Microbial Ecology of the Planetary Boundary Layer

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Ecology of the Planetary Boundary Layer atmosphere Review Microbial Ecology of the Planetary Boundary Layer Romie Tignat-Perrier 1,2,* , Aurélien Dommergue 1 , Timothy M. Vogel 2 and Catherine Larose 2 1 Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, 38400 Saint-Martin-d’Hères, France; [email protected] 2 Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, 69007 Lyon, France; [email protected] (T.M.V.); [email protected] (C.L.) * Correspondence: [email protected] Received: 17 October 2020; Accepted: 28 November 2020; Published: 30 November 2020 Abstract: Aerobiology is a growing research area that covers the study of aerosols with a biological origin from the air that surrounds us to space through the different atmospheric layers. Bioaerosols have captured a growing importance in atmospheric process-related fields such as meteorology and atmospheric chemistry. The potential dissemination of pathogens and allergens through the air has raised public health concern and has highlighted the need for a better prediction of airborne microbial composition and dynamics. In this review, we focused on the sources and processes that most likely determine microbial community composition and dynamics in the air that directly surrounds us, the planetary boundary layer. Planetary boundary layer microbial communities are a mix of microbial cells that likely originate mainly from local source ecosystems (as opposed to distant sources). The adverse atmospheric conditions (i.e., UV radiation, desiccation, presence of radicals, etc.) might influence microbial survival and lead to the physical selection of the most resistant cells during aerosolization and/or aerial transport. Future work should further investigate how atmospheric chemicals and physics influence microbial survival and adaptation in order to be able to model the composition of planetary boundary layer microbial communities based on the surrounding landscapes and meteorology. Keywords: airborne microorganisms; atmospheric microbial communities; aerosolisation; bioaerosols; biosphere-atmosphere interactions; long-range transport; aerial transport 1. Introduction Aerobiology is a growing research area that covers the study of aerosols of a biological origin (i.e., bioaerosols) suspended in the atmosphere, from the air that directly surrounds us (both indoors and outdoors) to space by going through the different atmospheric layers (Figure1). Bioaerosols include plant debris, pollen, microorganisms (bacteria, fungi, viruses, protozoans, etc.) as well as biological secretions [1,2] which are mainly emitted by natural (forests, oceans, deserts, etc.) and urbanized Earth surfaces (agricultural fields, waste water treatment plants, cities, etc.) at different emission rates [3,4]. Airborne microorganisms, especially bacteria, archaea, and fungi, are of particular interest as they represent living and potentially metabolically active cells light enough to be lifted high in the atmosphere by upward airflow [5–7]. During extreme meteorological events such as volcano eruptions and dust storms, sand-dust associated microorganisms can be ejected tens of kilometers high in the atmosphere before landing back on the Earth’s surface thousands of kilometers away [8,9]. Microorganisms from the Bacillus and Micrococcus genera are commonly recovered from the stratosphere [6,10,11]. Research on the “high life” [5] intends to evaluate the global dispersion of microorganisms around our planet as well as establish the upper limit of the biosphere boundary Atmosphere 2020, 11, 1296; doi:10.3390/atmos11121296 www.mdpi.com/journal/atmosphere Atmosphere 2020, 11, 1296 2 of 17 and infer the probability of life in the universe [12,13]. Other interests are driving investigations of microorganismsAtmosphere 2020, in11, xthe FOR PEER lowest REVIEW atmospheric layer, the troposphere, that surrounds2 of 17 the Earth’s surface. The role of airborne microorganisms in meteorological processes such as cloud formation and precipitationmicroorganisms [14–17 in ],the atmospheric lowest atmospheric chemistry layer, the [ 14troposphere,,18–21], andthat surrounds air quality the Earth’s [9,22– surface.24] are currently The role of airborne microorganisms in meteorological processes such as cloud formation and motivating multidisciplinary investigations on microbial communities in the troposphere. The capacity precipitation [14–17], atmospheric chemistry [14,18–21], and air quality [9,22–24] are currently of microorganismsmotivating multidisciplinary to be transported investigations through on themicrobial air has communities raised concern in the troposphere. about the The role airborne microorganismscapacity of might microorganisms play in public to be transported health with through the potentialthe air has disseminationraised concern about of plantthe role and human pathogensairborne as well microorganisms as allergens might [9,25 play]. The in public importance health with of airbornethe potential micro-organisms dissemination of plant should and motivate human pathogens as well as allergens [9,25]. The importance of airborne micro-organisms should the inclusion of a biological component into the existing and future observing infrastructure of the motivate the inclusion of a biological component into the existing and future observing infrastructure earth atmosphere.of the earth atmosphere. Figure 1. The different biological niches investigated in aeromicrobiology. These different niches might Figure 1. The different biological niches investigated in aeromicrobiology. These different niches exchange microorganisms and represent different physico-chemical conditions for airborne microorganisms. might exchange microorganisms and represent different physico-chemical conditions for airborne microorganisms. Subject to gravity, aerosols (or particulate matter) as well as bioaerosols become concentrated in the lower partSubject of the to gravity, troposphere aerosols that(or particulate is called matter) the planetary as well as bioaerosols boundary become layer concentrated (Figure1). in Microbial concentrationsthe lower thus part usually of the troposphere show a vertical that is stratificationcalled the planetary from boundary the bottom layer to(Figure the top 1). Microbial of the troposphere concentrations thus usually show a vertical stratification from2 the bottom7 to the top3 of the with averagetroposphere estimated with average bacterial estimated concentrations bacterial concentrations of 9 10 of 9 ×2 102 −10 2 × cells107 cells/m/m 3in in thethe planetary × − ×1 4 3 boundaryplanetary layer (based boundary on sixlayer qPCR-based (based on six studies:qPCR-based [26 studies:–31] and [26–31] 4 and10 4– × 8101 –10 8 × cells104 cells/m/m in3 in the highest × × part of thethe tropospherehighest part of the called troposphere the free-troposphere called the free-troposphere (based (based on three on three qPCR-based qPCR-based studies [32–34]). Yet, microbial[32–34]). concentration Yet, microbial concentration estimations estimations vary between vary between investigations, investigations, which which are are basedbased on on different different sampling strategies. Heterogeneity of methodology in aeromicrobiology is a current issue samplingthat strategies. will be discussed Heterogeneity in a subsequent of methodology section. The troposphere in aeromicrobiology is the most dynamic is a current layer in terms issue of that will be discussedchemistry in a subsequent and physics section. of aerosols The and troposphere harbors complex is the chemical most dynamic reactions layerand meteorological in terms of chemistry and physicsphenomena of aerosols that lead and to the harbors coexistence complex of a gas phas chemicale, liquid reactions phases (i.e., and cloud, meteorological rain, and fog water) phenomena that leadand to the solid coexistence phases (i.e., microscopic of a gas phase,particulate liquid matter, phases sand du (i.e.,st) (Figure cloud, 1). The rain, various and fogatmospheric water) and solid phases represent multiple biological niches that might harbor different microbial communities phases (i.e.,(Figure microscopic 2) and different particulate microbial matter, concentrations sand dust)that might (Figure be due1). Theto significant various differences atmospheric in phases representphysico-chemical multiple biological characteristics niches thatthat mightconstrain harbor either di microbialfferentmicrobial life within communities the niches or (Figurethe 2) and different microbialdestruction of concentrations specific members thatfrom mighttheir sour bece. due Liquid-phase to significant associated diff microbialerences communities in physico-chemical characteristics(i.e., associated that constrain to cloud, eitherrain, and microbial fog water) lifemight within be particularly the niches different or thefrom destruction the microbial of specific communities of the dry phase of the troposphere [35] (Figure 2). Reviews and field investigations that members from their source. Liquid-phase associated microbial communities (i.e., associated to cloud, rain, and fog water) might be particularly different from the microbial communities of the dry phase of the troposphere [35] (Figure2). Reviews and field investigations that are specifically related to cloud-associated microorganisms can be found in [14,36–39]. This review aims to synthesize knowledge and gaps of knowledge regarding
Recommended publications
  • Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry Jamie M
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Outlook Cite This: ACS Cent. Sci. 2018, 4, 1617−1623 http://pubs.acs.org/journal/acscii Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry Jamie M. Schiffer,† Liora E. Mael,† Kimberly A. Prather,*,†,‡ Rommie E. Amaro,*,† and Vicki H. Grassian*,†,‡,§ † § Department of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States ‡ Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States ABSTRACT: Atmospheric aerosols have long been known to alter climate by scattering incoming solar radiation and acting as seeds for cloud formation. These processes have vast implications for controlling the chemistry of our environment and the Earth’s climate. Sea spray aerosol (SSA) is emitted over nearly three-quarters of our planet, yet precisely how SSA impacts Earth’s radiation budget remains highly uncertain. Over the past several decades, studies have shown that SSA particles are far more complex than just sea salt. Ocean biological and physical processes produce individual SSA particles containing a diverse array of biological species including proteins, enzymes, bacteria, and viruses and a diverse array of organic compounds including fatty acids and sugars. Thus, a new frontier of research is emerging at the nexus of chemistry, biology, and atmospheric science. In this Outlook article, we discuss how current and future aerosol chemistry research demands a tight coupling between experimental (observational and laboratory studies) and computational (simulation-based) methods.
    [Show full text]
  • Bioaerosols Exposure Assessment in Mold-Damaged Houses in Normandy, France
    Air Pollution XXVI 313 BIOAEROSOLS EXPOSURE ASSESSMENT IN MOLD-DAMAGED HOUSES IN NORMANDY, FRANCE ANTOINE DELANOE1, VIRGINIE SEGUIN1, VERONIQUE ANDRE1, STEPHANIE GENTE1, PHILIPPE VERITE1, EDWIGE VOTIER1, ESTELLE RICHARD1, VALERIE BOUCHART2, MARGOT DELFOUR2, NATACHA HEUTTE3 & DAVID GARON1 1Normandie Univ., UNICAEN & UNIROUEN, Centre F. Baclesse, ABTE EA4651 - ToxEMAC, Caen & Rouen, France 2LABEO, Caen, France 3Normandie Univ., UNIROUEN, CETAPS EA3832, Rouen, France ABSTRACT The deterioration of houses and indoor air quality caused by moisture and molds is a major health and economic concern in many countries. In 2009, the World Health Organization published a report that highlighted moisture problems in 10 to 50% of European homes. Damp indoor conditions lead to growth of microorganisms which can be released into the air. Airborne molds represent a significant part of these bioaerosols and are able to produce mycotoxins that may cause various adverse effects such as cytotoxicity or genotoxicity. This study follows 3 objectives: 1) characterization of airborne molds and selection of relevant microbiological indicators for monitoring air quality; 2) study of the toxicity of bioaerosols and molds collected from bioaerosols; 3) determination of the effects of climatic factors on fungal growth and mycotoxins production. Bioaerosols were collected in mold-damaged homes selected by local partners and then analyzed for their microbial composition (quantification of molds, endotoxins and glucans) and their toxicological properties (cytotoxicity on lung and skin cells). A questionnaire for assessing the health impact and the habits of residents was also systematically completed. Airborne mold concentrations ranged from 16.7 to 361,000 cfu/m3 and showed a fungal diversity ranging from 4 to 20 species per home.
    [Show full text]
  • Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms
    micromachines Review Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms Meixuan Li, Lei Wang †, Wuzhen Qi, Yuanjie Liu and Jianhan Lin * Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; [email protected] (M.L.); [email protected] (L.W.); [email protected] (W.Q.); [email protected] (Y.L.) * Correspondence: [email protected] † Co-first author: This author contributes equally to the first author. Abstract: As an important route for disease transmission, bioaerosols have received increasing attention. In the past decades, many efforts were made to facilitate the development of bioaerosol monitoring; however, there are still some important challenges in bioaerosol collection and detection. Thus, recent advances in bioaerosol collection (such as sedimentation, filtration, centrifugation, impaction, impingement, and microfluidics) and detection methods (such as culture, molecular biological assay, and immunological assay) were summarized in this review. Besides, the important challenges and perspectives for bioaerosol biosensing were also discussed. Keywords: bioaerosol; collection; biosensing; microfluidic chip; pathogenic microorganisms Citation: Li, M.; Wang, L.; Qi, W.; 1. Introduction Liu, Y.; Lin, J. Challenges and Bioaerosols within the diameter of 100 µm mainly refer to bacteria, viruses, fungi, and Perspectives for Biosensing of some microbial fragments suspended in the air [1–3]. The size of bioaerosols containing Bioaerosol Containing Pathogenic fungi, bacteria, and viruses generally range from 1 to 30 µm, from 0.25 to 8 µm and less than Microorganisms. Micromachines 2021, 0.3 µm, respectively [4,5]. According to the report from the World Health Organization, 12, 798.
    [Show full text]
  • Pesticides and You News from Beyond Pesticides: Protecting Health and the Environment with Science, Policy & Action Volume 30, Number 4 Winter 2010-11
    Pesticides and You News from Beyond Pesticides: Protecting Health and the Environment with Science, Policy & Action Volume 30, Number 4 Winter 2010-11 Got Bed Bugs? Don’t Panic. Bed bugs do not transmit disease and can be controlled without toxic pesticides See inside for a series of articles on bed bugs: Got Bed Bugs Factsheet; Bed Bug Policy; Pesticide Resistance; ChemWatch Factsheet: Propoxur Also in this issue: Keeping Organic Strong: How you can influence organic standards, Beyond Pesticides launches a new webpage to engage the public in decisions to keep organic strong; Teaming with Microbes: The organic gardener’s guide to the soil food web Letter from Washington Managing Bed Bugs. .The Challenge Continues ed bugs are the hot topic of conversation these days. When I In fact, EPA’s charge to protect health and the environment from discussed this in our last issue, we dubbed the situation the “unreasonable adverse effects” under federal pesticide lawFederal ( BBed Bug Frenzy. The frenzy continues, so we devote most of Insecticide, Fungicide and Rodenticide Act, FIFRA) would be best this issue of Pesticides and You to bed bug management that utilizes advanced by rejecting the “reasonableness” of the hazardous preventive practices by keeping the insect out of the places where we effect (even a risk below its current threshold of acceptable risk) live, work and recreate, utilizing heat treatment when necessary. In if there were a method that effectively eliminated that hazard and this context, we draw attention to bed bug resistance to pesticides, a the uncertainties associated with untested effects and chemical biological process that results from the typical pesticide-dependent mixtures.
    [Show full text]
  • Periphyton, Excluding Diatoms and Desmids, from Yap, Caroline Islands
    Micronesica 23(1): 27-40, 1990 Periphyton, Excluding Diatoms and Desmids, from Yap, Caroline Islands CHRISTOPHER s. LOBBAN I The Marine Laboratory, University of Guam, Mangilao, GU 96923, U.S .A. and 2 FAY K. DAILY , WILLIAM A . DAILY\ ROBERT W . HOSHAW\ & MARIA SCHEFTER Abstract-Freshwater habitats of Yap, Federated States of Micronesia, are described, including first algal records. Periphyton and other visible algae were collected chiefly from streams and ponds. Streams were well shaded and lacked algae except in clearings; dominant algae were Schizothrix calcicola and Microcoleus spp. (Cyanophyta) and Cladophora sp. (Chlorophyta). Open ponds were dominated by blue-green algal mats, but some also had abundant Nitella and desmids. Desmids and diatoms were numerous and will be treated in other papers. The species list is short: 12 blue-green algae, 2 red algae, 2 charophytes, 7 filamentous greens, and 5 flagellates. All are new records for Yap and many for Micronesia. No endemic species were found . The freshwater algal flora of the Yap Islands does not show characteristics of the biota of "oceanic" islands. Introduction While there has been considerable study of marine algae in Micronesia (Tsuda & Wray 1977, Tsuda 1978, 1981), freshwater algae have been all but ignored throughout Micronesia, Melanesia, and Polynesia. However, studies of island freshwater algae could contribute to understanding of both tropical limnology and island biology. The distinctiveness of tropical limnology has recently been emphasized by Lewis (1987), who showed that limnological principles derived from studies of temperate lakes cannot be intuitively extrapolated to tropical lakes . The same is also true for transfer of knowledge of streams and ponds.
    [Show full text]
  • Guidelines on Assessment and Remediation of Fungi in Indoor Environments
    New York City Department of Health & Mental Hygiene Bureau of Environmental & Occupational Disease Epidemiology Guidelines on Assessment and Remediation of Fungi in Indoor Environments z Executive Summary z Introduction z Health Issues z Environmental Assessment z Remediation z Hazard Communication z Conclusion z Notes and References z Acknowledgments Executive Summary On May 7, 1993, the New York City Department of Health (DOH), the New York City Human Resources Administration (HRA), and the Mt. Sinai Occupational Health Clinic convened an expert panel on Stachybotrys atra in Indoor Environments. The purpose of the panel was to develop policies for medical and environmental evaluation and intervention to address Stachybotrys atra (now known as Stachybotrys chartarum (SC)) contamination. The original guidelines were developed because of mold growth problems in several New York City buildings in the early 1990's. This document revises and expands the original guidelines to include all fungi (mold). It is based both on a review of the literature regarding fungi and on comments obtained by a review panel consisting of experts in the fields of microbiology and health sciences. It is intended for use by building engineers and management, but is available for general distribution to anyone concerned about fungal contamination, such as environmental consultants, health professionals, or the general public. We are expanding the guidelines to be inclusive of all fungi for several reasons: z Many fungi (e.g., species of Aspergillus, Penicillium, Fusarium, Trichoderma, and Memnoniella) in addition to SC can produce potent mycotoxins, some of which are identical to compounds produced by SC. Mycotoxins are fungal metabolites that have been identified as toxic agents.
    [Show full text]
  • Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
    toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B.
    [Show full text]
  • The Role of Bioaerosols and Indoor Ventilation in Covid-19 Transmission
    THE ROLE OF BIOAEROSOLS AND INDOOR VENTILATION IN COVID-19 TRANSMISSION September 2020 Report from the COVID-19 Expert Panel of the Chief Science Advisor of Canada CONTEXT The Chief Science Advisor Expert Panel on COVID-19 is providing input on the current available evidence regarding indoor air quality and SARS-CoV-2 bioaerosol transmission. The list of participating experts is provided at the end of the document. This report reflects discussions from two meetings held virtually on August 28th and September 4 th , 2020. ISSUE Circumstantial evidence on the role of aerosols in COVID-19 transmission is accumulating and some experts have pointed to aerosol transmission as a potentially significant route for SARS-CoV-2 spread. As workplaces and schools reopen this fall, it is important to review the available scientific evidence on airborne SARS-CoV-2, and to assess whether additional measures need to be considered to minimize the transmission of SARS- CoV-2 in indoor spaces. 0 2 KEY MESSAGES Close and prolonged contact is the most common route of SARS-CoV-2 transmission, which includes short-range inhalable particle transmission. While aerosol transmission over longer distances is possible, there are currently many unknowns about the conditions under which it could occur. Increasing ventilation through building controls (air changes per hour with outside air or filtered internal air) could be a method of mitigating indoor SARS-CoV-2 transmission, but should be part of a layered approach that includes practising effective public health measures to limit exposure such as physical distancing, face masks, surface cleaning, and hand hygiene.
    [Show full text]
  • Sea Spray Aerosol Concentration Modulated by Sea Surface Temperature
    Sea spray aerosol concentration modulated by sea surface temperature Shang Liua,b,1,2,3, Cheng-Cheng Liuc,1, Karl D. Froyda,b, Gregory P. Schilla,b, Daniel M. Murphyb, T. Paul Buid, Jonathan M. Dean-Daye, Bernadett Weinzierlf, Maximilian Dollnerf, Glenn S. Disking, Gao Cheng, and Ru-Shan Gaob aCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; bNOAA Chemical Sciences Laboratory, Boulder, CO 80305; cSchool of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; dAtmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA 94035; eBay Area Environmental Research Institute, Moffett Field, CA 94035; fUniversity of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, 1090 Vienna, Austria; and gChemistry and Dynamics Branch, Science Directorate, NASA Langley Research Center, Hampton, VA 23681 Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved December 29, 2020 (received for review October 1, 2020) Natural aerosols in pristine regions form the baseline used to evaluate other laboratory (12, 21–23) and field measurements (3, 5) the impact of anthropogenic aerosols on climate. Sea spray aerosol suggest that SSA production increases monotonically with water (SSA) is a major component of natural aerosols. Despite its impor- temperature. Furthermore, recent observations in the remote tance, the abundance of SSA is poorly constrained. It is generally Atlantic Ocean shows that increasing SST enhances the modal accepted that wind-driven wave breaking is the principle governing mean diameter of SSA (24). On the other hand, model simula- SSA production. This mechanism alone, however, is insufficient to tions have demonstrated that incorporating SST into SSA source explain the variability of SSA concentration at given wind speed.
    [Show full text]
  • THE SPORES of Alternaria in AEROPLANKTON and ITS RELATIONSHIPS with the METEOROLOGICAL FACTORS
    ACTA AGROBOTANICA Vol. 62 (1): 3–8 2009 THE SPORES OF Alternaria IN AEROPLANKTON AND ITS RELATIONSHIPS WITH THE METEOROLOGICAL FACTORS Agnieszka Grinn-Gofroń Department of Plant Taxonomy and Phytogeography, Faculty of Natural Science University of Szczecin, Wąska 13, 71-415 Szczecin, Poland e-mail: [email protected] Received: 16.02.2009 Abstract individuals. The characteristic features and size of the Alternaria spores are known to be potent aeroallergens spores determine how deep they may penetrate into the and their concentrations in the air are strongly dependent on respiratory tract, whereby the exact site of allergic re- meteorological factors. There are many articles from different sponse can be determined. Spores larger than 10 μm parts of the world about relationships between Alternaria spore in diameter are deposited in the nasopharynx causing count and weather parameters. The aim of the study was to re- rhinitis; spores smaller than 5 μm penetrate to the ale- view all available publications about airborne Alternaria spores voli causing alevolitis. Spores <10 μm in size mostly and compare the results in short, useful form. deposit in the bronchi and bronchioles causing asthma (Lacey et al. 1972). Key words: Alternaria, airborne spores, meteorological fac- One of the most important genus belonging tors, statistical correlation to that group is Alternaria. There is a number of very similar, related species which are usually grouped to- gether as Alternaria. The spores are multi-celled. The INTRODUCTION conidiophores are dark, simple, rather short or elon- gate, typically bearing a simple or branched chain of The form-division Fungi Imperfecti or Deu- conidia.
    [Show full text]
  • Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus As a Model Source of Marine Organic Matter † ‡ † § ‡ ‡ Martin J
    Article Cite This: Environ. Sci. Technol. 2019, 53, 1139−1149 pubs.acs.org/est Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source of Marine Organic Matter † ‡ † § ‡ ‡ Martin J. Wolf, Allison Coe, Lilian A. Dove, Maria A. Zawadowicz, Keven Dooley, Steven J. Biller, || ⊥ # ‡ ∇ † ‡ Yue Zhang, , , Sallie W. Chisholm, , and Daniel J. Cziczo*, , † Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, Massachusetts 02139, United States ‡ Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, Massachusetts 02139, United States § Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States || Department of Environmental Sciences, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, North Carolina 27599, United States ⊥ Aerodyne Research Incorporated, Center for Aerosol and Cloud Chemistry, 45 Manning Road, Billerica, Massachusetts 01821, United States # Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States ∇ Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 68-132, Cambridge, Massachusetts 02139, United States *S Supporting Information ABSTRACT: Sea spray is the largest aerosol source on Earth. Bubble bursting mechanisms at the ocean surface create smaller film burst and larger jet drop particles. This study quantified the effects of particle chemistry on the depositional ice nucleation efficiency of laboratory-generated sea spray aerosols under the cirrus-relevant conditions. Cultures of Prochlorococcus, the most abundant phytoplankton species in the global ocean, were used as a model source of organic sea spray aerosols.
    [Show full text]
  • Sea Spray Aerosol Organic Enrichment, Water Uptake and Surface Tension Effects Luke T
    https://doi.org/10.5194/acp-2019-797 Preprint. Discussion started: 19 September 2019 c Author(s) 2019. CC BY 4.0 License. Sea spray aerosol organic enrichment, water uptake and surface tension effects Luke T. Cravigan1, Marc D. Mallet1,a, Petri Vaattovaara2, Mike J. Harvey3, Cliff S. Law3,4, Robin L. Modini5,b, Lynn M. Russell5, Ed Stelcer6,c, David D. Cohen6, Greg Olsen7, Karl Safi7, Timothy J. Burrell3, and Zoran Ristovski1 1International Laboratory for Air Quality and Health, CPME, Queensland University of Technology, Brisbane, Australia aNow at Defence Science and Technology Group, Melbourne, Australia 2University of Eastern Finland, Kuopio, Finland 3National Institute of Water and Atmospheric Research, Wellington, New Zealand 4Department of Marine Sciences, University of Otago, Dunedin, NZ 5Scripps Institute of Oceanography, University of California, San Diego, La Jolla, California bNow at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland 6Centre for Accelerator Science, NSTLI, Australian Nuclear Science and Technology Organisation, Menai, NSW, Australia cDeceased 7National Institute of Water and Atmospheric Research, Hamilton, New Zealand Correspondence: Zoran Ristovski ([email protected]) Abstract. The aerosol driven radiative effects on marine low-level cloud represent a large uncertainty in climate simulations, in particular over the Southern Ocean, which is also an important region for sea spray aerosol production. Observations of sea spray aerosol organic enrichment and the resulting impact on water uptake over the remote southern hemisphere are scarce, and are therefore the region is under-represented in existing parameterisations. The Surface Ocean Aerosol Production (SOAP) 5 voyage was a 23 day voyage which sampled three phytoplankton blooms in the highly productive water of the Chatham Rise, east of New Zealand.
    [Show full text]