Deposition of Aerosols Onto Upper Ocean and Their Impacts on Marine Biota

Total Page:16

File Type:pdf, Size:1020Kb

Deposition of Aerosols Onto Upper Ocean and Their Impacts on Marine Biota atmosphere Review Deposition of Aerosols onto Upper Ocean and Their Impacts on Marine Biota Andreia Ventura 1,2, Eliana F. C. Simões 1 , Antoine S. Almeida 1 , Roberto Martins 2 , Armando C. Duarte 1 , Susana Loureiro 2 and Regina M. B. O. Duarte 1,* 1 CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (A.V.); [email protected] (E.F.C.S.); [email protected] (A.S.A.); [email protected] (A.C.D.) 2 CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (R.M.); [email protected] (S.L.) * Correspondence: [email protected] Abstract: Atmospheric aerosol deposition (wet and dry) is an important source of macro and micronu- trients (N, P, C, Si, and Fe) to the oceans. Most of the mass flux of air particles is made of fine mineral particles emitted from arid or semi-arid areas (e.g., deserts) and transported over long distances until deposition to the oceans. However, this atmospheric deposition is affected by anthropogenic activities, which heavily impacts the content and composition of aerosol constituents, contributing to the presence of potentially toxic elements (e.g., Cu). Under this scenario, the deposition of natural and anthropogenic aerosols will impact the biogeochemical cycles of nutrients and toxic elements in the ocean, also affecting (positively or negatively) primary productivity and, ultimately, the marine biota. Given the importance of atmospheric aerosol deposition to the oceans, this paper reviews the existing knowledge on the impacts of aerosol deposition on the biogeochemistry of the upper ocean, Citation: Ventura, A.; Simões, E.F.C.; and the different responses of marine biota to natural and anthropogenic aerosol input. Almeida, A.S.; Martins, R.; Duarte, A.C.; Loureiro, S.; Duarte, R.M.B.O. Keywords: Deposition of Aerosols onto Upper atmospheric aerosols; atmospheric deposition; upper ocean; atmospheric nutrients; Ocean and Their Impacts on Marine mineral dust; organic aerosols; marine biota Biota. Atmosphere 2021, 12, 684. https://doi.org/10.3390/ atmos12060684 1. Introduction Academic Editor: Patricia K. Quinn Atmospheric aerosols play an important role in climate because they can modify, both directly and indirectly, the Earth’s radiative balance. Direct effects originate from the Received: 3 April 2021 absorption and/or scattering of solar radiation by atmospheric aerosols, whereas indirect Accepted: 25 May 2021 effects are mainly determined by the influence of aerosols on both cloud droplet and ice Published: 27 May 2021 nuclei activation and the subsequent impact on cloud radiative properties and precipita- tion [1]. Aerosols can be emitted directly into the atmosphere (primary aerosols) from both Publisher’s Note: MDPI stays neutral natural (e.g., sea-salt, mineral aerosols (or dust), and volcanic dust) and anthropogenic with regard to jurisdictional claims in sources (e.g., combustion of fossil fuels, waste and biomass burning, industrial activities, published maps and institutional affil- mining, and agricultural activities), or formed in the atmosphere (secondary aerosols) iations. through gas-to-particle conversion processes (nucleation and condensation) of volatile organic compounds (VOCs) and/or photochemical processing of primary aerosols (atmo- spheric aging) [1,2]. Due to this multitude of sources and formation processes, aerosols vary in composition and size, which grants them an important role in eliciting deleterious effects Copyright: © 2021 by the authors. on air quality and human health. As reviewed by Heal et al. [3], aerosols cover a size range Licensee MDPI, Basel, Switzerland. of more than five orders of magnitude, from a few nanometers (nm) to several micrometers This article is an open access article (µm), which strongly influences particle lifetime in the atmosphere and, hence, the spatial distributed under the terms and extent of their influence. For regulatory purposes, the ambient PM is typically quantified conditions of the Creative Commons using the PM (aerodynamic diameter less than 10 µm) and PM (aerodynamic diameter Attribution (CC BY) license (https:// 10 2.5 µ creativecommons.org/licenses/by/ less than 2.5 m) metrics. In terms of chemical composition, the atmospheric PM consists of 2− − 4.0/). a complex mixture of water-soluble inorganic salts (e.g., sulphate (SO4 ), nitrate (NO3 ), Atmosphere 2021, 12, 684. https://doi.org/10.3390/atmos12060684 https://www.mdpi.com/journal/atmosphere Atmosphere 2021, 12, x FOR PEER REVIEW 2 of 19 Atmosphere 2021, 12, 684 (aerodynamic diameter less than 2.5 μm) metrics. In terms of chemical composition,2 of the 18 atmospheric PM consists of a complex mixture of water-soluble inorganic salts (e.g., sul- phate (SO42−), nitrate (NO3−), and ammonium (NH4+)), insoluble mineral dust (e.g., calcium sulfate (CaSO4) and calcium+ carbonate (CaCO3)), trace elements of both anthropogenic and ammonium (NH4 )), insoluble mineral dust (e.g., calcium sulfate (CaSO4) and calcium (e.g., Pb, Cd, and Ni) and natural (e.g., Si, Al, Fe, Ca, and Mn) origin, biogenic organic carbonate (CaCO3)), trace elements of both anthropogenic (e.g., Pb, Cd, and Ni) and natural (e.g.,particles Si, Al, (e.g., Fe, pollen, Ca, and spores, Mn) origin, and plant biogenic fragments), organic particlesand carbonaceous (e.g., pollen, material spores, (which and plant in- fragments),cludes water and-solu carbonaceousble and water material-insoluble (which organic includes compounds water-soluble plus elemental and water-insoluble carbon) [4–9]. organicOnce compounds in the atmosphere, plus elemental aerosols carbon) can be [4 transported–9]. over long distances and depos- ited ontoOnce terrestrial in the atmosphere, surfaces.aerosols Indeed, canthebe lifetime transported of aerosols over long in the distances atmosphere and deposited is deter- ontomined terrestrial by wet and surfaces. dry deposition, Indeed, the with lifetime wet ofdeposition aerosols inlosses the atmosphere being typically is determined estimated byto wetaccount and dryfor the deposition, majority with of submicron wet deposition particle losses removal being from typically the atmosphere estimated to [10,11] account. Fur- for thethermore, majority wet of deposition submicron is particle eventually removal more from important the atmosphere locally or [10 regionally,,11]. Furthermore, close to wetaer- depositionosols emission is eventually sources, whereas more important dry deposition locally orwould regionally, be more close important to aerosols in emissionareas far sources,from emission whereas sources. dry deposition As far as the would ocean be is more concerned, important atmospheric in areas deposition far from emission of aero- sources.sols can impact As far asthe the biogeochemical ocean is concerned, cycles atmosphericof several important deposition nutrients of aerosols in the can ocean, impact es- thepecially biogeochemical Fe, N, and cyclesP [12] of, thus several enhancing important ocean nutrients productivity in the ocean, (Figure especially 1). For Fe, example, N, and P[eolian12], thusdust enhancingfluxes from ocean arid productivityregions (e.g., (Figure Saharan1). dust) For example, represent eolian a source dust of fluxes nutrients, from aridnamely regions Fe, for (e.g., the Saharan open ocean dust) and represent induce aimportant source of nutrients,changes in namely the microbial Fe, for theplankton open oceancommunity and induce [13]. On important the other changes hand, the in deposition the microbial of anthropogenic plankton community aerosol [components13]. On the other(e.g., hand,toxic elements, the deposition suchof as anthropogenic Cu, or dissociation aerosol products components of strong (e.g., toxic acids elements, (HNO3 suchand asH2SO Cu,4) or and dissociation bases (NH products3)) can potentially of strong exert acids toxic (HNO effects3 and and H2SO change4) and the bases patterns (NH 3of)) ma- can potentiallyrine primary exert production toxic effects [14,15] and.change Atmospheric the patterns deposition of marine can primaryalso contribute production to the [14 oce-,15]. Atmosphericanic dissolved deposition organic and can black also carbon contribute pool, towith the the oceanic latter dissolvedbeing one organicof the most and refrac- black carbontory forms pool, of with organic the lattermatter being in the one ocean, of the thus most potentially refractory formsaffecting of organicregional matter ecosystems in the ocean,and global thus carbon potentially reservoirs affecting [16,17] regional. The ecosystemsimpact of at andmospheric global carbonaerosol reservoirsdeposition [ 16to, 17the]. Theupper impact ocean of is atmospheric certainly very aerosol dynamic, deposition altering to theboth upper the surface ocean is seawater certainly chemistry very dynamic, and alteringmarine biological both the surfaceproduction. seawater It is, therefore, chemistry timely and marine to address biological this topic production. and reflect It on is, therefore,what is known timely about to address the deposition this topic andof ae reflectrosols on onto what the is upper known ocean about and the their deposition impacts of aerosolson marine onto biota. the upper ocean and their impacts on marine biota. Figure 1. Conceptual diagramdiagram illustratingillustrating the the aerosols aerosols sources sources (natural (natural and and anthropogenic), anthropogenic), transport, andtransport, deposition and deposition onto marine
Recommended publications
  • African Dust Carries Microbes Across the Ocean: Are They Affecting Human and Ecosystem Health?
    African Dust Carries Microbes Across the Ocean: Are They Affecting Human and Ecosystem Health? Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion ( eutro­ phication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans­ ported annually at relatively low alti­ tudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in Figure 1. The satellite image, acquired by NASNGoddard Spaceflight Center's SeaWiFS Project and ORB IMAGE collaboration with the NASA/Goddard on February 26, 2000, shows one of the largest Saharan dust storms ever observed by SeaWiFS as it moves out Spaceflight Center, is conducting a study over the eastern Atlantic Ocean. Spain and Portugal are at the upper right Morocco is at the lower right. to identify microbes-bacteria, fungi , viruses-transported across the Atlantic in African soil dust. Each year, mil­ lions of tons of desert dust blow off the west Aftican coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Rorida receives about 50 percent, while tl1e rest may range as far nortl1 as Maine or as far west as Colorado.
    [Show full text]
  • 7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
    7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH).
    [Show full text]
  • Bacterial Production and Respiration
    Organic matter production % 0 Dissolved Particulate 5 > Organic Organic Matter Matter Heterotrophic Bacterial Grazing Growth ~1-10% of net organic DOM does not matter What happens to the 90-99% of sink, but can be production is physically exported to organic matter production that does deep sea not get exported as particles? transported Export •Labile DOC turnover over time scales of hours to days. •Semi-labile DOC turnover on time scales of weeks to months. •Refractory DOC cycles over on time scales ranging from decadal to multi- decadal…perhaps longer •So what consumes labile and semi-labile DOC? How much carbon passes through the microbial loop? Phytoplankton Heterotrophic bacteria ?? Dissolved organic Herbivores ?? matter Higher trophic levels Protozoa (zooplankton, fish, etc.) ?? • Very difficult to directly measure the flux of carbon from primary producers into the microbial loop. – The microbial loop is mostly run on labile (recently produced organic matter) - - very low concentrations (nM) turning over rapidly against a high background pool (µM). – Unclear exactly which types of organic compounds support bacterial growth. Bacterial Production •Step 1: Determine how much carbon is consumed by bacteria for production of new biomass. •Bacterial production (BP) is the rate that bacterial biomass is created. It represents the amount of Heterotrophic material that is transformed from a nonliving pool bacteria (DOC) to a living pool (bacterial biomass). •Mathematically P = µB ?? µ = specific growth rate (time-1) B = bacterial biomass (mg C L-1) P= bacterial production (mg C L-1 d-1) Dissolved organic •Note that µ = P/B matter •Thus, P has units of mg C L-1 d-1 Bacterial production provides one measurement of carbon flow into the microbial loop How doe we measure bacterial production? Production (∆ biomass/time) (mg C L-1 d-1) • 3H-thymidine • 3H or 14C-leucine Note: these are NOT direct measures of biomass production (i.e.
    [Show full text]
  • GLOBAL PRIMARY PRODUCTION and EVAPOTRANSPIRATION by Steven W
    15 GLOBAL PRIMARY PRODUCTION AND EVAPOTRANSPIRATION by Steven W. Running and Maosheng Zhao DATA PRODUCTS Moderate Resolution Imaging Spectroradiometer Terrestrial primary production provides the energy to (MODIS) sensor, these variables are calculated maintain the structure and functions of ecosystems, every eight days in near real time at 1 km resolution. and supplies goods (e.g. food, fuel, wood and fi bre) MODIS GPP, NPP and ET data are available at the for human society. Gross primary production (GPP) EOS data gateway (see link below). is the amount of carbon fi xed by photosynthesis, To correct for contamination in the global and net primary production (NPP) is the amount of refl ectance data due to severe cloudiness or aerosols carbon converted into biomass after subtracting in the near real time products, these datasets are the cost of plant respiration. The water loss through reprocessed at the end of each year to build more exchange of trace gas CO2 by leaf stomata during stable, permanent datasets. These end-of-year photosynthesis plus evaporation from soil and versions of MODIS GPP, NPP and ET are available at plants is evapotranspiration (ET). ET computes the NTSG, University of Montana (see link below). water lost by a land surface, so it is consequently a component of the water balance in a region, and RESULTS FOR 2000–2006 is therefore relevant for drought monitoring and Figure 1 shows the seven-year average MODIS water management, providing an assessment of NPP for vegetated land on earth at 1 km spatial the water potentially available for human society.
    [Show full text]
  • Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
    sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean.
    [Show full text]
  • Article Size Ery Year
    Atmos. Chem. Phys., 18, 1023–1043, 2018 https://doi.org/10.5194/acp-18-1023-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements Adriana Rocha-Lima1,2, J. Vanderlei Martins1,3, Lorraine A. Remer1, Martin Todd4, John H. Marsham5,6, Sebastian Engelstaedter7, Claire L. Ryder8, Carolina Cavazos-Guerra9, Paulo Artaxo10, Peter Colarco2, and Richard Washington7 1University of Maryland, Baltimore County, Baltimore, MD, USA 2Atmospheric Chemistry and Dynamic Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA 3Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA 4Department of Geography, University of Sussex, Sussex, UK 5School of Earth and Environment, University of Leeds, Leeds, UK 6National Center for Atmospheric Science, Leeds, UK 7Climate Research Lab, Oxford University Center for the Environment, Oxford, UK 8Department of Meteorology, University of Reading, Reading, UK 9Institute for Advanced Sustainability Studies, Potsdam, Germany 10Instituto de Física, Universidade de São Paulo, São Paulo, Brazil Correspondence: Adriana Rocha-Lima ([email protected]) Received: 25 March 2017 – Discussion started: 20 June 2017 Revised: 14 November 2017 – Accepted: 7 December 2017 – Published: 26 January 2018 Abstract. Millions of tons of mineral dust are lifted by the atively high mean SSA of 0.995 at 670 nm was observed at wind from arid surfaces and transported around the globe ev- this site. The laboratory results show for the fine particle size ery year. The physical and chemical properties of the min- distributions (particles diameter < 5µm and mode diameter at eral dust are needed to better constrain remote sensing ob- 2–3 µm) in both sites a spectral dependence of the imaginary servations and are of fundamental importance for the under- part of the refractive index Im.m/ with a bow-like shape, standing of dust atmospheric processes.
    [Show full text]
  • Saharan Dust Composition on the Way to the Americas and Potential Impacts on Atmosphere and Biosphere
    1 Saharan dust composition on the way to the Americas and potential impacts on atmosphere and biosphere K. Kandler Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany The Saharan dust plume 2 over the Western Atlantic Ocean K. Kandler: Zum Einfluss des SaharastaubsKarayampudi et auf al., 1999, das doi : Klima10.1175/1520 – -Erkenntnise0477(1999)080 aus dem Saharan Mineral Dust Experiment (SAMUM) The Saharan dust plume 3 on its arrival overover the the Caribbean Western Atlantic Ocean PR daily averaged surface dust concentration (in µg-3), modelled for 23 June 1993 Kallos et al. 2006, doi: 10.1029/2005JD006207 K. Kandler: Zum Einfluss des SaharastaubsKarayampudi et auf al., 1999, das doi : Klima10.1175/1520 – -Erkenntnise0477(1999)080 aus dem Saharan Mineral Dust Experiment (SAMUM) Case study of a dust event 4 from Bodélé depression reaching South America daily lidar scans starting Feb 19, 2008 from Ben-Ami et al. 2010 doi: 10.5194/acp-10-7533-2010 5 Dust composition and its dependencies, interaction and potential impacts DEPOSITION TRANSPORT EMISSION terrestrial solar radiative impact wet processing radiative impact photochemistry cloud impact indirect radiative impact anthropogeneous/ biomass burning aerosol admixture heterogeneous chemistry dry removal sea-salt interaction wet removal terrestrial geological basement ecosystem impact type of weathering surface transport human/plant/animal marine ecosystem impact health issues chemical processing emission meteorology 6 Implications for
    [Show full text]
  • Phytoplankton Primary Production and Its Utilization by the Pelagic Community in the Coastal Zone of the Gulf of Gdahsk (Southern Baltic)
    MARINE ECOLOGY PROGRESS SERIES Vol. 148: 169-186. 1997 Published March 20 Mar Ecol Prog Ser l Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdahsk (southern Baltic) Zbigniew Witekl-*,Stanislaw Ochockil, Modesta ~aciejowska~, Marianna Pastuszakl, Jan ~akonieczny',Beata podgorska2, Janina M. ~ownacka', Tomasz Mackiewiczl, Magdalena Wrzesinska-Kwiecieh' 'Sea Fisheries Institute, ul. Koltqtaja 1, 81-332 Gdynia, Poland 'Marine Biology Center, Polish Academy of Sciences, ul. SW. Wojciecha S,81-347 Gdynia, Poland ABSTRACT In th~sstudy we estimated the amount and fate of phytoplankton primary product~onin the coastal zone of the Gulf of Gdansk, Poland, an area exposed to nutnent enrichment from the Vis- tuld R~verand nearby inunlcipal agglomeration The ~nvestigat~onswere carned out at 2 sites dur~ng 5 months in 1993 (February, April, May, August and October). A prolonged bloom pei-iod occurred in the coastal zone, as compared to the open Gulf and the open sea waters. From Aprll until October most values of gross primary production in the near-surface layer were in the range 100 to 500 mgC m-'' d1 Phytoplankton net exudate release constituted on average 5% of the gross prlmai-y production, total exudate release was estimated to be about 2 times h~gher.Bacterial production in the growth season was relatively low (the mean value ly~ngbetween 5 and 9%of gloss primary production), nevertheless, the microbial community (bactena and protozoans) ut~l~zeda large proportion of primary production (from about 50% in April and May to 16'%, in October).
    [Show full text]
  • Impacts of Sand and Dust Storms on Oceans
    Impacts of Sand and Dust Storms on Oceans A Scientific Environmental Assessment for Policy Makers United Nations Decade of Ocean Science for Sustainable Development © 2020 United Nations Environment Programme ISBN No: 978-92-807-3784-4 Job No: DEW/2282/NA This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from the copyright holder, provided acknowledgement of the source is made. United Nations Environment Programme (UNEP) would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme (UNEP). Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Communications Division, United Nations Environment Programme (UNEP), P. O. Box 30552, Nairobi 00100, Kenya. Disclaimers The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of United Nations Environment Programme (UNEP) concerning the legal status of any country, territory or city or its authorities, or concerning the delimitation of its frontiers or boundaries. For general guidance on matters relating to the use of maps in publications please go to http://www.un.org/Depts/ Cartographic/english/htmain.htm Mention of a commercial company or product in this document does not imply endorsement by the United Nations Environment Programme (UNEP) or the authors.
    [Show full text]
  • Mineralogy and Physicochemical Features of Saharan Dust Wet Deposited in the Iberian Peninsula During an Extreme Red Rain Event
    Atmos. Chem. Phys., 18, 10089–10122, 2018 https://doi.org/10.5194/acp-18-10089-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event Carlos Rodriguez-Navarro, Fulvio di Lorenzo, and Kerstin Elert Dept. Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002 Granada, Spain Correspondence: Carlos Rodriguez-Navarro ([email protected]) Received: 26 February 2018 – Discussion started: 1 March 2018 Revised: 8 June 2018 – Accepted: 15 June 2018 – Published: 16 July 2018 Abstract. The mineralogy and physicochemical features of forcing. The lack of secondary sulfates in aggregates of unal- Saharan dust particles help to identify source areas and deter- tered calcite internally mixed with clays/iron-rich nanoparti- mine their biogeochemical, radiative, and health effects, but cles shows that iron-rich nanoparticles did not form via atmo- their characterization is challenging. Using a multianalytical spheric (acid) processing but were already present in the dust approach, here we characterized with unprecedented level of source soils. Such iron-rich nanoparticles, in addition to iron- detail the mineralogy and physicochemical properties of Sa- containing clay (nano)particles, are the source of the ∼ 20 % haran dust particles massively wet deposited ( ∼ 18 g m−2/ soluble (bioavailable) iron in the studied desert dust. The following an extreme “red rain” event triggered by a north- dust particles are a potential health hazard, specifically the ern African cyclone that affected the southern Iberian Penin- abundant and potentially carcinogenic iron-containing paly- sula during 21–23 February 2017.
    [Show full text]
  • Links to View Saharan Dust Plume
    Links to view Saharan dust plume: https://weather.cod.edu/satrad/?parms=regional-gulf-truecolor-48-1-100- 1&checked=map&colorbar= https://fluid.nccs.nasa.gov/gram/du/29.7x-95.4/?region=nam https://cds-cv.nccs.nasa.gov/GMAO-V/ Messages about the Saharan Air Layer 6-23-20 Q. What is the Saharan Air Layer? A. The Saharan Air Layer is a mass of very dry, dusty air that forms over the Sahara Desert during the late spring, summer, and early fall, and moves over the tropical North Atlantic every three to five days. Saharan Air Layer outbreaks usually occupy a 2 to 2.5-mile-thick layer of the atmosphere with the base starting about 1 mile above the surface. The warmth, dryness, and strong winds associated with the Saharan Air Layer have been shown to suppress tropical cyclone formation and intensification. Saharan Air Layer activity usually ramps up in mid-June, peaks from late June to mid-August, and begins to rapidly subside after mid-August. During the peak period, individual Saharan Air Layer outbreaks reach farther to the west (as far west as Florida, Central America and even Texas) and cover vast areas of the Atlantic (sometimes as large as the lower 48 United States). Q. How does the SAL influence weather and climate? A. The Saharan Air Layer has unique properties of warmth, dry air, and strong winds that can have significant moderating impacts on tropical cyclone formation and intensification. There are three characteristics of these Saharan dust outbreaks that can affect tropical cyclones, tropical disturbances, and the general climatology of the Atlantic tropical atmosphere: Extremely Dry Air: First, The Saharan Air Layer’s dry, dusty air has about 50% less moisture than the typical tropical atmosphere.
    [Show full text]
  • Sinking Jelly-Carbon Unveils Potential Environmental Variability Along a Continental Margin
    Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin Mario Lebrato1,2*, Juan-Carlos Molinero1, Joan E. Cartes3, Domingo Lloris3, Fre´de´ric Me´lin4, Laia Beni- Casadella3 1 Department of Biogeochemistry and Ecology, Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany, 2 Department of Geosciences, Scripps Institution of Oceanography, San Diego, California, United States of America, 3 Institut de Cie`ncies del Mar de Barcelona (CSIC), Barcelona, Spain, 4 Joint Research Centre, Ispra, Italy Abstract Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role.
    [Show full text]