White Fish and Oily Fish Ħut Abjad U Ħut Żejtni

Total Page:16

File Type:pdf, Size:1020Kb

White Fish and Oily Fish Ħut Abjad U Ħut Żejtni WHITE FISH AND OILY FISH ĦUT ABJAD U ĦUT ŻEJTNI WHITE FISH ĦUT ABJAD OILY FISH ĦUT ŻEJTNI Bronze Grouper DOTT TAL-FAXXI Albacore, Long-Fin Tuna** ALONGA Canned Tuna* TONN TAL-BOTT Atlantic Blue-Fin Tuna TONN Common Dentex DEN ĊI Atlantic Bonito PLAMTU Common Sole LINGWATA KOMUNI Atlantic Mackerel KAVALL Dolphin Fish, Dorada LAMPUKA Blue Runner SAWRELLA MPERJALI DENBHA ISWED Dusky Grouper ĊERNA Bogue VOPA European Hake MARLOZZ Eel SALLURA European Sea Bass SPNOTTA European Anchovy IN ĊOVA Flying Fish RONDINELLA KOMUNI European / Mediterranean Barracuda LIZZ Gilthead Sea Bream AWRATA European Pilchard, Sardine SARDINA ĦADRA Halibut ĦALIBATT European Scad SAWRELLA John Dory PIXXI SAN PIETRU Greater Amberjack ĊERVJOLA Plaice BARBUN TAT-TBAJJA Herring ARINGA Poor Cod BAKKALJAW Mediterranean Horse Mackerel SAWRELLA G ĦAJN KBIRA Red Mullet TRILJA TAL- ĦAMA / BLA FAXXI Salmon SALAMUN Red Parrot Fish PAPPAGALL A ĦMAR, MARŻPAN Sprat LA ĊĊA KAĦLA Red / Black Spot Sea Bream PA ĠELLA TAL-GARĠI Swordfish PIXXISPAD Red Scorpion Fish ĊIPPULLAZZA Trout TROTA Red Snapper / Common Pandora PA ĠELLA HAMRA Saddled / Black-Tailed Bream KA ĦLIJA Spotted Flounder LINGWATA TAL-ISKWAMI Turbot BARBUN IMPERJALI White Sea Bream SARGU KOMUNI Wide-Eyed Flounder BARBUN *Fresh Tuna is an oily fish and is high in omega 3 fatty acids. Canned Tuna does not have the same properties. In canned tuna the fatty acids are reduced to levels similar to white fish. So, although canned tuna is a healthy choice for most people, it does not count as oily fish. ** Albacore, Long-Fin Tuna is white in colour. As a result, it is often marketed as 'white meat tuna' or 'chicken of the sea', but it is still an oily fish. © Compiled by Suzanne Piscopo 2010.
Recommended publications
  • European Anchovy Engraulis Encrasicolus (Linnaeus, 1758) From
    European anchovy Engraulis encrasicolus (Linnaeus, 1758) from the Gulf of Annaba, east Algeria: age, growth, spawning period, condition factor and mortality Nadira Benchikh, Assia Diaf, Souad Ladaimia, Fatma Z. Bouhali, Amina Dahel, Abdallah B. Djebar Laboratory of Ecobiology of Marine and Littoral Environments, Department of Marine Science, Faculty of Science, University of Badji Mokhtar, Annaba, Algeria. Corresponding author: N. Benchikh, [email protected] Abstract. Age, growth, spawning period, condition factor and mortality were determined in the European anchovy Engraulis encrasicolus populated the Gulf of Annaba, east Algeria. The age structure of the total population is composed of 59.1% females, 33.5% males and 7.4% undetermined. The size frequency distribution method shows the existence of 4 cohorts with lengths ranging from 8.87 to 16.56 cm with a predominance of age group 3 which represents 69.73% followed by groups 4, 2 and 1 with respectively 19.73, 9.66 and 0.88%. The VONBIT software package allowed us to estimate the growth parameters: asymptotic length L∞ = 17.89 cm, growth rate K = 0.6 year-1 and t0 = -0.008. The theoretical maximum age or tmax is 4.92 years. The height-weight relationship shows that growth for the total population is a major allometry. Spawning takes place in May, with a gonado-somatic index (GSI) of 4.28% and an annual mean condition factor (K) of 0.72. The total mortality (Z), natural mortality (M) and fishing mortality (F) are 2.31, 0.56 and 1.75 year-1 respectively, with exploitation rate E = F/Z is 0.76 is higher than the optimal exploitation level of 0.5.
    [Show full text]
  • Fish and Omega-3: Questions and Answers for Health Professionals
    Fish and omega-3: Questions and answers for health professionals The Heart Foundation recommends all Australians should aim to include 2–3 serves of fish (including oily fish) per week as part of a heart-healthy diet. This provides around 250–500 milligrams (mg) of marine-sourced omega-3s (EPA, DHA) per day. The Heart Foundation also recommends that all Australians should aim for 1 gram of plant-sourced omega-3 (ALA) each day. The Heart Foundation based these recommendations on a scientific review of evidence. For more information, you can access the full text article in the journal Heart, Lung and Circulation, available at www.heartlungcirc.org/article/S1443-9506(15)00167-5/abstract Marine-sourced and plant-sourced omega-3s should be included as part of a heart-healthy diet that includes vegetables and legumes, fruit, wholegrain cereals, lean meats and their alternatives, fish, nuts and seeds, reduced fat milk, cheese and yoghurt, healthier fats and oils, and limits salt. Key messages Fish The Heart Foundation recommends all Australians should aim to include 2–3 serves of fish (including oily fish) per week as part of a heart-healthy diet. This provides around 250–500 mg of marine-sourced omega-3s (EPA, DHA) per day. Because the body cannot produce omega-3s they need to be sourced through diet. The scientific evidence supports fish as the best dietary source of omega-3s and found higher fish intake was consistently associated with lower rates of heart disease (heart failure and sudden cardiac death) and stroke. Fish with the highest levels of omega-3 include salmon, blue-eye trevalla, blue mackerel, herring, canned sardines, canned salmon and some varieties of canned tuna.
    [Show full text]
  • Anchovy Early Life History and Its Relation to Its Surrounding Environment in the Western Mediterranean Basin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC SCI. MAR., 60 (Supl. 2): 155-166 SCIENTIA MARINA 1996 THE EUROPEAN ANCHOVY AND ITS ENVIRONMENT, I. PALOMERA and P. RUBIÉS (eds.) Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin ALBERTO GARCÍA1 and ISABEL PALOMERA2 1Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Aptdo. 285. Fuengirola, 29640 Málaga, Spain. 2Institut de Ciències del Mar. CSIC, Passeig Joan de Borbó, s/n, 08039 Barcelona, Spain. SUMMARY: This paper is a review on the anchovy early life history in the western Mediterranean. There is evidence of latitudinal differences in the duration of the spawning period associated with regional temperature variations. The main spawning areas of the anchovy are located in the Gulf of Lyons and at the shelf surrounding the Ebro river delta. The exten- sions of spawning grounds seem to be linked to the size of the shelf and to the degree of hydrographic enriching-process- es. Punctual studies on egg and larval ecology have been made mainly in the areas of the main spawning grounds, report- ing preliminary results on growth, feeding, condition and mortality estimates. Biomass estimation by the Daily Egg Pro- duction Method (DEPM) has also been applied at the northern region. Key words: Anchovy, Engraulis encrasicolus, eggs and larvae, reproduction, Western Mediterranean. RESUMEN: PRIMEROS ESTADIOS DE DESARROLLO DE LA ANCHOA Y SU RELACIÓN CON EL AMBIENTE EN EL MEDITERRÁNEO OCCI- DENTAL. – Este trabajo es una revisión de los estudios realizados sobre las primeras fases de desarrollo de la anchoa del Mediterráneo occidental.
    [Show full text]
  • Abundance and Distribution of Eggs and Larvae of Anchovy
    Turkish Journal of Zoology Turk J Zool (2013) 37: 773-781 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1212-31 Abundance and distribution of eggs and larvae of anchovy (Engraulis encrasicolus, Linnaeus, 1758) and horse mackerel (Trachurus mediterraneus, Steindachner, 1868) on the coasts of the eastern Black Sea 1, 2 Cemalettin ŞAHİN *, Necati HACIMURTAZAOĞLU 1 Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey 2 Republic of Turkey Ministry of Food, Agriculture, and Livestock, Trabzon, Turkey Received: 27.12.2012 Accepted: 08.07.2013 Published Online: 04.10.2013 Printed: 04.11.2013 Abstract: Sampling for this survey was performed in 5 stations located in the bays of Sürmene and Rize in the eastern Black Sea between April and October 2006. During the sampling, the quantities and distributions of eggs and larvae of anchovies (Engraulis encrasicolus) and horse mackerel (Trachurus mediterraneus) were determined. For horizontal towing carried out from the surface (0–5 m), a plankton net of 50 cm in diameter and 500 µm mesh. The eggs of anchovy and horse mackerel sampled in plankton tows were found to be 438.33 ind./100 m3 and 5.71 ind./100 m3 for horizontal tows. During horizontal tows, the larvae of anchovy and horse mackerel were found to be 8.00 ind./100 m3 and 0.68 ind./100 m3, respectively. During the surveys, a total of 14,535 anchovy eggs, 147 horse mackerel eggs, 256 anchovy larvae, and 7 horse mackerel larvae were sampled. Mortality rates were calculated as 81.18% for anchovy and 37.41% for horse mackerel.
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Geographic Pattern of Sushi Product Misdescription in Italy—A Crosstalk Between Citizen Science and DNA Barcoding
    foods Article Geographic Pattern of Sushi Product Misdescription in Italy—A Crosstalk between Citizen Science and DNA Barcoding Anna Maria Pappalardo *, Alessandra Raffa, Giada Santa Calogero and Venera Ferrito Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; [email protected] (A.R.); [email protected] (G.S.C.); [email protected] (V.F.) * Correspondence: [email protected]; Tel.: + 39-095-730-6051 Abstract: The food safety of sushi and the health of consumers are currently of high concern for food safety agencies across the world due to the globally widespread consumption of these products. The microbiological and toxicological risks derived from the consumption of raw fish and seafood have been highlighted worldwide, while the practice of species substitution in sushi products has attracted the interest of researchers more than food safety agencies. In this study, samples of sushi were processed for species authentication using the Cytochrome Oxidase I (COI) gene as a DNA barcode. The approach of Citizen Science was used to obtain the sushi samples by involving people from eighteen different Italian cities (Northern, Central and Southern Italy). The results indicate that a considerable rate of species substitution exists with a percentage of misdescription ranging from 31.8% in Northern Italy to 40% in Central Italy. The species most affected by replacement was Thunnus thynnus followed by the flying fish roe substituted by eggs of Mallotus villosus. These results Citation: Pappalardo, A.M.; indicate that a standardization of fish market names should be realized at the international level Raffa, A.; Calogero, G.S.; Ferrito, V.
    [Show full text]
  • Determination of Fatty Acids Content in Five Fish Species (C. Latticeps; D. Rostratus; S. Schall; S. Mystus and H. Bebe) from River Niger in Edo State, Nigeria
    Int.J.Curr.Microbiol.App.Sci (2016) 5(3): 289-299 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 3(2016) pp. 289-299 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.503.035 Determination of Fatty Acids Content in Five Fish Species (C. latticeps; D. rostratus; S. schall; S. mystus and H. bebe) from River Niger in Edo State, Nigeria Oyase Anthony1*, Jemerigbe Richard2 and L. Elakhame3 1College of Agricultural Technology, Agenebode, Edo State, Nigeria 2College of Education, Warri, Delta State, Nigeria 3Ambrose Alli University, Department of Zoology, Ekpoma, Edo State, Nigeria *Corresponding author ABSTRACT Five West Africa freshwater fishes namely Clarotes lapticeps; Distichodus K eywo rd s rostratus; Synodontis schall; Schilbe mystus and Hyperopisus bebe from the River Fatty acids Niger, Illushi, in Esan South East Local Government Area of Edo State were content in fish, analysed to determine their fatty acids content. The fish specimens were purchased C. latticeps, at the bank of the river, between June 2006 and January 2007. They were put in an D. rostratus, iced box and immediately transported to the laboratory where routine body S. schall, measurement and analysis were carried out. The result of the proximate S. mystus and compositions showed lipid had a value of 5.49; 6.81; 8.80; 5.06 and 6.27. For C H. bebe . laticeps; D rostratus; S. schall; S. mystus and H. bebe respectively. The fatty acid Article Info composition of the fish lipid as determined by GLC showed abundant stearic acid (47.45%; 47.26%; 45.21%; 47.20% and 45.26%) and palmitic acids (16.50%; Accepted: 17.12%; 16.80%; 47.20% and 45.26%) for C.
    [Show full text]
  • Morphometric Variation Among Anchovy (Engraulis Encrasicholus, L.) Populations from the Bay of Biscay and Iberian Waters
    ICES CM 2004/EE:24 Morphometric variation among anchovy (Engraulis encrasicholus, L.) populations from the Bay of Biscay and Iberian waters Bruno Caneco, Alexandra Silva, Alexandre Morais Abstract For management purposes, the European Atlantic anchovy is separated in two distinct stocks, one distributed in the Bay of Biscay (ICES Sub-Area VIII) and the other occupying mainly the southern part of ICES Division IXa (Bay of Cadiz). However, spatio-temporal irregularities in the dynamics of the Sub-Area VIII stock as well as scant knowledge on the IXa anchovy biology lead ICES to recommend more studies on population dynamics and possible relationships between areas. The present work describes morphometric differences between the two stocks based on the analysis of 10 samples collected within the area from Bay of Biscay to the Bay of Cadiz during two consecutive years (2000 and 2001). Distances on a “Truss Network” were computed from 2D landmark coordinates obtained from digitized images of each individual and corrected from the effect of fish size. Principal Component Analysis was applied to the shape data, as well as a Multidimensional Scaling to the squared Mahalonobis distances (D2) between every pair of sample centroids to visualise clustering. The significance of the computed D2 distances was also statistically tested. Finally, Artificial Neural Networks were applied to assess the robustness of sample groups highlighted in the previous analyses. Results indicate a separation between samples from the Bay of Biscay and those from Division IXa, which is stable over time, as well as a north-south cline along the Portuguese and Bay of Cadiz area.
    [Show full text]
  • A Study on European Anchovy (Engraulis Encrasicolus) Swimbladder with Some Considerations on Conventionally Used Target Strength
    Turkish Journal of Zoology Turk J Zool (2019) 43: 203-214 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1809-21 A study on European anchovy (Engraulis encrasicolus) swimbladder with some considerations on conventionally used target strength Meltem OK*, Ali Cemal GÜCÜ Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey Received: 17.09.2018 Accepted/Published Online: 31.01.2019 Final Version: 01.03.2019 Abstract: Hydroacoustic surveys are one of the prime methods to assess the commercially top-ranked small pelagic stocks. The method relies on acoustic scattering from a fish, which is largely controlled by the size and morphology of the swimbladder. In this study, the changes in the size of the European anchovy swimbladder sampled in the Black Sea were investigated. Ventral cross-sectional area (by photographing the ventrally dissected fish) and volume (by dorsal and lateral X-raying) of the swimbladders were estimated. Comparison of areas showed that the stomach fill and presence of viscera did not have a statistically significant impact on the swimbladder size while the hepatosomatic index showed significant impact. Although the vertical distribution of the anchovy is naturally not very wide due to absence of sufficient oxygen below 100 m, sampling depth showed significant impact on the volume of the swimbladder. However, it was also observed during X-ray imaging that a considerable number of fish (87%) had deflated swimbladders. The reasons for this variability, which may have significant implication on the acoustic estimations and stock assessment, were also discussed. The importance of acclimatization of the fish at surface conditions in studies addressing changes in swimbladder morphometry was underlined.
    [Show full text]
  • The Black Sea Populations of Anchovy*
    SCI. MAR., 60 (Supl. 2): 219-225 SCIENTIA MARINA 1996 THE EUROPEAN ANCHOVY AND ITS ENVIRONMENT, I. PALOMERA and P. RUBIÉS (eds.) The Black Sea populations of anchovy* ALEXANDER K. CHASHCHIN YugNIRO, Azov-Black Sea Fish Stocks Lab., 2 Sverdlova, Kerch, 334500 Crimea, Ukraine. SUMMARY: A complex method of race determination based on the genetic, parasitological and morphological traits of the population was proposed to obtain a reliable scheme of distribution and migrations of the Azov and Black Sea anchovy stocks. The abundance of anchovy was determined using the data from surveys performed with standard trawl and hydroa- coustic equipment. Experiments revealed considerable changes in the Azov anchovy’s gene pool. The main reason was the increasing of water salinity as a result of river in-flow regulation. The excessive industrial catching also promoted the process. As a result, the proportion of hybrids increased. According to the data of the acoustic surveys in the waters of the former USSR in the period from 1980 to 1988, the average biomass of the Black Sea anchovy aggregations was 309,000 tons, and the biomass of the Azov anchovy, 169,000 tons. Since 1988 the situation of these stocks have dramatically changed. A great decrease of the populations has occurred. That has in all evidence been caused by excessive captures of anchovy by the USSR and Turkey. An additional important negative factor were the intrusions of a jellyfish, Mnemiopsis leidyi. The biomass of the anchovy near the Georgian coast increased up to 165,000 tons after the Mnemiopsis outbreak had passed its peak in winter 1991-92.
    [Show full text]
  • Risks and Benefits of Fish Consumption
    Rapport 12 − 2007 Risks and Benefits of Fish Consumption A Risk-Benefit Analysis Based on the Occurrence of Dioxin/PCB, Methyl Mercury, n-3 Fatty Acids and Vitamin D in Fish by W Becker, P O Darnerud and K Petersson-Grawé LIVSMEDELS VERKET NATIONAL FOOD ADMINISTRATION, Sweden � Produktion: Livsmedelsverkets rapportserie är avsedd för publicering Livsmedelsverket, Box 622 av projektrapporter, metodprövningar, utredningar m m. SE-751 26 Uppsala, Sweden I serien ingår även reserapporter och konferensmaterial. Teknisk redaktör: För innehållet svarar författarna själva. M Olausson Rapporterna utges i varierande upplagor och tilltrycks Tryck: i mån av efterfrågan. De kan rekvireras från Livsmedels- Kopieringshuset, Uppsala verkets kundtjänst (tel 018-17 55 06) till självkostnadspris (kopieringskostnad + expeditionsavgift). Uppsala 2008-01-07 Abbreviations/Glossary........................................................................................... 3 Preface..................................................................................................................... 5 Summary ................................................................................................................. 6 Overall conclusions............................................................................................. 6 Consumption of fish in Sweden.......................................................................... 8 Content of nutrients and environmental pollutants ............................................. 8 Quantitative risk-benefit
    [Show full text]