atmosphere Article Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period Panagiotis Kokkalis 1,* , Ourania Soupiona 2, Christina-Anna Papanikolaou 2 , Romanos Foskinis 2, Maria Mylonaki 2, Stavros Solomos 3, Stergios Vratolis 4 , Vasiliki Vasilatou 4, Eleni Kralli 2, Dimitra Anagnou 2 and Alexandros Papayannis 2 1 Physics Department, Kuwait University, Safat 13060, Kuwait 2 Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, 15780 Zografou, Greece;
[email protected] (O.S.);
[email protected] (C.-A.P.);
[email protected] (R.F.);
[email protected] (M.M.);
[email protected] (E.K.);
[email protected] (D.A.);
[email protected] (A.P.) 3 Research Centre for Atmospheric Physics and Climatology, Academy of Athens, 10680 Athens, Greece;
[email protected] 4 Environmental Radioactivity Laboratory (ERL), Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre of Scientific Research “Demokritos”, 15310 Attiki, Greece;
[email protected] (S.V.);
[email protected] (V.V.) * Correspondence:
[email protected] Abstract: We report on a long-lasting (10 days) Saharan dust event affecting large sections of South- Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement Citation: Kokkalis, P.; Soupiona, O.; Papanikolaou, C.-A.; Foskinis, R.; period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties Mylonaki, M.; Solomos, S.; Vratolis, S.; in the absence of important air pollution sources over the European continent.