The Fertilizing Role of African Dust in the Amazon Rainforest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
African Dust Carries Microbes Across the Ocean: Are They Affecting Human and Ecosystem Health?
African Dust Carries Microbes Across the Ocean: Are They Affecting Human and Ecosystem Health? Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion ( eutro phication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans ported annually at relatively low alti tudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in Figure 1. The satellite image, acquired by NASNGoddard Spaceflight Center's SeaWiFS Project and ORB IMAGE collaboration with the NASA/Goddard on February 26, 2000, shows one of the largest Saharan dust storms ever observed by SeaWiFS as it moves out Spaceflight Center, is conducting a study over the eastern Atlantic Ocean. Spain and Portugal are at the upper right Morocco is at the lower right. to identify microbes-bacteria, fungi , viruses-transported across the Atlantic in African soil dust. Each year, mil lions of tons of desert dust blow off the west Aftican coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Rorida receives about 50 percent, while tl1e rest may range as far nortl1 as Maine or as far west as Colorado. -
ENVIRONMENTAL CRIME in the AMAZON BASIN: a Typology for Research, Policy and Action
IGARAPÉ INSTITUTE a think and do tank SP 47 STRATEGIC PAPER 47 PAPER STRATEGIC 2020 AUGUST ENVIRONMENTAL CRIME IN THE AMAZON BASIN: A Typology for Research, Policy and Action Adriana Abdenur, Brodie Ferguson, Ilona Szabo de Carvalho, Melina Risso and Robert Muggah IGARAPÉ INSTITUTE | STRATEGIC PAPER 47 | AUGUST 2020 Index Abstract ���������������������������������������������������������� 1 Introduction ������������������������������������������������������ 2 Threats to the Amazon Basin ���������������������������� 3 Typology of environmental crime ����������������������� 9 Conclusions ���������������������������������������������������� 16 References ����������������������������������������������������� 17 Annex 1: Dimensions of Illegality ��������������������� 17 Cover photo: Wilson Dias/Agência Brasil IGARAPÉ INSTITUTE | STRATEGIC PAPER 47 | AUGUST 2020 ENVIRONMENTAL CRIME IN THE AMAZON BASIN: A Typology for Research, Policy and Action Igarape Institute1 Abstract There is considerable conceptual and practical ambiguity around the dimensions and drivers of environmental crime in the Amazon Basin� Some issues, such as deforestation, have featured prominently in the news media as well as in academic and policy research� Yet, the literature is less developed in relation to other environmental crimes such as land invasion, small-scale clearance for agriculture and ranching, illegal mining, illegal wildlife trafficking, and the construction of informal roads and infrastructure that support these and other unlawful activities� Drawing on -
Article Size Ery Year
Atmos. Chem. Phys., 18, 1023–1043, 2018 https://doi.org/10.5194/acp-18-1023-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements Adriana Rocha-Lima1,2, J. Vanderlei Martins1,3, Lorraine A. Remer1, Martin Todd4, John H. Marsham5,6, Sebastian Engelstaedter7, Claire L. Ryder8, Carolina Cavazos-Guerra9, Paulo Artaxo10, Peter Colarco2, and Richard Washington7 1University of Maryland, Baltimore County, Baltimore, MD, USA 2Atmospheric Chemistry and Dynamic Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA 3Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA 4Department of Geography, University of Sussex, Sussex, UK 5School of Earth and Environment, University of Leeds, Leeds, UK 6National Center for Atmospheric Science, Leeds, UK 7Climate Research Lab, Oxford University Center for the Environment, Oxford, UK 8Department of Meteorology, University of Reading, Reading, UK 9Institute for Advanced Sustainability Studies, Potsdam, Germany 10Instituto de Física, Universidade de São Paulo, São Paulo, Brazil Correspondence: Adriana Rocha-Lima ([email protected]) Received: 25 March 2017 – Discussion started: 20 June 2017 Revised: 14 November 2017 – Accepted: 7 December 2017 – Published: 26 January 2018 Abstract. Millions of tons of mineral dust are lifted by the atively high mean SSA of 0.995 at 670 nm was observed at wind from arid surfaces and transported around the globe ev- this site. The laboratory results show for the fine particle size ery year. The physical and chemical properties of the min- distributions (particles diameter < 5µm and mode diameter at eral dust are needed to better constrain remote sensing ob- 2–3 µm) in both sites a spectral dependence of the imaginary servations and are of fundamental importance for the under- part of the refractive index Im.m/ with a bow-like shape, standing of dust atmospheric processes. -
Saharan Dust Composition on the Way to the Americas and Potential Impacts on Atmosphere and Biosphere
1 Saharan dust composition on the way to the Americas and potential impacts on atmosphere and biosphere K. Kandler Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany The Saharan dust plume 2 over the Western Atlantic Ocean K. Kandler: Zum Einfluss des SaharastaubsKarayampudi et auf al., 1999, das doi : Klima10.1175/1520 – -Erkenntnise0477(1999)080 aus dem Saharan Mineral Dust Experiment (SAMUM) The Saharan dust plume 3 on its arrival overover the the Caribbean Western Atlantic Ocean PR daily averaged surface dust concentration (in µg-3), modelled for 23 June 1993 Kallos et al. 2006, doi: 10.1029/2005JD006207 K. Kandler: Zum Einfluss des SaharastaubsKarayampudi et auf al., 1999, das doi : Klima10.1175/1520 – -Erkenntnise0477(1999)080 aus dem Saharan Mineral Dust Experiment (SAMUM) Case study of a dust event 4 from Bodélé depression reaching South America daily lidar scans starting Feb 19, 2008 from Ben-Ami et al. 2010 doi: 10.5194/acp-10-7533-2010 5 Dust composition and its dependencies, interaction and potential impacts DEPOSITION TRANSPORT EMISSION terrestrial solar radiative impact wet processing radiative impact photochemistry cloud impact indirect radiative impact anthropogeneous/ biomass burning aerosol admixture heterogeneous chemistry dry removal sea-salt interaction wet removal terrestrial geological basement ecosystem impact type of weathering surface transport human/plant/animal marine ecosystem impact health issues chemical processing emission meteorology 6 Implications for -
Inventory Hints at the Future of African Forests
News & views types. This includes climate-driven types of Ecology forest such as the Atlantic coastal evergreen forest in Gabon, which harbours tree spe- cies that prefer cool, dark areas for the dry season. Another grouping, semi-deciduous Inventory hints at the forest, is found along the northern margin of the Central African region studied, and is future of African forests characterized by species that can tolerate higher rates of water loss to the atmosphere Marion Pfeifer & Deo D. Shirima (evapotranspiration). Such spatial variability in the species com- An analysis of six million trees reveals spatial patterns in the position of Central African rainforests has vulnerability of Central African rainforests to climate change many implications. For example, it will affect and human activities. The maps generated could be used to forest vulnerability to climate change, how warming might interact with human pressures guide targeted actions across national boundaries. See p.90 to change biodiversity, and how it might affect the potential of these forests to mitigate the rise in atmospheric carbon. Global warming is Preserving the biodiversity of rainforests, and used approaches such as ecological niche projected to result in a drier, hotter environ- limiting the effects of climate change on them, models, which are mechanistic or correla- ment in Central Africa, and previous research are global challenges that are recognized in tive models that relate field observations of has suggested potentially dangerous impli- international policy agreements and commit- species with environmental variables to cations for the fate of the rainforests there8. ments1. The Central African rainforests are the predict habitat suitability. -
Impacts of Sand and Dust Storms on Oceans
Impacts of Sand and Dust Storms on Oceans A Scientific Environmental Assessment for Policy Makers United Nations Decade of Ocean Science for Sustainable Development © 2020 United Nations Environment Programme ISBN No: 978-92-807-3784-4 Job No: DEW/2282/NA This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from the copyright holder, provided acknowledgement of the source is made. United Nations Environment Programme (UNEP) would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme (UNEP). Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Communications Division, United Nations Environment Programme (UNEP), P. O. Box 30552, Nairobi 00100, Kenya. Disclaimers The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of United Nations Environment Programme (UNEP) concerning the legal status of any country, territory or city or its authorities, or concerning the delimitation of its frontiers or boundaries. For general guidance on matters relating to the use of maps in publications please go to http://www.un.org/Depts/ Cartographic/english/htmain.htm Mention of a commercial company or product in this document does not imply endorsement by the United Nations Environment Programme (UNEP) or the authors. -
Chapter 3 Latin America
MI OPEN BOOK PROJECT World Geography Brian Dufort, Sally Erickson, Matt Hamilton, David Soderquist, Steve Zigray World Geography The text of this book is licensed under a Creative Commons NonCommercial-ShareAlike (CC-BY-NC-SA) license as part of Michigan’s participation in the national #GoOpen movement. This is version 1.4.4 of this resource, released in August 2018. Information on the latest version and updates are available on the project homepage: http://textbooks.wmisd.org/dashboard.html Attribution-NonCommercial-ShareAlike CC BY-NC-SA ii The Michigan Open Book About the Authors - 6th Grade World Geography Project Brian Dufort Shepherd Public Schools Odyssey MS/HS Project Manager: Dave Johnson, Brian is originally from Midland, MI and is a graduate of Northern Michigan University. Wexford-Missaukee Intermediate School He has spent his entire teaching career at Odyssey Middle/High School, an alternative education program in the Shepherd Public School system. In 2001, his environmental District studies class was one of seven programs from the United States and Canada to be chosen as a winner of the Sea World/Busch Gardens Environmental Excellence 6th Grade Team Editor: Amy Salani, Award. Brian is also the Northern Conference director of the Michigan Alternative Ath- Wexford-Missaukee Intermediate School District 6th Grade Content Editor: Carol Egbo Sally Erickson Livonia Public Schools 6th Grade World Geography Authors Cooper Upper Elementary Sally has taught grades 3-6, as well as special education. She has served as Brian Dufort, Shepherd Public Schools a district literacy leader for many years and participated in the Galileo Lead- ership Academy in 2001-03. -
Mineralogy and Physicochemical Features of Saharan Dust Wet Deposited in the Iberian Peninsula During an Extreme Red Rain Event
Atmos. Chem. Phys., 18, 10089–10122, 2018 https://doi.org/10.5194/acp-18-10089-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event Carlos Rodriguez-Navarro, Fulvio di Lorenzo, and Kerstin Elert Dept. Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002 Granada, Spain Correspondence: Carlos Rodriguez-Navarro ([email protected]) Received: 26 February 2018 – Discussion started: 1 March 2018 Revised: 8 June 2018 – Accepted: 15 June 2018 – Published: 16 July 2018 Abstract. The mineralogy and physicochemical features of forcing. The lack of secondary sulfates in aggregates of unal- Saharan dust particles help to identify source areas and deter- tered calcite internally mixed with clays/iron-rich nanoparti- mine their biogeochemical, radiative, and health effects, but cles shows that iron-rich nanoparticles did not form via atmo- their characterization is challenging. Using a multianalytical spheric (acid) processing but were already present in the dust approach, here we characterized with unprecedented level of source soils. Such iron-rich nanoparticles, in addition to iron- detail the mineralogy and physicochemical properties of Sa- containing clay (nano)particles, are the source of the ∼ 20 % haran dust particles massively wet deposited ( ∼ 18 g m−2/ soluble (bioavailable) iron in the studied desert dust. The following an extreme “red rain” event triggered by a north- dust particles are a potential health hazard, specifically the ern African cyclone that affected the southern Iberian Penin- abundant and potentially carcinogenic iron-containing paly- sula during 21–23 February 2017. -
Links to View Saharan Dust Plume
Links to view Saharan dust plume: https://weather.cod.edu/satrad/?parms=regional-gulf-truecolor-48-1-100- 1&checked=map&colorbar= https://fluid.nccs.nasa.gov/gram/du/29.7x-95.4/?region=nam https://cds-cv.nccs.nasa.gov/GMAO-V/ Messages about the Saharan Air Layer 6-23-20 Q. What is the Saharan Air Layer? A. The Saharan Air Layer is a mass of very dry, dusty air that forms over the Sahara Desert during the late spring, summer, and early fall, and moves over the tropical North Atlantic every three to five days. Saharan Air Layer outbreaks usually occupy a 2 to 2.5-mile-thick layer of the atmosphere with the base starting about 1 mile above the surface. The warmth, dryness, and strong winds associated with the Saharan Air Layer have been shown to suppress tropical cyclone formation and intensification. Saharan Air Layer activity usually ramps up in mid-June, peaks from late June to mid-August, and begins to rapidly subside after mid-August. During the peak period, individual Saharan Air Layer outbreaks reach farther to the west (as far west as Florida, Central America and even Texas) and cover vast areas of the Atlantic (sometimes as large as the lower 48 United States). Q. How does the SAL influence weather and climate? A. The Saharan Air Layer has unique properties of warmth, dry air, and strong winds that can have significant moderating impacts on tropical cyclone formation and intensification. There are three characteristics of these Saharan dust outbreaks that can affect tropical cyclones, tropical disturbances, and the general climatology of the Atlantic tropical atmosphere: Extremely Dry Air: First, The Saharan Air Layer’s dry, dusty air has about 50% less moisture than the typical tropical atmosphere. -
An Amazon Without Boundaries This Is How We Go About Saving the World’S Biggest Rainforest
Photo:: Jørgen Braastad Jørgen Photo:: An Amazon without boundaries This is how we go about saving the world’s biggest rainforest Rainforest Foundation Norway has worked together with indigenous people to protect rainforest in the Amazon since 1989. In 2007, this work gained considerable momentum when we received support from the Norwegian Ministry of Foreign Affairs for our ambitious initiative “Rights-based sustainable management of large contiguous territories in the Amazon”. This document (2012) introduces our work and rapid economic growth as an incentive and presents some of its results. First of all, however, economically powerful Brazil as a driver, IIRSA we would like to briefly explain why we wanted to has become a platform for the linking together undertake this initiative. of geographically remote areas and an increase in energy production within the Amazon region. The rainforest is under Roads are being built through areas where travel attack from all sides … was once possible only by river, on foot, by plane or by helicopter. Grand plans of hydroelectric The pressure on the Amazon rainforest has power projects threaten to submerge forest under increased considerably over the last few years. water and displace its inhabitants. This pressure arises to a large extent from the political ambitions of the countries within The development of infrastructure makes it the Amazon region. The Initiative for the possible to exploit natural resources in forest Integration of the Regional Infrastructure in which so far has been difficult to access and has South America (IIRSA) is an illustrative example therefore, to a large extent, been protected from of the policies that threaten the rainforest. -
Latin America Vocabulary 1. Basin- an Area of Land That Is Drained by A
Latin America Vocabulary 1. basin- an area of land that is drained by a river and its tributaries 2. colonization- the action or process of settling among and establishing control over the indigenous people of an area 3. Columbian Exchange- an interchange of plants, animals, diseases, people, and culture between the Western and Eastern hemispheres following the voyages of Columbus 4. communist state- a state with a form of government characterized by single-party rule which claims to follow communism 5. conquest- the act or process of conquering a territory to acquire land and riches 6. conquistador- a Spanish conqueror 7. cultural diffusion- the process of spreading cultural traits from one region to another 8. death rate- the number of deaths per one thousand people per year 9. deforestation- clearing forests to use the area for other purposes 10. demography- the study of human population in terms of numbers, especially birth rates, death rates, ethnic composition, age and gender distributions 11. diversity- being composed of many distinct and different parts 12. ethnic group- a group of people with a common racial, national, tribal, religious, or cultural background 13. Gross Domestic Product (GDP)- the total dollar value of all final goods and services produced in a country during a single year 14. human rights- the rights belonging to all individuals 15. indigenous- living or existing naturally in a particular place 16. infant mortality- number of deaths of children under one year of age per 1000 live births occurring among the population of a geographical area during the same year 17. labor force- all of the members of a population who are able to work 18. -
Chasing Saharan Dust Storms
Chasing Saharan Dust Storms UK-SOLAS Cruise Report RV “Poseidon” Cruise 332 26 January-26 February 2006 Principal Scientist: Eric Achterberg (NOC, Southampton) Poseidon 332 UKSOLAS Cruise Report Document Data Sheet AUTHORS PUBLICATION DATE Micha Rijkenberg, Eric Achterberg and participants of the Poseidon 332 cruise Sep. 2006 TITLE RV Poseidon cruise 332. Chasing Saharan Dust Storms: winter, 26 January - 26 February 2006. REFERENCE UK SOLAS Cruise Report No.1. Chasing Saharan Dust Storms; RV Poseidon cruise 332 ABSTRACT The Poseidon P332 cruise in the Cape Verde Island region was undertaken as part of the UK-SOLAS project (Surface-Ocean / Lower-Atmosphere Study, websites: www.solas-int.org and www.nerc.ac.uk/funding/thematics/solas/) to improve understanding of the atmospheric transport, cycling and deposition of dust and nutrients into the North Atlantic. The cruise was funded by NERC. The objectives of the cruise were: 1) Obtain an improved temporal and spatial estimate of atmospheric dust input to the Tropical N Atlantic. 2) Obtain an improved estimate of the seawater dissolution of N, P and Fe species from aerosol dust. 3) Determine the influence dust exerts on phytoplankton carbon fixation, species diversity and nutrient cycling in surface waters. 4) Determine the impact of atmospheric dust derived micronutrients on microbial community production and species diversity in the surface microlayer and underlying waters. In particular this cruise aimed to combine in-situ aircraft measurements of the atmosphere (DODO, University of Reading, www.met.rdg.ac.uk/~aer/dodo/dodo.html) with in situ sampling of the lower atmosphere and the water column (University of East Anglia, University of Southampton, National Oceanography Centre Southampton and University of Birmingham) around the Cape Verde islands.