The Suppression of Selected Acoustic Noise Frequencies In

Total Page:16

File Type:pdf, Size:1020Kb

The Suppression of Selected Acoustic Noise Frequencies In The Suppression of Selected Acoustic Noise Frequencies in MRI by XINGXIAN SHOU Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Robert W. Brown, Ph.D. Department of Physics CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________XINGXIAN SHOU candidate for the ________________________________degreePh.D. *. (signed)_______________________________________________Robert W. Brown (chair of the committee) ________________________________________________Jeffrey Duerk ________________________________________________David Farrell ________________________________________________Harsh Mathur ________________________________________________Shmaryu Shvartsman ________________________________________________ (date) _______________________July 26, 2010 *We also certify that written approval has been obtained for any proprietary material contained therein. To my parents Jun Shou, Huiqin Bian and my fiancée Shuofen Li ii Table of Contents Chapter 1 An Overview of Magnetic Resonance Imaging ....................................................... 1 1.1 What Is MRI? .................................................................................................................. 1 1.2 Principles of Magnetic Resonance Imaging .................................................................... 2 1.2.1 Spin Precession and Larmor Frequency ................................................................... 2 1.2.2 Rotating Reference Frame and the Bloch Equation ................................................. 7 1.2.3 Signal Detection ..................................................................................................... 14 1.2.4 Phase Encoding and Fourier Transform ................................................................. 19 1.3 MRI Systems ................................................................................................................. 25 1.3.1 Main Magnet........................................................................................................... 26 1.3.2 Gradient Coil System.............................................................................................. 28 1.3.3 Radiofrequency Coil ............................................................................................... 30 Chapter 2 Acoustic Noise and Its Reduction in Magnetic Resonance Imaging ..................... 35 2.1 Acoustic Noise Characterization ................................................................................... 36 2.1.1 Noise Source ........................................................................................................... 37 2.1.2 Noise Pathways ...................................................................................................... 38 2.2 Reduction of Acoustic Noise in MRI ............................................................................ 39 2.2.1 Reduction of Acoustic Noise via its Source ........................................................... 39 2.2.2 Reduction of Acoustic Noise via Transmission ..................................................... 44 2.2.3 Reduction of Acoustic Noise at Human Ear ........................................................... 46 iii 2.2.4 Reduction of Acoustic Noise Using New Sequences ............................................. 47 Chapter 3 String Model of the Acoustic Noise Vibration ....................................................... 56 3.1 Background ................................................................................................................... 56 3.2 String Model: Equations and Solutions ......................................................................... 59 3.3 Solution for Gradients ................................................................................................... 61 3.3.1 Boxcars ................................................................................................................... 61 3.3.2 Trapezoidal Gradient Solution ................................................................................ 67 3.3.3 Follow-up Pulses for Additional Frequency Cancellation ..................................... 71 3.3.4 General Rules for General Pulses ........................................................................... 76 3.3.5 Repeated Pulse: Pulse Trains .................................................................................. 78 Chapter 4 String Simulation.................................................................................................... 83 4.1 String Simulation........................................................................................................... 83 4.1.1 Boxcars ................................................................................................................... 83 4.1.2 Single and Double Trapezoids ................................................................................ 87 4.1.3 Simulation with Damping Effect ............................................................................ 90 4.1.4 Longitudinal and Transverse Gradient Pulse .......................................................... 93 4.1.5 Enhancement of Multiple Pulses ............................................................................ 95 Chapter 5 Experimental Design and Results .......................................................................... 98 5.1 Experimental Design ..................................................................................................... 98 5.1.1 Experiment Setup ................................................................................................... 98 5.2 Experimental Results................................................................................................... 100 iv 5.2.1 Cancellation as A Function of Pulse Timings ...................................................... 100 5.2.2 Cancellations in the Frequency Spectrum ............................................................ 108 5.3 Frequency Response Function .................................................................................... 123 5.4 Experiment with a Vacuum System ............................................................................ 129 Chapter 6 Discussion and Conclusion .................................................................................. 134 6.1 Summary of Results .................................................................................................... 134 6.2 Discussion ................................................................................................................... 136 6.3 Conclusion ................................................................................................................... 142 v List of Tables Table 1.1 List of selected nuclear species with their spins (in units of where the proton has spin ½), their associated magnetic moments in units of a nuclear magnetonmn , gyromagnetic ratios g (in units of MHz/T), and their relative body abundances. .......................................... 4 Table 3.1 Convolution results of boxcars ............................................................................... 78 vi List of Figures Figure 1.1 Clockwise precession of a proton’s spin along an external magnetic field through a negative differential df . ........................................................................................................ 5 p Figure 1.2 An on-resonance spin flip, as viewed in the (a) laboratory frame and (b) 2 rotating frame, ww= 0 and ww10= 0.05 . In MR applications, the frequency w1 would be much smaller in relation to the RF frequency, but the spiraling would then be much too dense to illustrate. ............................................................................................................................. 10 Figure 1.3 An overview of MRI system. The main magnet, the gradient system, and the RF coil system all have their own shielding, which is not indicated in the figure. ...................... 26 Figure 2.1 (A) The sketch shows the Lorentz forces applied on a loop segments carrying current at an external magnetic field B along the z-direction, which is perpendicular to the plane of the loop. (B) The sketch shows an arc-loop setup for x-gradient with balanced Lorentz force over the whole loop. Given the radii of a and c of the arcs, the separation 2b is adjusted to obtain the desired gradient field strength and linearity. ....................................... 41 Figure 3.1 A boxcar gradient pulse with duration t1 . ............................................................. 62 Figure 3.2 (a) The top plot shows a 2-ms duration boxcar gradient killing the string vibration with 500 Hz for t > t = 2 ms . (b) The bottom plot shows a 1 ms top boxcar gradient 1 maximally enhancing the 500 Hz string vibration for t > t = 1 ms . In both plots, the thick 1 vii curve is the vibration induced by the positive Q impulse, the thin curve is the vibration induced by the negative Q impulse, while the dashed curve is the superposition of the two.66 Figure 3.3 A trapezoidal gradient pulse with ramp time (up and down) tr and flat-top time ttop . .......................................................................................................................................... 68 Figure 3.4 A double-trapezoid gradient pulse with ramp time tr , flat-top
Recommended publications
  • Echo-Enabled Harmonics up to the 75Th Order from Precisely Tailored Electron Beams E
    LETTERS PUBLISHED ONLINE: 6 JUNE 2016 | DOI: 10.1038/NPHOTON.2016.101 Echo-enabled harmonics up to the 75th order from precisely tailored electron beams E. Hemsing1*,M.Dunning1,B.Garcia1,C.Hast1, T. Raubenheimer1,G.Stupakov1 and D. Xiang2,3* The production of coherent radiation at ever shorter wave- phase-mixing transformation turns the sinusoidal modulation into lengths has been a long-standing challenge since the invention a filamentary distribution with multiple energy bands (Fig. 1b). 1,2 λ of lasers and the subsequent demonstration of frequency A second laser ( 2 = 2,400 nm) then produces an energy modulation 3 ΔE fi doubling . Modern X-ray free-electron lasers (FELs) use relati- ( 2) in the nely striated beam in the U2 undulator (Fig. 1c). vistic electrons to produce intense X-ray pulses on few-femto- Finally, the beam travels through the C2 chicane where a smaller 4–6 R(2) second timescales . However, the shot noise that seeds the dispersion 56 brings the energy bands upright (Fig. 1d). amplification produces pulses with a noisy spectrum and Projected into the longitudinal space, the echo signal appears as a λ λ h limited temporal coherence. To produce stable transform- series of narrow current peaks (bunching) with separation = 2/ limited pulses, a seeding scheme called echo-enabled harmonic (Fig. 1e), where h is a harmonic of the second laser that determines generation (EEHG) has been proposed7,8, which harnesses the character of the harmonic echo signal. the highly nonlinear phase mixing of the celebrated echo EEHG has been examined experimentally only recently and phenomenon9 to generate coherent harmonic density modu- at modest harmonic orders, starting with the 3rd and 4th lations in the electron beam with conventional lasers.
    [Show full text]
  • Significance of Beating Observed in Earthquake Responses of Buildings
    SIGNIFICANCE OF BEATING OBSERVED IN EARTHQUAKE RESPONSES OF BUILDINGS Mehmet Çelebi1, S. Farid Ghahari2, and Ertuğrul Taciroǧlu2 U.S. Geological Survey1 and University of California, Los Angeles2 Menlo Park, California, USA1 and Los Angeles, California, USA2 Abstract The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking. Introduction In a cursory survey of several textbooks on structural dynamics, it can be seen that beating effects have not been included in their scopes. On the other hand, as more earthquake response records from instrumented buildings became available, it also became evident that the beating phenomenon is common. As modern digital equipment routinely provide recordings of prolonged responses of structures, we were prompted to visit the subject of beating, since such response characteristics may impact the instantaneous and long-term shaking performances of buildings during large or small earthquakes. The main purpose in deploying seismic instruments in buildings (and other structures) is to record their responses during seismic events to facilitate studies understanding and assessing their behavior and performances during and future strong shaking events.
    [Show full text]
  • Echo Eliminator Ceiling & Wall Panels
    Echo Eliminator Ceiling & Wall Panels Echo Eliminator, or Bonded Acoustical Cotton (B.A.C.), is the most cost-effective acoustical absorbing material on the market. It is a high-performance panel manufactured from recycled cotton, and is ideal for noise control applications. Echo Eliminator can easily be installed as acoustical wall panels or hanging baffles. • No VOCs (Volatile Organic Compounds) • No formaldehyde, requires no warning labels • Fungi-, mold-, and mildew-resistant • Class A Fire Rated (Non-flammable per ASTM E-84) ACOUSTICAL SURFACES, INC. CELEBRATING 35 YEARS – SOUNDPROOFING, ACOUSTICS, NOISE & VIBRATION SPECIALISTS! ™ 952.448.5300 • 800.448.0121 • [email protected] • www.acousticalsurfaces.com Echo Eliminator APPLICATIONS Residential, commercial, industrial; schools, restaurants, classrooms, Ceiling & Wall Panels houses of worship, community centers, offices, conference rooms, music rooms, recording studios, theaters, public spaces, medical facilities, audi- toriums, arenas/stadiums, warehouses, manufacturing plants, and more. Acoustics and Expected Performance: Absorbing sound and reducing echo / reverberation can be challeng- ing. Echo Eliminator offers a high Noise Reduction Coefficient (NRC) to reduce the amount of sound within a room. One-inch thick panels are appropriate for areas wher e the main issue is understanding speech. Rooms with more mid-and-low frequency noise, or where music is present, benefit from using two-inch thick panels. SIZES & OPTIONS Standard Size: 24" x 48" (minimum quantities apply, call for details); options: 12" x 12", 24" x 24", 48" x 48", 48" x 96". Note: All sizes are nominal and subject to manufacturing tolerances that may vary +/- 1/8". Thickness/Density: 1" thick / 3 lb. per cubic foot (pcf); 1" thick/6 lb.
    [Show full text]
  • Generation of Attosecond Light Pulses from Gas and Solid State Media
    hv photonics Review Generation of Attosecond Light Pulses from Gas and Solid State Media Stefanos Chatziathanasiou 1, Subhendu Kahaly 2, Emmanouil Skantzakis 1, Giuseppe Sansone 2,3,4, Rodrigo Lopez-Martens 2,5, Stefan Haessler 5, Katalin Varju 2,6, George D. Tsakiris 7, Dimitris Charalambidis 1,2 and Paraskevas Tzallas 1,2,* 1 Foundation for Research and Technology—Hellas, Institute of Electronic Structure & Laser, PO Box 1527, GR71110 Heraklion (Crete), Greece; [email protected] (S.C.); [email protected] (E.S.); [email protected] (D.C.) 2 ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, 6720 Szeged, Hungary; [email protected] (S.K.); [email protected] (G.S.); [email protected] (R.L.-M.); [email protected] (K.V.) 3 Physikalisches Institut der Albert-Ludwigs-Universität, Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg, Germany 4 Dipartimento di Fisica Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy 5 Laboratoire d’Optique Appliquée, ENSTA-ParisTech, Ecole Polytechnique, CNRS UMR 7639, Université Paris-Saclay, 91761 Palaiseau CEDEX, France; [email protected] 6 Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9., 6720 Szeged, Hungary 7 Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany; [email protected] * Correspondence: [email protected] Received: 25 February 2017; Accepted: 27 March 2017; Published: 31 March 2017 Abstract: Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation.
    [Show full text]
  • Can You Reflect Sound? ECHO TUBE
    Exhibit Sheet Can you reflect sound? ECHO TUBE (Type) Ages Topic Time Science 7-14 Sound <10 mins background Skills used Observation, Curiosity Overview for adults Echo Tube is a 15 metre hollow tube. When you shout or make a sound into the tube, it is reflected off the end of the tube and comes back to you. You hear this as an echo. The tube has two flaps within it that you can open or close, changing the length of the tube and the length of time it takes the echo to bounce back to you. What’s the science? Sound travels through the air as sound waves. When these sound waves meet a surface, they are reflected back to where they came from. Sound travels at 330 meters per second in air, which is much slower than light. This means that when light is reflected, we see its reflection instantly but when sound is reflected, we can hear the delay as an echo. The surface that the sound bounces off doesn’t have to be solid. The echo tube is open at both ends. The air pressure inside the tube is higher than the air pressure outside. When the sound wave meets the open end of the tube, this change in pressure causes a wave to be reflected down the tube from the open end. Science in your world Echoes from the open ends of tubes are what make musical instruments such as horns and trumpets work. The sound wave reflects up and down the tube from the open ends.
    [Show full text]
  • Meeting Agenda 20-23 April 2004
    ICES-Working Group on Fisheries Acoustics, Science and Technology Meeting Agenda 20-23 April 2004 DRAFT (8 April 2004) Sea Fisheries Institute (Demel Room) Gdynia, Poland Dr David Demer, USA, Chair April 20th 0900 Opening: host greeting, adoption of agenda, selection of rapporteur FAST Topic 1: Effectiveness of noise-reduced platforms (topic discussion leaders: Alex De Robertis and Ian H. McQuinn) 0930 Ron Mitson (presented by Paul G. Fernandes). “Underwater noise; a brief history of noise in fisheries.” (topic review) 1000 Paul G. Fernandes, Andrew S. Brierley, and F. Armstrong. “Examination of herring at the surface of the North Sea.” 1020 Coffee break 1040 Grazyna Grelowska and Ignacy Gloza. “The acoustic transmissions of a moving ship and a grey seal.” 1100 Pall Reynisson. “Noise reduced vessels; the Icelandic experience.” 1120 Janusz Burczynski. “New Deployment Options for Digital Sonar.” 1140 Martyn Simmons or Steve Goodwin. “TONES - an overview” 1200 Lunch 1330 Ron Mitson (presented by D. Van Holliday). “Does ICES CRR 209 need revision?” 1350 Discussion (topic discussion leaders: Alex De Robertis and Ian H. McQuinn) FAST Topic 2: Using acoustics for evaluating ecosystem structure, with emphasis on species identification (topic discussion leaders: Rudy Kloser and Rolf Korneliussen) 1430 John Horne. “Challenges and trends in acoustic species identification.” (topic review) 1500 Coffee break 1520 Michael Jech and William Michaels. “Multi-frequency analyses of acoustical survey data.” 1540 Paul G. Fernandes. “Determining the quality of a multifrequency identification algorithm.” 1600 A. Mair and Paul G. Fernandes. “Examination of plankton samples in relation to multifrequency echograms.” 1620 Valerie Mazauric and Laurent Berger. “The numerical tool OASIS for echograms simulation.” 1640 Valerie Mazauric and John Dalen.
    [Show full text]
  • Frequency Spectrum Generated by Thyristor Control J
    Electrocomponent Science and Technology (C) Gordon and Breach Science Publishers Ltd. 1974, Vol. 1, pp. 43-49 Printed in Great Britain FREQUENCY SPECTRUM GENERATED BY THYRISTOR CONTROL J. K. HALL and N. C. JONES Loughborough University of Technology, Loughborough, Leics. U.K. (Received October 30, 1973; in final form December 19, 1973) This paper describes the measured harmonics in the load currents of thyristor circuits and shows that with firing angle control the harmonic amplitudes decrease sharply with increasing harmonic frequency, but that they extend to very high harmonic orders of around 6000. The amplitudes of the harmonics are a maximum for a firing delay angle of around 90 Integral cycle control produces only low order harmonics and sub-harmonics. It is also shown that with firing angle control apparently random inter-harmonic noise is present and that the harmonics fall below this noise level at frequencies of approximately 250 KHz for a switched 50 Hz waveform and for the resistive load used. The noise amplitude decreases with increasing frequency and is a maximum with 90 firing delay. INTRODUCTION inductance. 6,7 Literature on the subject tends to assume that noise is due to the high frequency Thyristors are now widely used for control of power harmonics generated by thyristor switch-on and the in both d.c. and a.c. circuits. The advantages of design of suppression components is based on this. relatively small size, low losses and fast switching This investigation has been performed in order to speeds have contributed to the vast growth in establish the validity of this assumption, since it is application since their introduction, when they were believed that there may be a number of perhaps basically a solid-state replacement for mercury-arc separate sources of noise in thyristor circuits.
    [Show full text]
  • The Fusion and Layering of Noise and Tone: Implications for Timbre In
    The Fusion and Layering of Noise and Tone: Implications for Timbre in African Instruments Author(s): Cornelia Fales and Stephen McAdams Source: Leonardo Music Journal, Vol. 4 (1994), pp. 69-77 Published by: The MIT Press Stable URL: http://www.jstor.org/stable/1513183 Accessed: 03/06/2010 10:44 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mitpress. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Leonardo Music Journal. http://www.jstor.org 4 A B S T R A C T SOUNDING THE MIND Since their earliest explora- The Fusion and Layering of Noise tions of Africanmusic, Western re- searchers have noted a fascination on the part of traditionalmusicians and Tone: Implicatons for Timbre for noise as a timbralelement.
    [Show full text]
  • Does Halo Insulation Work As Soundproofing?
    Does Halo Insulation Work as Soundproofing? You’re probably familiar with Halo’s strengths as an insulation product that slashes energy costs by keeping room temperatures at a comfortable level. But what about noise control — can Halo also add comfort by reducing sound transmission? It turns out that it can, although Halo’s performance as a soundproofing material is not as impressive as its array of thermal benefits. This post will talk about the several ways in which Halo’s products can be used to manage sound in a building. Managing Sound Transmission vs. Echo © 2018 Logix Insulated Concrete Forms LTD | 855-350-4256 (HALO) Does Halo Insulation Work as Soundproofing? Soundproofing and sound absorption are 2 distinct processes. Soundproofing means blocking soundwaves from traveling from one space to the next, whereas sound absorption refers to reducing echo. One of the ways to soundproof a space is by decoupling the partition. This practice requires two layers of solid material — gypsum, concrete, or glass — with an air gap between them. The solid layer facing the sound’s origin acts as a conductor to the soundwaves until they reach the air cavity, interrupting the waves’ direct path. This way, the soundwaves are far weaker when they reach the solid layer on the other side of the partition. Unfortunately, decoupling alone is not enough to block soundwaves of all frequencies. That’s why other strategies, like adding mass, damping the partitions, and improving absorption, are crucial to sound control. Absorption, for instance, boosts the soundproofing performance of decoupled walls and improves the sound quality in the space from which the noise is coming.
    [Show full text]
  • Contrast Echo on Evaluation of Cardiac Function – Basic Principles
    Contrast echo and evaluation of cardiac function: basic principles Y. Yotov University Hospital “St.Marina” Varna, Bulgaria EAE Teaching Corse, 5-7 April 2012, Sofia, Bulgaria Contrast in echocardiography: Why? • To delineate the endocardium by cavity opacification. – for assessment of global and regional systolic function, LV volumes and ejection fraction. – LV opacification (LVO) for improved visualisation of structural abnormalities – enhanced visualisation of wall thickening during stress echocardiography • To enhance Doppler flow signals from the cavities and great vessels. • To determine myocardial ischaemia and viability using myocardial perfusion contrast echocardiography (MCE) • Quantification of the coronary flow reserve, which has prognostic value in various disease conditions TISSUE: Incident frequency results in equal and opposite vibration (i.e. LINEAR RESPONSE) MICROBUBBLES: Can only become so small but can expand to a greater degree, resulting in unequal oscillation (i.e. NON-LINEAR RESPONSE) This results in asymmetrical vibrations which produce harmonic frequencies http://www.escardio.org/communities/EAE/contrast-echo-box/ TISSUE HARMONIC IMAGING Principles of Contrast echocardiography Blood appears black on conventional two dimensional echocardiography, not because blood produces no echo, but because the ultrasound scattered by red blood cells at conventional imaging frequencies is very weak—several thousand times weaker than myocardium—and so lies below the displayed dynamic range. Stewart MJ. Heart. 2003; 89(3): 342–348. • It is a remarkable coincidence that gas bubbles of a size required to cross the pulmonary capillary vascular bed (1–5 mm) resonate in a frequency range of 1.5–7 MHz, precisely that used in diagnostic ultrasound. Stewart MJ. Heart. 2003; 89(3): 342–348.
    [Show full text]
  • Characterization of Radio Frequency Echo Using Frequency Sweeping and Power Analysis Amar Zeher, Stéphane Binczak, Jerome Joli
    Characterization of Radio Frequency Echo using frequency sweeping and power analysis Amar Zeher, Stéphane Binczak, Jerome Joli To cite this version: Amar Zeher, Stéphane Binczak, Jerome Joli. Characterization of Radio Frequency Echo using fre- quency sweeping and power analysis. 2014 IEEE REGION 10 TECHNICAL SYMPOSIUM, Apr 2014, Kuala Lumpur, Malaysia. pp.356-360, 10.1109/TENCONSpring.2014.6863057. hal-01463734 HAL Id: hal-01463734 https://hal.archives-ouvertes.fr/hal-01463734 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Characterization of Radio Frequency Echo Using Frequency Sweeping and Power Analysis Amar Zeher Stephane´ Binczak Jerome´ Joli LE2I CNRS UMR 6306, Laboratory LE2I CNRS UMR 6306, SELECOM, Universite´ de Bourgogne, Universite´ de Bourgogne, ZA Alred Sauvy, 9 avenue Alain Savary, BP47870 9 avenue Alain Savary, BP47870 66500 Prades, France. 21078 Dijon cedex, France 21078 Dijon cedex, France Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Coupling between repeater’s antennas, called Radio as Wiener Filter, Linear Prediction [4] or Non-linear Acoustic Frequency Echo (RFE) deteriorates signal quality and compro- Echo Cancellation Based on Volterra Filters [5].
    [Show full text]
  • Fixed Average Spectra of Orchestral Instrument Tones
    Empirical Musicology Review Vol. 5, No. 1, 2010 Fixed Average Spectra of Orchestral Instrument Tones JOSEPH PLAZAK Ohio State University DAVID HURON Ohio State University BENJAMIN WILLIAMS Ohio State University ABSTRACT: The fixed spectrum for an average orchestral instrument tone is presented based on spectral data from the Sandell Harmonic Archive (SHARC). This database contains non-time-variant spectral analyses for 1,338 recorded instrument tones from 23 Western instruments ranging from contrabassoon to piccolo. From these spectral analyses, a grand average was calculated, providing what might be considered an average non-time-variant harmonic spectrum. Each of these tones represents the average of all instruments in the SHARC database capable of producing that pitch. These latter tones better represent common spectral changes with respect to pitch register, and might be regarded as an “average instrument.” Although several caveats apply, an average harmonic tone or instrument may prove useful in analytic and modeling studies. In addition, for perceptual experiments in which non-time-variant stimuli are needed, an average harmonic spectrum may prove to be more ecologically appropriate than common technical waveforms, such as sine tones or pulse trains. Synthesized average tones are available via the web. Submitted 2010 January 22; accepted 2010 February 28. KEYWORDS: timbre, SHARC, controlled stimuli MOST modeling studies and experimental research in music perception involve the presentation or input of auditory stimuli. In many cases, researchers have aimed to employ highly controlled stimuli that allow other researchers to precisely replicate the procedure. For example, many experimental and modeling studies have employed standard technical waveforms, such as sine tones or pulse trains.
    [Show full text]