonadonna,M., I.,Brockow, Bonini, P., K., J., O., Burney, Buters, P., Annesi Skevaki, Triggiani,M., VanRee, C., R.,Allegri, T.,Flood, Savli, R.,Werfel, S., B., P., Palkonen, J Grattan,DeMonchy, Demoly, Eigenmann,P., Heffler, J., C., J., E., P.,Gayraud, Hellings, P.W., unmanned aircraft system. surrogate a with portable surface biologicalplasmonresonance onboard agent sensor an Allergy Immunol., Schmidt endotoxin. utel, M.,Knol,E.,Lötvall, Muraro,L.K., A., J., Poulsen, G.,Schmid Roberts, yci, A.F., Ö.,Kalpaklioglu, Kleine - Maesano, I., F., Antolin Maesano, Annunziato, - Weber, C.,and Buters, (2015). a Automatic J.T.M.

J. Allergy Clin. Immunol., 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript

167(3):158 Comment citer cedocument:

- J. Unmanned Syst., Veh.

Sommergruber, K., Hovhannisyan, L., F.L., V., Jahnsen, Sommergruber,Hovhannisyan, Hox, K., Douladiris, N., Fassio, F., Fauquert, J.L., Fernandez, J., Douladiris, F., M.F., N.,Fassio, J., Rivas, Fernandez, Fauquert, J.L., – - 66. Heimsoth,M., Rhyner, C.,Robson

143(1):369 - Tebbe, J., Konstantinou, G., Kurowski, M., Lau, M., Konstantinou,G.,Kurowski, Tebbe, J., S., F., Rukhadze, M., Rumi, G.,Sackesen, M.,Rumi, F.,A.F., Santos, C., Rukhadze, - Amerigo, D., – 377.

2(4):103

Apfelbacher, C.,Blanca, M.,Bogacka, nd online pollen monitoring. – 118. - Jarosz, E., Cingi, C., Couto, M., E.,Cingi, M., Couto, C., Jarosz, -

Ansley, P., Alves, R.R., Roje, Alves, P., R.R., Ansley, - ilsson, G.,Ollert,ilsson, - Grendelmeier, P., Hoffmann, C., Hoffmann, C.,

Int. Arch. Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Pei Peel, Finlayson, M.C., B.L., and M H.,EW, DA,Pearce,Bridge, Hughes, W., D.A., N.J., B.,JS, K.A., P.D., Sattler, Psenner, R.,Russell, Pearc L. dansl’atmosphère,Pasteur, existent corpuscules (1862). Surles qui organisés doctrine de examen la Passananti, G.,andV., Delort, M.,Vinatier, Brigante, Siderophores M.(2016). A.M.,Mailhot, incloud Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, - Chih, W., Huey W., Chih, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, climate classification. Microbiol. Ecol., (2009). O.,andW. G., SM, WJ, theatmosphere Microorganisms Antarctica. in over Front. Microbiol., and Vincent, Aerobiology antarctica (2016). W.F. over L.,Benning,L.G.,Gunde D.H., deBradley, Eguren, G.,Vera,Elster, J.A., G.,Matcher, J.P., Lau,Sattler, Magalhães, B.,B.J., D.J.,Wall, W.L., Adams, Chu, C., C.,Smith, Cary, M.C.Y., Phys.,Chim. des générations spontanées,leçon àle19mai clinique professée de laSociété 1861. Paris, sun waters impactchemistry: complexes and onatmospheric under potential Photoreactivity ofiron in allergy:paper, EFA. incollaborationEAACI with position An Xepapadaki,Boerstra,B., M., Worm, and (2012).P., Akdis,C.A. Whitacker,P., Research needs Stur Seys,I., F.,Sprikkelman,A., Siracusa,A.,Skypala,Spertini, R., S., Spiewak, Sokolowska,M., Santucci, C.,Schmidt A., Scharf, e, D.A., Alekhina, I.A., Terauds,A., Wilmotte, D.A., Quesada, Alekhina, e, A.,Edwards, Dommergue, A., - m, G., Swoboda, I.,m, G.,Swoboda, Terreehorst,I.,E., Traidl Toskala, simulated conditions. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript64. - Jen, S., and S., Chia Jen,

69(2):143

7(FEB):1 Comment citer cedocument:

Hydrol. EarthSyst.Sci., Hydrol. -

Environ. Cimerman, N., Convey, P., Hong, V.H., P., S.B.,Cimerman, Pellizari, N.,Convey, Pointing, S.G., – – 157. 7. cMahon, T.A. (2007). Updated mapcMahon,(2007). ofthe world T.A.Köppen

- -

Yin, L. andYin, Characteristics(2000). outdoorairborne of indoor

Weber, C.,Schnyder, B.,Senna, G.,Sergejeva, Schwarze,J., S., Sci. Technol.,

11:1633

50(17):9324 – -

1644. A new initiative for atmospheric for initiative A new ecology. - Hoffmann, C., Venter,Hoffmann, C., C.,Vlieg –

9332.

Clin. Tra Clin. J., Hughes,J., K.A., Cuthbertson,

nsl. Allergy,

FEMS FEMS

- 2(1):21. Geiger Geiger

Ann. -

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Powers, C.W., Hanlon, R., Grothe, H., Prussin, A.J., Marr,L.C., Hanlon,III, Grothe,Powers, C.W., R., H., A.J., andD.G. Prussin, Schmale (2018). G.,Peghaire,Pouzet, Aguès, M.,Baray, E.,Conen, F., J.L., a U.,B.,Huffman,Borrmann, Sinha, Pöschl, Martin, S.S., Farmer, S.T., S., Chen,Q., J.A., D.K., Gunthe, Polymenakou,(2008). Mandalakis,M.,Stephanou, E.G., Particle P.N., andA. Tselepides, size (2012).Pointing, Microbial and S.B. J. controls and colonization in Belnap, dryland systems. andPetters, Petters, S.S. Petters, M.D.(2015). T.P. and Revisiting Wright, samples. ice from nucleation precipitation Perring, Baumgardner, J.P., A.E., Schwarz, M.T.,Spracklen, D.,D.V, Heald, Hernandez, Gao, C.L., Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Atmosphere (Basel).,Atmosphere processing and variability atof particles Opme,France. biologicalnucleating ice inprecipitation Amazon. Andreae, precipitation nucleiclouds M.O.(2010). and the as in of biogenic Rainforestaerosols Roldin, Rose, P., Petters, D., M.D., Prenni, A.J., J.L., Jimenez, Garland, A.,Mikhailov, G., Manzi, Helas, King, S.M., R.M., E.,Pauliquevis, T., eastern Mediterranean. of airbornedistribution microorganisms and Africanan pathogens intense the during in event dust Microbiol., component aerosols. internally mixed Res. Lett., 120(3):1153 of region Kok,G., McMeeking,R.S., and Fahey,Airborne J.B., G.R.,McQuaid, (2015). D.W. observations fungi home and atsuburban urban al variation influorescentalthe Unitedaerosol variation States. across

Science(80

42(20):8758

10(8):55 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 –

Accepted Manuscript 1170.

M.D. (2016). Surfactant effect on cloud condensation nucleiM.D. (2016).effect for two Surfactant oncloudcondensation 1

- 8(11). Comment citer cedocument: – . ).,.

62. – Environ. Health Perspect.,Environ. 8766.

329(5998):1513

s in two seasons. s intwo

J. Geophys. Res., – 1516. Schneider, J., Su, H., Zorn, S.R., Artaxo, P., and H.,Zorn,P., Artaxo, Schneider, Su, S.R., J.,

116(3):29

Sci. Total Environ.,Sci. Total

121(4). nd Amato, P. (2017). P. Atmosphericnd Amato, 2 – 6.

J. Geophys. Res.,

253(1):111 – 118.

Geophys.

-

Nat. Rev.Nat.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Rathnayake, N.,Baker,Z., Metwali, C.M., Jayarathne, G.,Bin,Puspitasari, F.,Shi, Kobayashi, F., C., Hasegaw Maki, T., B.G.,Pummer, AugustinBudke, C., B.G.,Pummer, Bauer, Bernardi,Bleicher, H., S.,andSuspendable J., Grothe,(2012). H. Blades,(2005) Mathison,G.,andR. Prospero, J.M., Naidu, E., Petters, M.D.,Prenni, A.J., Kreidenweis, Heald, S.M., C.L., M Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, 5089. background theMidwestern in locations United States. and Urban E.A.of bioaerosolP.T., relativeenhancement Stone, (2016). PM10 tracers to sourcedust Desert. area, theTaklimakan Phylogenetic sandbacterial in dunesanalysis and of aerosol dust compositions species inanAsian macromolecules.soluble Grothe, T.,and H., U., Fröhlich Pöschl, Koop, Liedl, R.G., Loerting, K.R., T.,Schauperl, M., T.,Moschen, Chem. Phys., macromoleculesareresponsib 19. fungi bacteriaAfrica dust. from and with soil tothe Caribbean nuclei inthebasin. Amazon Wollny, U.(2009).and Relativeofbiogenic Pöschl, A.G., roles emissionsand Saharan asice dust Microbiol., Unmanned (sUAS). and (USV) Aircraft a SurfaceUnmanned System Small Vehicle Coordinated Sampling Microorganisms of Freshwater Over Usingand SaltwaterEnvironments an

9:1668. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript12(5):2541

Comment citer cedocument:

– Atmos. Chem. Phys., 2550.

Nat. Geosci.,Nat. le for activity iceconifer pollen. nucleation and ofbirch -

Bauditz, S., Niedermeier, D., Felgitsch, L., Huber,Bauditz, Niedermeier,Felgitsch, S., D., C.J., Kampf,

Air Qual. Atmos.Heal., Air Qual.

2(6):402

- 15:4077 Nowoisky, J. (2015). Ice (2015). Nowoisky, by water nucleation J. T., Kostle, P.A., Thorne, P.S., O’Shaughnessy,T., Kostle,Thorne, P.S., P.A., – 405.

– J. Geophys. Res. Atmos., 4091.

artin, S.T., Artaxo, P., Garland, P., artin, Artaxo, S.T., R.M., . Interhemispheric. of transport viable

Tollinger, M., Morris, C.E., Wex, H., Morris,Wex, C.E., Tollinger, M., a, H., and Iwasaka, H., and a, Y.(2016).

Aerobiologia (Bologna).,

9(6).

121(9):5071

Front.

Atmos.

21(1):1 - – – Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Rojo, J., Oteros, J., Pérez Oteros, Rojo, J., J., Rogers,F.C.L.A. and(1937).Geographic National Meier, The Society Rodó, Reponen, K.,Ulevicius, T.,Willeke, (1996). A.,and Effect V.,Reponen, Grinshpun, S.A. ofrelative and Anderson, Conwell, M.(2001). K.L.,Reponen,S.A., J., Aerodynamic T.,Grinshpun, versus Wiest, Renard,I., P.,Canet, Sancelme, M.,Wirgot,L., N.,Deguillaume,A.and Delort, Raupach, R.A., Antonia, M.R., Rathnayake, Metwali C.M., Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Fernández D., Bonini, E.,Fernández M.,Chiodini, Sánchez K.C., Oliver,Rodrí M.,Albertini, G., R., Thibaudon, stratosphereII.” inthe balloon “Explorer flightof1935 Association disease ofKawasaki windpatterns. withtropospheric Environ., humidityaerodynamic onthe diameterand respiratory of spores. fungal deposition 40(3):119 physical ofspores:Measurementand size for implication respiratory de biosurfactants. of cloud isolatedat (Fran microorganisms the PuyDôme de Appl. Mech. Rev., bioaerosols finecoarse in andparticles. O'Shaughnessy,Influence and E.A. Stone, (2017). P.T., ofrain onthe abundance of X., Ballester,Nakamura, Cayan, and (2011). Y., Uehara, D.,Melish,Burns, M.E., J., R., J.C. - Sánchez, J., Pessi, A.M., Reiniharju, J., Saarto, A.M.,Reiniharju, Pessi, M.C.,Guerrero, J., A.,Sánchez, Calderón, C.,Berra, J.,

– 30(23):3967 - 125. Rodríguez, S Rodríguez, 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript

Atmos. Chem. Phys, Atmos. Chem.

44(1):1 - Badia,Ferencova, R.,Cervigón,Z., Gutiérrez P., Comment citer cedocument: – , N.,Jayarathne, Huang, T., J., Kettler, Y.,Thorne, P.S., 3974. ., Tormo –

and (1991). Rajagopalan,S. Rough 25.

- Molina, R.,Damialis,Molina, A., Kolek, F., Traidl

16:12347

- Atmos. Chem. Phys., González, D., García, J., Trigo, D.,García, Myszkowska,González, J., D., M.M., – 12358. guez

QJR Soc., Meteorol. - De la Cruz, D., Sánchez D., laCruz, De ce) stationproductionce) for the of

17(3):2459 - Wall Turbulent Boundary Layers. Boundary Turbulent Wall

- Sci. Rep., US ArmyA - Bustillo, A.M.,Bergmann, position. – 2475. -

M. (2016). Screening

- 1(152). 63:217 Hoffmann, C., ir Corps

Grana, -

Atmos. Reyes, E.,

– 218.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Šantl Santarpia, J.L., Pan, Y. Sahyoun, H.,Gosewinkel, U.,Šantl M.,Wex, V.,Rönkkö,Saari,H., Järvinen, A.,Pirjola,L., Niemi,T.,Kuuluvainen, J. R., S., Aurela,M.,Hillamo, L.M., Russell, L.N., andFrossard, P.K., Hawkins, A.A., Bates, (2010). Quinn, T.S. Carbohydrate Topping,Ruske,I., S., Stanley, Foot, Crawford, D.O., V.E.,Kaye, P.H., W.R., A.P.,and Morse, sorption byRubel, G.O.(1997). of biological watersingle Measurement vapor aerosols Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Bratbak, G., and Löndahl, J. Bratbak,Löndahl, G.,and J. laboratory tosimulate atmosphericaging. reaction chamber R.G.(2012).Pinnick, Changes influorescence spec quantification of theimpactINP ofbacterialand climate. onweather U.S.(2016).Stratmann, Onthe F., usage and ofclassical Korsholm, nucleation and size Seasonal offluorescentand (2015). andconcentration Keskinen, bioaerosol diurnal J. variations Proc. Acad. Sci., Natl. ofsubmicroncomposition atmospheric theirocean production particlesand from bubblebursting. biological using aerosol Gallagher,Evaluation (2017). ofmachine M.W. learningalgorithms for classificationof primary Technol., groundeffect pollen exposure. ofheight on Radišić,P.,Šikoparija,C.A., B., Celenk,Schmidt S., I., Newbigin,Borycka, E.,Adams K.,Kasprzyk, Severova,Ribeiro, H.,Magyar, E., Makra,L., E.,Caeiro, D.,Alcázar, Udvardy, O.,P.,Galán, C., - Temkiv, B., T.,Amato,Gosewinkel, P., Finster,K.W., A., U.,Thyrhaug, R.,Charton, Chicot, distribution inthedistribution urban environment.

27(4):481 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript - L., Hill, S.C., Baker,L., Hill,S.C., B.,L., N., McKee, Cottrell, Ratnesar – 490. Comment citer cedocument:

107(15):6652

a new UV

(2017). High

- LIF spectrometer. – 6657. - Temkiv, T.,Nielsen, Finster, N.W., Temkiv, K., J.H., Sørensen, - Flow

Environ.Res.,

Aerosol AirQual.Res., Aerosol - - Rate Impinger the for Rate Studyof Concentration, Groom, B., Apangu, G.P., Frisk,Groom, Skjøt C.A., B., G.P., Apangu, tra of bioaerosols exposed to ozone ina tra toozone ofbioaerosolsexposed -

Weber, C.B., and Buters, J. (2019).Weber, C.B.,NearButers, J. and Atmos. Meas. Tech.,Atmos. Meas.

174:160

Opt. Express, – 169.

Atmos. Environ., Atmos.

15(2):572

20(28):29867. 10:695 - Shumate, S., andShumate, S.,

theory in – – . 581.

708. Aerosol Sci. Aerosol

139.

- like like h, -

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Šaulienė, I.,Šaulienė,L.,L., Brdar, Daunys,Vaitkevičius, P., Šukienė, G.,Valiulis, G.,Matavulj, S.,Panic,M., Sattler, H.,and B., Psenner,Bacterialgrowth Puxbaum, R.(2001). cloud droplets. supercooled in Santl Šantl Šantl Šantl Šantl Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Discuss., Rapid Sikoparija,Crouzy, B., recognitionM. (2019). B.,andB., Automatic pollen the Clot, Sofiev, with Geophys. Res. Lett., Characterization of airborne ice H., Clauss, N.,Ha T.,Woetmann, Arctic Research Villum Site Station. H.(2019).N., Massling,and Biogenic Wex, A., Sourc Fems Micriobiology Ecol., Greenlof bacteria insouthwest Aerobiologia (Bologna)., methanotrophic One,PLoS theMicrobial into U.G. andInventory (2013).AWindow Chemical Hailstones: a Cloud. Storm of Technol., Viability, MetabolicIce Activity, and - - - - - Temkiv, T.,Sahyoun, S.,Augustin M.,Finster, K., Hartmann, Lange,Temkiv, T., Beddows, R., Pilgaard, Gunde M., D.,S.,Dall’Osto, Rauter, Temkiv, U.,Starnawski, T.,Gosewinkel, Lever,(2018). P., Aeolian Finster,K. M.,and dispersal L.,Temkiv, Tina, K.,Hansen,(2013). Finster, B.M.,and U.G. Viable Karlson, Pašić, Temkiv, T.,Finster, K.,Dittmar, T., Hansen,B.M., Thyrhaug, - E parti

12:3435 51(19):11224

8(1). 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

cle counter: thefirstcle counter: Accepted Manuscript

bacteria enriched from air and rain can oxidize methaneenrichedbacteriafromand can at rain air cloud oxidize – 3452.

28(2):239 Comment citer cedocument: –

11234.

29(3):373

94(4):1 – and: their sources, abundance,and: physiological their diversity and states.

- 242. nucleation - vskov, J., Smith, U., Wick, L.Y., Smith, U.,Wick, and Gosewinkel,U.(2015).vskov, J.,

level procedure, experience steps. level procedure, and next – – 10.

384. Environ.Sci. Technol., - Nucleation ActivityBacteria. ofAirborne

- activebacteriaand bacterial fragments. 109:105 es of IceNucleation Particleses of atthe High

53(18):10580 -

R., Nielsen, N.W., and N.W., Karlson, Nielsen, R., bauditz, S., S., Stratmann, F.,bauditz, Wex, – 10590.

Atmos. Meas. Tech.

- Environ.Sci. like conditions.

- Cimerman, Cimerman, –

117.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Schumacher, Pöhlker, U., C.,Aalto,Hiltunen, C.J., V.,Petäjä, and P., M., Pöschl, T., Kulmala, Ice (1977).Schnell, R.C. Nuclei inSeawater, Fog Water andtheAir off Marine Coast of Nova III,Schmale Fetters, D.G., S.D., Ross, T.L., Tallapragada, Wood P., III,Schmale C. B.R., D.G., and (2008). application Dingus, Reinholtz, Development of and an Saxena, V.K. andIce Weintraub, D.C.(1987). InvolvementSaxena, V.K. (1983). BiogenicNuclei Evidence ofthe Antarctic in T.T., Mainelis,Savage, Krentz,G.,Pöhlker,Huffman, C.,andJ. C.E.,Könemann, Alex T., N.J., Han, (2018).Savage, and Evaluation Huffman, J.A. N.J. ofa hierarchical agglomerative clustering method Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, semi Huffman, (2013). cycles inboreal fluorescentbiologicalaerosol Seasonal J.A. of particles and 1975.Summer 28(1):1 Fusariumwheat blight head andproduce in . trichothecene Isolates(2012). Fusarium gr of J. F.Robot., autonomous unmanned aerialforaerobiological agriculturalabove vehicle sampling precisefields. J., Phys. Chem., Atmos. Meas. Tech., integrated (WIBS) sensor bioaerosol using size (2017). Systematic characterizationand f data preparation techniques. applied to WIBSlaboratory for d data improved

266 - arid f – – 267. 11. orests ofFinland andorests Colorado.

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

25(3):133

Accepted Manuscript87(6):4130

J. Atmos.Sci.,

10:4279 Comment citer cedocument: – 147. – 4134.

Atmos. Meas. Tech., –

34:1299 4302. aminearum collected 40 aminearum collected

– 1305. luorescence thresholdthewideband for strategies - forming ,Antarctica. nuclei at PalmerStation

Atmos. Chem. Phys.,Atmos.

- resolved biologicalresolved andinterfering particles. iscrimination ofbiologicalparticles bycomparing

11:4929 – 320 meters aboveground level cause – 4942. -

Jones, A.K., and Jones, Dingus, B. 13:11987

Aerobiologia (Bologna)., – 12001. Coastal Cloudst.

Antarct. Antarct.

Scotia: Scotia:

J.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Šikoparija, B., Šikoparija, B. Šikoparija, Panić, M.,Jakovetić,D.,and B., (2018a). HowO., Radišić, P. Marko,toprepare a pollen Abramidze,Sikoparija, M., B., Smith, C., Galán, Sesartic,Lohmann, A., and T.(2012). Storelvmo, U., BacteriaECHAM5 inthe Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Pannonian Plain. (2013). M. AmechanismSmith, fortransport long from of Ambrosia distance the pollen reveals characteristics.emission (2018b). Highofairborne temporal above pollen resolution measurements thesource Ambrosia Aerobiologia (Bologna)., calendardaily forforecasting ofAmbrosia, pollenPoaceae? concentrations Betula and (Bologna)., Zemmer, F.(2017). Pollen Vecenaj,Vannini,Velasco J., A., C., Tassan Mazzocco, F., Testoni, Sindt, Smith, Szymanska,Satchwell, M., C., I., J., Šaulienė,Šikoparija, A., Ščevková,J., B., C.,Prentović, RappBenito,M.,Sallin, A.M., Radišić,V., Russo, P., M.,Rachoud, A.,Rodinkova, Pashley,Palamarchuk,S., Oliver,B., G.,Paganoni, C O.,Parati, M., Kofler, Myszkowska,D., Mányoki, V., Magyar,Manzano, G.,Maya J.M., D.,Nowak, M., Ferro,Ianovici,I.,J., E.,Kasprzyk, Hrastovćak, Flori, R., Graber, C., Kmenta, M.J., N.,Józsa, S., Cislaghi, B., G.,Clot, Dahl, Cortonesi,B.,Bella, A.,Della Cristofori, A., Dupuy, Dušička, V., N., K., Bigagli,Bonini,Cerovac,Bucher, M.,Bócsi,Caeiro, V., E., Celenk, S., E.,Chłopek,K., model.

Atmos. Chem. Phys., , Mimić, G., Panić, M., Marko, O., Radišić, P., Pejak Panić, M.,Marko, P., O., G., , Mimić, Radišić, Skjøth, C.A., Alm Kübler, K., Dahl, A., Sommer, J., Grewling, Kübler, C.A.,Alm K., J., L., A.,Sommer, Skjøth, Dahl, and Radišić, P.,

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 3

Accepted3(2):191 Manuscript

Agric. For. Meteorol., Comment citer cedocument: – 199.

34(2):203 - monitoring: between analyst proficiency testing.

12(18):8645

Atmos. Environ., -

Jiménez, M.J., Verardo, M.J., F., Vuillemin, P.,Viola, M.C., andJiménez, Tomičić Žabčić, V.,Udvardy, M.,Vadassy,Ugolotti, O., R., – 217.

180:112 –

8661.

T., Adams

117. 192:13

- Groom, B., Albertini, R., Anelli, P., Bastl, Anelli,B., P., R., Groom, Albertini, – 23.

- Šikoparija, T.,and Pauling, A. ., Pini, A.,Piotrowska,K., ., Pini, - HAM globalHAM climate

Aerobiologia

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Sterflinger, K. G.(2013). and Piñar, Microbial deterioration of art heritageand cultural works of P., Sofiev, M.,Siljamo, Ranta, H., and Rantio Sofiev, M.and K. Bergmann, Izquierdo,Sofiev, M.,Belmonte,Dahl, Gehrig,(2013). M., P. A.,and R.,Smith, J., R., Siljamo, D.J.,Timonen, H.J., Smith, Birmele,Jaffe, D.A., D.W., M.N.,Perry, Griffin, P.D.,and K.D., Ward, D.J.,Ravichandar, Griffin,Smith, Yu,H., S., J.D., Lusby, Tan, D.W., Jain, Q.,Thissen, J., T.,Nicoll, D.J.,Griffin,Smith, D.W., McPeters,P.D., Ward, R.D., B., Beman,Smith, M.,Gravano, D., Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Tilting at windmills? Biometeorol., long and Health Impacts, Airborne pollen transport. App Intercontinental (2013).Roberts, M.S. Bacteriaand Dispersalof Archaea byTranspacific Winds. Front. Microbiol., Aircraftdetected from Results NASA anew inthetroposphere: Jaing, C.,andMcGrath, (2018). inearth’s Airborne bacteria stratosphere J. lower resemble taxa P., 27(4):319 survival thestratosphere in global and dispersal. for implications (REDUnmanned Aerial Systems detecting UAV payload. Shedler, S., Martinez, P., Osorio, A., Lechniak, Choi,Shedler, Sabino, Osorio,K.,Iverson, Martinez, P., A.,S., S., J., L., K., Chan, l. Environ.Microbiol., - range air birch transportrange considera pollen: of Theoretical – 332. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript 50(6):392

9(1752). .

Appl. Microbiol. Biotechnol., Comment citer cedocument: – , in 2015 Workshop in2015 Education, andDevelopmentof onResearch, - 402. C. (2013). Allergenic Pollen. Springer Pollen. (2013).C. Allergenic Dordrecht Heidelberg. , inAllergenic Review Pollen:Release, theProduction, A of Distribution

79(4):1134

and Chen, Y. (2015).and validation Developmentof Chen, a Y. and microbe - UAS), UAS),

– 9.

- IEEE, 258 pp.

Lehtimäki, A.(2006). numerical Towards of forecasting

and (2011). Schuerger, Microbial A.C. 97(22):9637 – 264.

tions and a feasibility andtions a study.

– Bioaerosol Collector (ABC).Bioaerosol

46. Aerobiologia (Bologna).,Aerobiologia

Int. J.

-

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Tobo, Y., Adachi, K., DeMott, P.J., Hill, T.C.J., Hill, P.J., Tobo, Y., Hamilton,D.S.,Mahowald, Adachi,DeMott, N.M., Nagatsuka, K., N., Weber, D.,Thomson, E.S., Ebert, Bingemer, H.G., M.,and Tuomi, Pettersson,J., J. varianceThe distribution ofairborne urban in (2019). and rural environments. microorganisms Tesson, and S.V.M. Šantl Temkiv, Finster, T.Š., Hansen, K., III,Techy,L.,D.G., Schmaleand (2010). Woolsey, Coordinated aerobiological C.A. ofa sampling Li, Jie Yin,X.,Huang,Tang, Ma,Zhong,Li,S., He,Gu, W., Q., H.,and Y., C., M.,Wang,X. R.J., (2018).Swanson, B.E.and J.A. Development Huffman, characterizationof and an single inexpensive and T.C.J., Kreidenweis, K.J., Hill, Suski, DeMott,Levin, P.J., (2018). Miller, A., S.M. E.J.T., Ho S.C., Sullivan, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Ohata, S., Uetake, J., Kondo,Y.,Ohata, and Koike, S.,Uetake, J., M.(2019). Intensification observedemissions. ofnucleation ship ice inocean Environ.Pollut., Air diversity as assesseda stormcloud by of hailstones. Robot., plant pathogen atmosphere inthelower autonomous usingunmanned aerial two vehicles. of temperature. anemophilous pollen(2019).of Water and six species: hygroscopicgrowtheffect adsorption The particle fluorescence spectrometerbioaerosolmonitoring. for 13771. Agricultural h production inclouds. borneAquatic 9(November):1 and Microalgae.

27(3):335 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 ose, C.,Leisner, Kiselev,and A.,Initiation Nenes,A.(2018).ofsecondary T., ice

Accepted Manuscript ofice emissions arvesting

Atmos. Chem. Phys., Atmos. Chem.

247:898 – 343. -

Temkiv,Ice T.(2018).NucleationAeolian in Activityand DispersalSuccess Comment citer cedocument: Atmos. Chem. Phys.,

– 906. B.M., Nielsen, N.W., andB.M.,N.W., Karlson,(2012). Nielsen,The U.G. microbial

19:22 - nucleating particles.

47 18(3):1593 – 2258. – 14.

FEMS Microbiol. Ecol., –

1610. Glacially sourced dust asdust Glacially a potentially sourced

Atmos. Chem. Phys.,Atmos. Chem. Opt. Expres

Sci. Rep., s,

26(3):3646

8(1):1111. 81(3):684 B.C. (2018).

18:13755 – –

95. 3660.

J. F.

- Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Vesala, T., Kljun, N., Rannik, Ü., Rinne, J., Vesala, J., Ü., Rinne, Sogachev, T., Kljun,N.,Rannik, Sabelfeld, A.,Markkanen,Foken,and T., K., T., Vaïtilingom,L., Deguillaume, M., V., Sancelme,Chaumerliac, Vinatier,and Delort, M.,Amato, N., P., Vaitilingom,L., Deguillaume, M., V., Sancelme,Chaumerliac, Vinatier,and Delort, M.,Amato, N., P., United Kreidenweis, Demott, R. (2019). and Uetake,P.J., Tobo,Y.,T.C.J., Misumi, Uji,Y.,Hill, S.M., J., Le Lindeque,Bennett,Turnbull, P.C., P.M., J., A.M.,and (1998). Parks, S.R. Airborne Roux, Lighthart,Tong, inB.and distribution (2000).andsize Y. bacterial annual particleconcentration The Prenni, T.C.J., Tobo, Y.,A.J., Swoboda Hill, Demott, P.J., Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Leclerc, M.Y. (2008). Flux and concentrationLeclerc, Flux M.Y.(2008). footprint budget clouds. in A. budget clouds. in A. https://sustainabledevelopment.un.org/ Microbiol., Seasonal changes ofairborne over communities Toky localmeteorology. and influence of Microbiol, movement ofanthrax spores frominthe EtoshaNational sites Namibia. carcass Park, 32(5):393 the ambient a atmospherearea rural ofthe in Valle Willamette Chem. Phys., Kreidenweis, (2014). Organic S.M. matter significantnucleating particles. sourceofice - - - Nations (2015). M. (2013). impact Potential ofmicrobial activity ontheoxidan M. (2012). impact Potential ofmicrobial activity ontheoxidan –

403. 84(4):667 accepted. 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted Manuscript 14(16):8521

Proc. Natl. Acad. Sci. U.S.A., Proc. Natl. Acad. Sci., Proc. Natl. U.N. SustainableDevelopment Goals. Available at –

Comment citer cedocument: 676. –

8531.

110(2):559 matters formatters ice of origin. agricultural nuclei soil

Nat. Geosci., Nat.

110(2):559 – 564. - Colberg, N.G., Franc,Colberg,and N.G., G.D., modelling: ofthe State art.

12(4):253 – 64. y, Oregon.

t capacitycarbonand organic t capacitycarbonand organic – 258.

Aerosol Sci. Technol.,Aerosol

Environ.

J Appl

Front. Atmos.

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Wang, D.B.,G.B.,Moore, M.D., Beall, X.,Deane, Collins, K.A.,O.S.,Stokes, Ryder, C.M., Wang, Harder,Kelly, B., T.H.,L., Kovarik, D.S.,China,S., Piens, M.,Arey,B.W., S.T., Keiluweit, Waggoner,The(1973). removal Hel P.E.of Von Der(2009). S. LossF., CalculatorBorrmann, Particle Weiden, S.L.,Drewnick, and Diehl,Borrmann,von Blohn, K.,and(2005). S. N.,Mitra, The ability S.K., nucleating ice ofpollen: Vinatier, V.,Joly, Wirgot,L.,Abrantes, N.,M.,Sancelme, M.,Deguillaume, M., and Delort, A.M. Villa, T.F., F.,L.,and F. Salimi, Morton,K.,Morawska,Gonzalez, Development (2016). and Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Sci., drops controlling in mix the Santander,Burrows, Sultana, C.M., S.M., M.V., and Prather, The (2017). and role K.A. of film jet Geosci.,Nat. Laskin, A.(2016).Gilles, M.K.,andgenerated organic Airborne soil particles by pr 63(10):1252 2:479 software the oftheperformance assessment for tool ofaerosol inlet systems. types. III: andPart studies inimmersion contact laboratory New freezing modesincluding more pollen 9323. by isolated microorganisms at the puystation. de Dôme waters(2016). impact Siderophorescloud onatmospheric and potential chemistry: in Production 16(12):2202. validation of system a UAVmeasurements.air based forpollution Pollut.,

114(27):6978

Atmos. Res., 494.

152(3):653

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 –

1255. Accepted9:433 Manuscript –

– 78(3 6983. 666. 437. Comment citer cedocument: –

4):182

ing sea state ofsubmicron aerosol spray particles. – 189.

minthosporium maydisminthosporium by spores wind.

Environ.

Sci. Technol.,

Sensors (Switzerland), Sensors

Atmos. Meas. Tech.,

Proc. Acad. Natl.

Phytopathology,

50(17):9315 ecipitation. -

A new A new

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Wilkinson, D.M.,Koumoutsaris, Mitchell,Wilkinson, E.A.D.,Bey, andI. Modelling S., (2012). theeffect ofsize and Putaud, Ogren,Wiedensohler, W., A.,J.P., (2014). Birmili, Recommendations J. f Gallagher,Whitehead, Robinson, J.D., Dorsey, N.,Gabey, M.W., Coe,H., J.R., McFiggans,G., A.M., Darbyshire, Barbosa,Whitehead, J.D., Crawford, J., I., E.,Brito, Gallagher, R., H.M.J., Stern, M.W., H.,Huang,L.,Wex, Zhang, Becagli, Hung, R., H.,Traversi, W., Moffett, Sheesley, C.E., S., R.J., Werchan,T., Goergen, M.,Sehlinger, F.,Bergmann, and K. T.,DeL.,Weil, Pavarini, Albanese, Filippo,M., C., Donati,Carotenuto, C.,Pindo, M., D., F., Pasqui, K.,Zou,Wei, Z.,yu,Zheng,Li, Y., Shen, F., C. Yao, Y.,Hu, Wu, M.,and M.(2016). Wu, J., Ambient Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Sampling. above South in a rainforest tropical Flynn, M 9743. the central duringto dry from wet thetransition Amazon season. Kaye, Coe,H.,a P., Allan,Artaxo, P.H., J.D., at different Arctic locations. Herenz, F. and P., Stratmann, (2019). varia Annual Löffler,Lubitz,Barrett, H.,Hünerbein,J., Bossi,Linke, R.,Skov, A., O.,Hartmann, T.E.,M., M., sampling device. Microbiome, i L., Barbante, Poto, J., Gabrieli, C.,Sattler, B.,F. D.,Legal Cavalieri, and (2017). Miglietta, 550:751 bioaerosol observed particle and duringsunny haze dynamics mmigrants: Invasionmmigrants: alien microbial of during communities duststorms. winterdesert occurring

– .J., Ryder, J., Nemitz, E.,and Nemitz, Davies, Ryder, and(2010). J., F. dynamics Aerosolfluxes andwithin .J., 759. , inAerosolScience: andApplications, Technology 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

5(1):32.

Accepted Manuscript

Allergo J. Int., Allergo

Comment citer cedocument:

Atmos. Chem. Phys.,

27(1)

- East Asia. :1 – 3.

nd McFiggans,Biogenic(2016).cloud nuclei G.in

Atmos. Chem. Phys.,

1 bility ofice particleconcentrations nucleating – 31. -

C. (2018).C. pollator: a The personal pollen

. days in Beijing.days in

Atmos. Chem. Phys.,

10:9369 – 9382.

Sci. Total Environ.,Sci. Total or Aerosol

16:9727 –

Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Wu, Y.,Calis,A., Wu, Y. Wu, Wright, Hader, McMeeking, T.P., Petters, J.D., M.D. (2014).a G.R.,and High as Relative Humidity Womack, A.M.,Bohannan, biogeography and Biodiversity B.J.M., Green,and J.L. (2010). Ishida, Womack, P.E., A.M.,Artaxo, F.Y., Saleska, Wiedemann, R.C., Mueller, S.R., Bohan K.T., R.,El Wolf, Wirgot, N., Wilson, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Taipei metropolis. Characteristics, ofambient andspatial determinants, variations fungal inthesubtropical levels IceTriggerRelease forNuclei. Widespread of atmosphere. atmosphere rainforest. the over Amazon andB.J.M., Green, Characterization of(2015). inthe active J.L. and communities total fungal environments. ofbacteriaPrévôt, (2017). A.S.H. Contribution the energetic metabolism ofthecloud microbiome. Nature, A marineand (2015). Murray,B.J. ofatmospheric biogenic source ice O.,Yakobi Wurl, J.P.S., Polishchuk,Najera, E.,Rae, Tempr Schiller,M., S., C.L.,Si, J.J., Kilthau, C., Mason,McFiggans, R.H., W.P., J.A., Carslaw,Judd, K.S., Huffman,L.A., G.,Miller, on theaerialmicroorganisms. of dispersal - H., T.W., Ladino, Burrows,L.A., M.N.,Brooks,I.M., Alpert,Browse, Breckels, J., P.A., S.M.,

Chan, C. Vinatier,L.,Deguillaume, V., M.,and Sancelme, (2017). Delort, H2O2 A.M. modulates -

Haddad, Dällenbach,I., Bal Slowik, K.,Bruns, J.G., J., E., Vasilescu, 525(7568):234 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Philos. Trans. R.Soc. BBiol.Sci., Trans. Philos.

Luo,Lutton,Lin, Y.,Y., Chen,Rivenson, C., M., H.C., Zhang, X.,Koydemir, Y., Accepted Manuscript

Atmos. Environ., - C., Rao, C.Y., Lee, Rao,C.Y., C., C.

Atmos. Environ., Comment citer cedocument: – 238. - Hancock, J.D., Abbatt, J.P.D., Aller, J.Y., Bertram, Aller,Hancock, J.Y., Abbatt,A.K., Knopf, J.P.D., D.A., J.D.,

160:97

41(12):2500 - – T., Hsu, H. T., Hsu,

106. Biogeosciences,

J. Biogeogr.,

Aerosol Sci. Technol.,Aerosol

- 365(1558). like particles to PM2.5 aerosol inurban andlike particles rural aerosol toPM2.5 – 2509. -

H., Chiu, Y. H., Chiu, Atmos. Chem. Phys.,

39(1):89

12:6337

- H., and Chao, H.J. (2007). Chao,H.J. H., and – ado, J.V., ado, J.V., T.F.,Whale, Wong, – 97. 6349.

48(11):i - nucleating particles. nucleating

17:14841 tensperger, U., and – v.

– 14851. of the

nan, nan, Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and Ziska, L.H., Makra, L.,Ziska,Harry,L.H.,Bruffaerts, Makra, F., N.,Hendrickx, Saarto, S.K., M.,Coates, A., Thibaudon, L.D., Chen,G., G.,Hudgins,Ziemba, Corr,Diskin, A.J., C.A., Crumeyrolle, Beyersdorf, S.N., C., Lichtveld,I.,Zavala, Ebersviller, J., S.,Carson, J.L., K.,Jaspers, H.E.,Sexton, Walters,G.W., Jeffries, Yao, M.(2018). Repr Yang,Kawaguchi, Y.,Yokobori, J., S., Yamamoto, among Y.,Yokoyama,Matsuki,H.(2015). N.,Matsuki, and Relationships indoor, H., Ichijo,Yamaguchi, Sakotani, A.,Baba,and Nasu,Global T., T., dispersion M.(2012).bacteri N., of Xu, Z.,F., Y.,Shen, Wu, Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, Bonini, M., Oh, J.W., Bonini,Sullivan, M.,Oh,J.W., K., Ford,L.,Bro M., Oliver,A., Vokou, A., Charalampopoulos, G., Guđjohnsen, D.,Heiđmarsson, S., E., Damialis, usingIntegrated a Bioaerosol Wideband Sensor. andB.E. Anderson, ofbioaerosol Airborne (2016). the over Southeast States observations United Martin, Mi R., alternative exposure aerosol studies. invitro methodfor K.G., The and(2014). Gil W. Vizuete, Aerosol Sci., stratospherecollectedusing in2005. by a balloon Matsuzaka,Investigation Y.,Namiki, and M., otherscultivable (2008).microorganisms of inthe outdoor, and personal airbornepollencounts. Japanese cedar cells on Asian dust. engineering: andfuture. present, Past, MicroscopyLearning. and Deep Wang,Z., Ozcan, H.,Göröcs, Label and A.(2018). 2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395

Accepted 119:91 Manuscript koviny, T., Moore, R., Shook, M., Leekoviny, Moore,M., R.,Shook, T., Thornhill,E.L., K.,Winstead, Wisthaler,A., int ofbioaerosol: opportunityint and Abridge forscientific manyresearch fields.

Sci. Rep., – Chen, Q.,Tan,Yao, science,Bioaerosol M.,andM.(2011).and technology, 96. Comment citer cedocument:

2:525.

ACS Photonics,

Yamagami, T., Iijima,Yamagami, T., I.,Izutsu, N., Fuke, H.,Saitoh,Y.,

Aerosol Sci. Technol.,Aerosol Sci. lings Sampler lings Sampler

oks, G.D., Myszkowska,D., Severova,oks, E.,

J. Geophys.J. Res., 5(11):4617

JAXA Res. Dev.Rep., - Free Bioaerosol UsingMobile Sensing -

An electrostaticair asAn sampler an

Chem. Biol.Interact., –

45(11):1337 PLoS One,PLoS 4627.

121(14):850

35 10(6):1 – 1349. – 42.

220:158 6

– 14. 8524.

68.

al J. Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and drivers primarily imply (e.g. differences questions),funding inscientific vs.applied motivation basic separately differencescommunities, tohighlight in public health, by and categorized theprimary community Communityare drivers. drivers listed ofcurrentcontext grand and social scientific challenges, change, i.e.climate landuse change, and differentresearch withbulleted examplescommunities, ofapplication. are These embedded Figure ofoutdoorfield 1:Motivatingbioaerosol measurementsof (circles) topics from the perspective Figures Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, hemisphere: aretrospective data related allergenic changesand pollen abundance inairborne seasonalitythe northern across Knowlton, K.,andA.R.(2019).Gehrig, Beggs, Temperature Crimmins, G.D., R.,Ramón, P.J.,

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript Comment citer cedocument:

analysis.

Lancet Planet. Heal.,Lancet although overlap. The thereisalsosubstantial

3(3):124 – 131.

into the into - Version postprint perspectives in outdoor studies. Aerosol Science and Technology, In press, Published Online:8 October Huffman, J. A.(Auteur de correspondance) (2019). Bioaerosol fieldmeasurements: Challenges and bioaerosols analysed v (colour), different. theweight of each showsa butin case ofinfluence mixture is image Central Similarly, circleseachcaninfluence the eachcommunity some topic have ofthe from of drivers research. by areeac Alltopics influencedmeasure insome visually and represent interaction grand overlap between challenges and ofbioaerosol between fields strateg sourcesgovernmental, ofresults researchand (e.g. agencies, mixture industrial) Šantl-Temkiv, T.(Auteur decorrespondance), Sikoparija, B.,Maki, T.,Carotenuto, F.,Amato, P., Yao, M.,Morris,C. E.,Schnell,R., Jaenicke,R., Pöhlker,C.,DeMott, P.J.,Hill, ies (e.g. peer

2019, 1-79. ,DOI: 10.1080/02786826.2019.1676395 Accepted Manuscript - reviewed publications, reports, proprietary publications, reports, reviewed Dual information). ia optical microscopy. ia Comment citer cedocument:

h of the three grand challengesgrand listed. h ofthe three - dissemination dissemination - directional arrows directional arrows