Characterization of Radio Frequency Echo Using Frequency Sweeping and Power Analysis Amar Zeher, Stéphane Binczak, Jerome Joli

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Radio Frequency Echo Using Frequency Sweeping and Power Analysis Amar Zeher, Stéphane Binczak, Jerome Joli Characterization of Radio Frequency Echo using frequency sweeping and power analysis Amar Zeher, Stéphane Binczak, Jerome Joli To cite this version: Amar Zeher, Stéphane Binczak, Jerome Joli. Characterization of Radio Frequency Echo using fre- quency sweeping and power analysis. 2014 IEEE REGION 10 TECHNICAL SYMPOSIUM, Apr 2014, Kuala Lumpur, Malaysia. pp.356-360, 10.1109/TENCONSpring.2014.6863057. hal-01463734 HAL Id: hal-01463734 https://hal.archives-ouvertes.fr/hal-01463734 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Characterization of Radio Frequency Echo Using Frequency Sweeping and Power Analysis Amar Zeher Stephane´ Binczak Jerome´ Joli LE2I CNRS UMR 6306, Laboratory LE2I CNRS UMR 6306, SELECOM, Universite´ de Bourgogne, Universite´ de Bourgogne, ZA Alred Sauvy, 9 avenue Alain Savary, BP47870 9 avenue Alain Savary, BP47870 66500 Prades, France. 21078 Dijon cedex, France 21078 Dijon cedex, France Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Coupling between repeater’s antennas, called Radio as Wiener Filter, Linear Prediction [4] or Non-linear Acoustic Frequency Echo (RFE) deteriorates signal quality and compro- Echo Cancellation Based on Volterra Filters [5]. Some of these mises system stability. If the channel insulation is insufficient, techniques are applied to radiocommunication. Depending on the power in the closed-loop raises with time according to the gain margin value. Multiple methods of echo cancellation exists. the nature of concerning signal, the efficiency of these methods Generally, these techniques are based on correlation calculation could be called into question. Indeed, modulation constraints and adaptive filtering. However, their efficiency and algorithm’s as guard interval, Error Vector Magnitude (EVM), Modulation convergence speed are calling into question under signal’s mod- Error Ratio (MER) have to be satisfied when filtering. ulation and real-time constraints, specially with narrow band signals having frequency hopping as GSM or TETRA. This paper Narrow band signal (NBS) with frequency hopping, as in describes a real time method of RFE detection and estimation GSM or TETRA standards, is one major difficulty when using independently of the nature of the incoming signal. It is based on linear filtering because of the convergence rate of adaptive frequency sweeping and analysis of power ripples, and it can be algorithms which are generally too slow when compared with implemented on FPGA for real-time purpose. It gives an accurate the hopping frequency rate and randomness [6]. Under these estimation of corresponding gain margin and loop delay. constraints, linear filtering increases transmission errors and Index Terms—Radio frequency echo, gain margin, narrow band, frequency hopping. creates an Adjacent-Channel Interference (ACI). Radiofrequency signal can also be Wide Band Signal I. INTRODUCTION (WBS), which occupies a range of frequencies such as DVB- T/H (8 MHz in France) and CDMA. NBS has a narrower In regions where reception quality is poor, it is usual to band width, generally less than 1 MHz as GSM (200 KHz) locate repeaters which are deployed to expand and enhance and TETRA standards (25 KHz). Part (a) of Fig. 1 shows an coverage region of Base Station Transceiver (BTS) cost- example of WBS and NBS displayed in the frequency domain effectively, without the need for modulation and demodulation without RFE. setups. A repeater receives signals from the main transmitter Ripples indicates the presence of a RFE and, as illustrated in which is generally BTS on the selected carriers ; then, it re- part (b) of the Fig. 1, they are only distinguishable in WBS and transmits them to receivers which are generally Mobile Station the noise floor parts. With noise floor or wide band, it is easily (MS) such as cell phones, Personal Digital Assistant (PDA) detectable and voidable by using linear adaptive algorithms. and communication terminals. The receiving signal is filtered, amplified and re-transmitted; if the repeater retransmits signals Nevertheless, the narrower the band is, the more difficult in the same frequencies, it is called Iso-Frequency Repeater these solutions can be used effectively. For example, adap- (IFR), otherwise, it is called Transposing Frequency Repeater tive filtering using Wiener solution based on the correlation (TFR). Deploying TFR to extend coverage area is robust, but it calculation is a good solution when used with DVB-T or is expensive. Contrariwise, IFR are cost-effectively and simple CDMA standard, but it cannot be used when GSM signal to set up. Nevertheless, with IFR, if the channel insulation is with frequency hopping is used, because of the ACI and the insufficient, a part of the transmitted signal could be picked unwanted spurious which are created. up by the receiving antenna of the repeater, leading to RFE The transmitted signal can reach the receiving antenna by creation.This phenomenon is well known as the issue was one or more paths (it is then called multipath), depending on first posed in acoustics field [1]. When using repeaters, Echo the topology of the location. In this paper, RFE phenomenon Cancellation is one method of compensating for external Ra- is modeled using only the direct path. It is also supposed in dio Frequency (RF) coupling between antennas [2]. The echo the simulation part that the repeater includes three functions signals must be reduced to an allowable level in order to avoid which are a controllable amplification, delay and Additive problems with distortion and oscillation [3]. Many techniques Gaussian White Noise (AWGN). The channel parameters are exist for cancelling echoes, notably in the area of acoustics chosen to be a constant delay and variable attenuation (other System (1) can be expressed such as y(t) = g · i(t − τ0) + ga · y(t − τ0 − τ1): (2) Eq. (2) is a recursive equation, which can be expressed by y(t); y(t − (τ0 + τ1)); s(t − 2(τ0 + τ1)); : : : ; s(t − l(τ0 − τ1)); s(t − (l + 1)(τ0 − τ1)); s(t − (l + 2)(τ0 − τ1)), while l is the number of secondary echoes. Introducing g · a = δ; τ0 + τ1 = τ; eq. (2) can be expressed by the following sum y(t) = gi(t − τ0)+ l+1 h X n i g δ i(t − nτ − τ0 + (3) n=1 Fig. 1. a) Spectrum of wide band signal (10 MHz centered on 35 MHz) δl+2y(t − (l + 2)τ) ; and narrow band (200 KHz centered on 45 MHz). b) Echo is given for gain margin ∆ = 5 dB and loop delay τ = 0:5 µs. which can be reduced to its simplest expression, so that l+1 h X i y(t) = g δnit − (nτ + τ ) + δl+2yt − (l + 2)τ: (4) parameters as fading are therefore not taken into account) and 0 n=0 the propagation delay in wires is supposed negligible. The article is organized as follows: In section II, mathe- Using Fourier Transformation, eq. (4) leads to matical equations modeling the system are presented and l+1 l+2 −j!(l+2)τ X n −j!(nτ+τ ) the relationships between the power in the repeater and the Y(!) = δ e Y(!) + gI(!) δ e 0 ; system parameters as the repeater gain, repeater delay, channel n=0 (5) attention are stated. These theoretical results are consistent where Y(!) and I(!) are the Fourier Transformation of y(t) with findings from the simulation presented in section III. and i(t), respectively. The transfert function is defined as Simulink tool is used to realize the closed-loop system and Y(!) results are analyzed using Matlab. Finally, as a conclusion, H(!) = : (6) the main results are summarized and discussed. I(!) From eq. (5), H(!) can be written such as II. THEORY l+1 X Taking into account the set of assumptions previously g δne−j!(nτ+τ0) mentioned, a system composed of a repeater, two antennas H(!) = n=0 : (7) and a channel is simplified, as shown in Fig. 2. The closed 1 − δl+2e−j!τ(l+2) When the repeater steady state is reached, l tends towards infinity. Let H1 be this limit. Then, from equation (7), the system transfer function leads to ej! (τ+τ0) H (!) = g : (8) 1 −δ + ej! τ Thus, the power p of the system can be written so that Fig. 2. Radiofrequency coupling, considering only the direct echo path. g2 p(!) = jH (!)j2 = : (9) 1 δ2 − 2 δ cos (! τ) + 1 loop of the system is expressed by the following equations : Let us define in dB the following parameters : s(t) = i(t) + e(t) ; Power : P = 10 log(p) e(t) = ay(t − τ1) ; (1) Gain : G = 20 log(g) (10) y(t) = gs(t − τ0) ; Attenuation : A = 20 log(a) where i(t) is the incident signal, y(t), the transmitted signal Gain margin : ∆ = 20 log(δ) = G + A: and e(t), the feedback signal (echo). g and τ0 are respectively Using these notations with eq. (9), the power in dB is given the repeater gain and the repeater delay, while a and τ1 are by respectively the channel attenuation and the channel delay. P (!) = G − 10 log δ2 − 2δ cos (! τ) + 1 : (11) In practice, most of the variables are expressed in dB, thus Nevertheless, a positive gain margin without AGC or RFE can- cellation system cannot exist in practice, because electronics P (!) = G − 10 log 10∆=10 − 2 · 10∆=20 cos (! τ) + 1: (12) circuits may be damaged before reaching zero gain margin.
Recommended publications
  • Significance of Beating Observed in Earthquake Responses of Buildings
    SIGNIFICANCE OF BEATING OBSERVED IN EARTHQUAKE RESPONSES OF BUILDINGS Mehmet Çelebi1, S. Farid Ghahari2, and Ertuğrul Taciroǧlu2 U.S. Geological Survey1 and University of California, Los Angeles2 Menlo Park, California, USA1 and Los Angeles, California, USA2 Abstract The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking. Introduction In a cursory survey of several textbooks on structural dynamics, it can be seen that beating effects have not been included in their scopes. On the other hand, as more earthquake response records from instrumented buildings became available, it also became evident that the beating phenomenon is common. As modern digital equipment routinely provide recordings of prolonged responses of structures, we were prompted to visit the subject of beating, since such response characteristics may impact the instantaneous and long-term shaking performances of buildings during large or small earthquakes. The main purpose in deploying seismic instruments in buildings (and other structures) is to record their responses during seismic events to facilitate studies understanding and assessing their behavior and performances during and future strong shaking events.
    [Show full text]
  • Echo Eliminator Ceiling & Wall Panels
    Echo Eliminator Ceiling & Wall Panels Echo Eliminator, or Bonded Acoustical Cotton (B.A.C.), is the most cost-effective acoustical absorbing material on the market. It is a high-performance panel manufactured from recycled cotton, and is ideal for noise control applications. Echo Eliminator can easily be installed as acoustical wall panels or hanging baffles. • No VOCs (Volatile Organic Compounds) • No formaldehyde, requires no warning labels • Fungi-, mold-, and mildew-resistant • Class A Fire Rated (Non-flammable per ASTM E-84) ACOUSTICAL SURFACES, INC. CELEBRATING 35 YEARS – SOUNDPROOFING, ACOUSTICS, NOISE & VIBRATION SPECIALISTS! ™ 952.448.5300 • 800.448.0121 • [email protected] • www.acousticalsurfaces.com Echo Eliminator APPLICATIONS Residential, commercial, industrial; schools, restaurants, classrooms, Ceiling & Wall Panels houses of worship, community centers, offices, conference rooms, music rooms, recording studios, theaters, public spaces, medical facilities, audi- toriums, arenas/stadiums, warehouses, manufacturing plants, and more. Acoustics and Expected Performance: Absorbing sound and reducing echo / reverberation can be challeng- ing. Echo Eliminator offers a high Noise Reduction Coefficient (NRC) to reduce the amount of sound within a room. One-inch thick panels are appropriate for areas wher e the main issue is understanding speech. Rooms with more mid-and-low frequency noise, or where music is present, benefit from using two-inch thick panels. SIZES & OPTIONS Standard Size: 24" x 48" (minimum quantities apply, call for details); options: 12" x 12", 24" x 24", 48" x 48", 48" x 96". Note: All sizes are nominal and subject to manufacturing tolerances that may vary +/- 1/8". Thickness/Density: 1" thick / 3 lb. per cubic foot (pcf); 1" thick/6 lb.
    [Show full text]
  • Can You Reflect Sound? ECHO TUBE
    Exhibit Sheet Can you reflect sound? ECHO TUBE (Type) Ages Topic Time Science 7-14 Sound <10 mins background Skills used Observation, Curiosity Overview for adults Echo Tube is a 15 metre hollow tube. When you shout or make a sound into the tube, it is reflected off the end of the tube and comes back to you. You hear this as an echo. The tube has two flaps within it that you can open or close, changing the length of the tube and the length of time it takes the echo to bounce back to you. What’s the science? Sound travels through the air as sound waves. When these sound waves meet a surface, they are reflected back to where they came from. Sound travels at 330 meters per second in air, which is much slower than light. This means that when light is reflected, we see its reflection instantly but when sound is reflected, we can hear the delay as an echo. The surface that the sound bounces off doesn’t have to be solid. The echo tube is open at both ends. The air pressure inside the tube is higher than the air pressure outside. When the sound wave meets the open end of the tube, this change in pressure causes a wave to be reflected down the tube from the open end. Science in your world Echoes from the open ends of tubes are what make musical instruments such as horns and trumpets work. The sound wave reflects up and down the tube from the open ends.
    [Show full text]
  • Meeting Agenda 20-23 April 2004
    ICES-Working Group on Fisheries Acoustics, Science and Technology Meeting Agenda 20-23 April 2004 DRAFT (8 April 2004) Sea Fisheries Institute (Demel Room) Gdynia, Poland Dr David Demer, USA, Chair April 20th 0900 Opening: host greeting, adoption of agenda, selection of rapporteur FAST Topic 1: Effectiveness of noise-reduced platforms (topic discussion leaders: Alex De Robertis and Ian H. McQuinn) 0930 Ron Mitson (presented by Paul G. Fernandes). “Underwater noise; a brief history of noise in fisheries.” (topic review) 1000 Paul G. Fernandes, Andrew S. Brierley, and F. Armstrong. “Examination of herring at the surface of the North Sea.” 1020 Coffee break 1040 Grazyna Grelowska and Ignacy Gloza. “The acoustic transmissions of a moving ship and a grey seal.” 1100 Pall Reynisson. “Noise reduced vessels; the Icelandic experience.” 1120 Janusz Burczynski. “New Deployment Options for Digital Sonar.” 1140 Martyn Simmons or Steve Goodwin. “TONES - an overview” 1200 Lunch 1330 Ron Mitson (presented by D. Van Holliday). “Does ICES CRR 209 need revision?” 1350 Discussion (topic discussion leaders: Alex De Robertis and Ian H. McQuinn) FAST Topic 2: Using acoustics for evaluating ecosystem structure, with emphasis on species identification (topic discussion leaders: Rudy Kloser and Rolf Korneliussen) 1430 John Horne. “Challenges and trends in acoustic species identification.” (topic review) 1500 Coffee break 1520 Michael Jech and William Michaels. “Multi-frequency analyses of acoustical survey data.” 1540 Paul G. Fernandes. “Determining the quality of a multifrequency identification algorithm.” 1600 A. Mair and Paul G. Fernandes. “Examination of plankton samples in relation to multifrequency echograms.” 1620 Valerie Mazauric and Laurent Berger. “The numerical tool OASIS for echograms simulation.” 1640 Valerie Mazauric and John Dalen.
    [Show full text]
  • Does Halo Insulation Work As Soundproofing?
    Does Halo Insulation Work as Soundproofing? You’re probably familiar with Halo’s strengths as an insulation product that slashes energy costs by keeping room temperatures at a comfortable level. But what about noise control — can Halo also add comfort by reducing sound transmission? It turns out that it can, although Halo’s performance as a soundproofing material is not as impressive as its array of thermal benefits. This post will talk about the several ways in which Halo’s products can be used to manage sound in a building. Managing Sound Transmission vs. Echo © 2018 Logix Insulated Concrete Forms LTD | 855-350-4256 (HALO) Does Halo Insulation Work as Soundproofing? Soundproofing and sound absorption are 2 distinct processes. Soundproofing means blocking soundwaves from traveling from one space to the next, whereas sound absorption refers to reducing echo. One of the ways to soundproof a space is by decoupling the partition. This practice requires two layers of solid material — gypsum, concrete, or glass — with an air gap between them. The solid layer facing the sound’s origin acts as a conductor to the soundwaves until they reach the air cavity, interrupting the waves’ direct path. This way, the soundwaves are far weaker when they reach the solid layer on the other side of the partition. Unfortunately, decoupling alone is not enough to block soundwaves of all frequencies. That’s why other strategies, like adding mass, damping the partitions, and improving absorption, are crucial to sound control. Absorption, for instance, boosts the soundproofing performance of decoupled walls and improves the sound quality in the space from which the noise is coming.
    [Show full text]
  • Contrast Echo on Evaluation of Cardiac Function – Basic Principles
    Contrast echo and evaluation of cardiac function: basic principles Y. Yotov University Hospital “St.Marina” Varna, Bulgaria EAE Teaching Corse, 5-7 April 2012, Sofia, Bulgaria Contrast in echocardiography: Why? • To delineate the endocardium by cavity opacification. – for assessment of global and regional systolic function, LV volumes and ejection fraction. – LV opacification (LVO) for improved visualisation of structural abnormalities – enhanced visualisation of wall thickening during stress echocardiography • To enhance Doppler flow signals from the cavities and great vessels. • To determine myocardial ischaemia and viability using myocardial perfusion contrast echocardiography (MCE) • Quantification of the coronary flow reserve, which has prognostic value in various disease conditions TISSUE: Incident frequency results in equal and opposite vibration (i.e. LINEAR RESPONSE) MICROBUBBLES: Can only become so small but can expand to a greater degree, resulting in unequal oscillation (i.e. NON-LINEAR RESPONSE) This results in asymmetrical vibrations which produce harmonic frequencies http://www.escardio.org/communities/EAE/contrast-echo-box/ TISSUE HARMONIC IMAGING Principles of Contrast echocardiography Blood appears black on conventional two dimensional echocardiography, not because blood produces no echo, but because the ultrasound scattered by red blood cells at conventional imaging frequencies is very weak—several thousand times weaker than myocardium—and so lies below the displayed dynamic range. Stewart MJ. Heart. 2003; 89(3): 342–348. • It is a remarkable coincidence that gas bubbles of a size required to cross the pulmonary capillary vascular bed (1–5 mm) resonate in a frequency range of 1.5–7 MHz, precisely that used in diagnostic ultrasound. Stewart MJ. Heart. 2003; 89(3): 342–348.
    [Show full text]
  • The Suppression of Selected Acoustic Noise Frequencies In
    The Suppression of Selected Acoustic Noise Frequencies in MRI by XINGXIAN SHOU Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Robert W. Brown, Ph.D. Department of Physics CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________XINGXIAN SHOU candidate for the ________________________________degreePh.D. *. (signed)_______________________________________________Robert W. Brown (chair of the committee) ________________________________________________Jeffrey Duerk ________________________________________________David Farrell ________________________________________________Harsh Mathur ________________________________________________Shmaryu Shvartsman ________________________________________________ (date) _______________________July 26, 2010 *We also certify that written approval has been obtained for any proprietary material contained therein. To my parents Jun Shou, Huiqin Bian and my fiancée Shuofen Li ii Table of Contents Chapter 1 An Overview of Magnetic Resonance Imaging ....................................................... 1 1.1 What Is MRI? .................................................................................................................. 1 1.2 Principles of Magnetic Resonance Imaging .................................................................... 2 1.2.1 Spin Precession and Larmor Frequency ..................................................................
    [Show full text]
  • Echo Barrier
    Acoustical Surfaces, Inc. Acoustical Surfaces, Inc. We Identify and SOUNDPROOFING, ACOUSTICS, NOISE & VIBRATION CONTROL SPECIALISTS 123 Columbia Court North ● Suite 201 ● Chaska, MN 55318 (952) 448-5300 ● Fax (952) 448-2613 ● (800) 448-0121 Email: [email protected] Visit our Website: www.acousticalsurfaces.com Sound Transmission Obscuring Products Soundproofing, Acoustics, Noise & Vibration TM Control Specialists We Identify and S.T.O.P. Your Noise Problems Echo Barrier™ The Industry’s First Reusable, Indoor/ Outdoor Noise Barrier/Absorber • Superior acoustic performance • Industrial durability • Simple and quick installation system • Lightweight for easy handling • Unique roll-up design for compact storage and transportation • Double or triple up for noise ‘hot spots’ • Ability to add branding or messages • Range of accessories available • Weatherproof – absorbs sound but not water • Fire retardant • 1 person can do the job of 2 or 3 people Why is it all too often we see construction sites with fencing but no regard for sound issues created from the construction that is taking place? This is due to the fact that there has not been an efficient means of treating this type of noise that was cost effective until now. Echo Barrier temporary fencing is a reusable, outdoor noise barrier. Designed to fit on all types of temporary fencing. Echo Barrier absorbs sound while remaining quick to install, light to carry and tough to last. BENEFITS: Echo Barrier can help reduce noise complaints, enhance your company reputation, extend site operating hours, reduce project timescales & costs, and improve working conditions. APPLICATIONS: Echo Barrier works great for construction & demolition sites; rail maintenance & replacement; music, sports and other public events; road construction; utility/maintenance sites; loading and unloading areas; outdoor gun ranges.
    [Show full text]
  • Development of Nuclear Fuel Rod Testing Technique Using the Ultrasonic Resonance Phenomena
    KR9700258 KAERI/RR-1680/96 Development of Nuclear Fuel Rod Testing Technique Using the Ultrasonic Resonance Phenomena 29 - 0 j KAERI/RR-1680/96 Development of Nuclear Fuel Rod Testing Technique Using the Ultrasonic Resonance Phenomena M -? ts ffl % fir 1997 \i 2 € I7°i HEXT PA6E(S) left BLANK i. ^^pressurized water reactor: PWR)H 300 7fl^ ^^.^^-^(fuel bundle)!-^- ^ 200 <^7fl^ <23.-g-(fuel rod)^)-, ^ -^- :t.# fA5. ^^^i^-. ^S-^^r UO2 €3!, Zircaloy-4 ^ 4^:(cladding tube), #3^(plenum) >i^^ -f-^.^ ice inspection: ISI)°fl, 3-Z\3L 2iA}jL*]ig(post-irradiation examination: PIE) -f-ofl iii °) . H2flAi ^^(resonance scattering) , o] III. Ml* 3! ^^(acoustic resonance scattering: ARS)^ , O.?)JL 2 mm 7}< iation examination facility: PIEF)^ iv 4. (multilayered) ^"°fl £ 71*113. 7}^% S)^-^, 2)^-^4 « Afo^ 7^(gap)oH , ( ultrasound spectroscopy system: RUSS)# ^W. S.^:, ^^^ fl-S^l ^^-^ (leak-defective fuel rod detection system: LFRDS)- IV. £^ ^nr S!! ^(global matrix approach)^- M i?i#-i- a^7fl ^l(boundary matrix)"S VE ^, -2.^- ^Jfl^l-^ tfl^ ^l D-3 *!!•-£ (background) ^£-§- ^3* t}±= #£# A .Bnj^-1- 0>A}(analogous) -f oflHn]T^o] zero-frequency limit 3. cfl^s}-^ 3Mt)-. o] -n-^1 €^ zero-frequency limit 5.^ o] ^I, "JL-^afl^(inherent background)"AS. ai-fVti|) VI 1H tfl^ n 3J4 33-31 Oj AJ^ i^^S 5LEH turn table 4 2(x, y) ^ slide unit, monostatic pulse-echo bi-static pulse- echo «o^ 1.2 <>l*fl 3(x, y, z) ^ slide unit, A at 4. vii ISSXT FAGE(S) left BLANK SUMMARY I. Project Title Development of Nuclear Fuel Rod Inspection Technique Using Ultrasonic Resonance Phenomena II.
    [Show full text]
  • Book O Chapter 2 Sound PPT 2015.Pdf
    The Nature of Sound The blending of pitches through interference produces an instrument’s A. Sound quality B. Amplitude C. Echoes D. Resonance The blending of pitches through interference produces an instrument’s A. Sound quality B. Amplitude C. Echoes D. Resonance Longitudinal wave caused by vibrations and carried through a medium A. Sound wave B. Standing wave C. Overtones D. Tinnitus Longitudinal wave caused by vibrations and carried through a medium A. Sound wave B. Standing wave C. Overtones D. Tinnitus An echo is most likely to result when sound hits a surface that is A. Bumpy and lumpy B. Smooth and hard C. Smooth and soft D. Bumpy and soft An echo is most likely to result when sound hits a surface that is A. Bumpy and lumpy B. Smooth and hard C. Smooth and soft D. Bumpy and soft The motion of either the listener or the source of a sound causes A. Resonance B. Shock waves C. Echolocation D. The Doppler effect The motion of either the listener or the source of a sound causes A. Resonance B. Shock waves C. Echolocation D. The Doppler effect The amplitude of a sound’s waves determines the sound’s A. Pitch B. Sound quality C. Resonance D. Loudness The amplitude of a sound’s waves determines the sound’s A. Pitch B. Sound quality C. Resonance D. Loudness Frequencies two or more times the fundamental frequency A. Amplitude B. Echolocation C. Overtones D. Decibel Frequencies two or more times the fundamental frequency A. Amplitude B. Echolocation C. Overtones D.
    [Show full text]
  • Fourier Spectrum Pulse-Echo for Acoustic Characterization
    Fourier Spectrum Pulse-Echo for Acoustic Characterization Barnana Pal Saha Institute of nuclear Physics, Condensed Matter Physics Division, 1/AF, Bidhannagar, Kolkata-700064, India. e-mail: [email protected] Abstract: Ultrasonic wave attenuation(α) measurement by pulse-echo method exhibits pronounced dependence on experimental conditions. It is shown to be an inherent characteristic of the method itself. Estimation of α from the component wave amplitudes in the frequency scale gives more accurate and consistent value. This technique, viz., the Fourier Spectrum Pulse-Echo (FSPE) is demonstrated to determine the ultrasonic velocity(v) and attenuation constant(α) in ultrapure de-ionized water at room temperature (250C) at 1MHz and 2 MHz wave frequency. Keywords: Fourier transform, pulse echo method, ultrasonic propagation constants. 1. Introduction: Fourier transform spectroscopic techniques in experimental research have been growing at a faster rate during past five decades only because of the fact that higher precision and better accuracy in measurement can be achieved from frequency domain analysis compared to that obtained from corresponding time domain measurements. Development of Fourier transform (FT) Raman spectroscopy [1,2], Fourier Transform Infrared Spectroscopy (FTIR) [3], Fourier Transform Nuclear Magnetic Resonance (FTNMR) [4] are examples which are still in the process of further refinement. In the field of ultrasonics such attempts are rare though present day research on acoustic characterization of materials demand better accuracy and precision. More specifically, accuracy in the measurement of ultrasonic attenuation constant (α) is relatively poor and depends very much on experimental conditions. The dependence of α on experimental condition has been explained clearly in recent theoretical studies [5].
    [Show full text]
  • “The Alchemy of Tone”
    3 “The Alchemy of Tone” Jörg Mager and Electric Music Still more revealing would be a history of musical instruments written, not (as it always is) from the technical standpoint of tone-production, but as a study of the deep spiritual bases of the tone-colors and tone-effects aimed at.1 —Oswald Spengler During the same July 1926 festival in Donaueschingen where the sounds of “mechanical music” were unleashed upon the world, an inventor named Jörg Mager demonstrated a remarkable new instrument. He played a curious device consisting of an L-shaped handle that he turned on its axis around a semicircular metal panel; as the handle moved, a connected loudspeaker emitted a keening, disembodied tone that glided and swooped, sounding either out of tune or otherworldly. This device— the Spherophone—was intended to usher in a new kind of music based on microtonal pitch increments discernable to the ear but unattainable by most instruments. Though it was overshadowed by the more sen- sational concerts for mechanical piano and the Schlemmer-Hindemith Triadic Ballet, Mager’s demonstration of the Spherophone sent tremors through the audience. The journalist Herbert Weiskopf perceived in the instrument a phenomenon of profound significance for the history of music: “We do not wish to abandon ourselves to utopias,” he wrote, “but in this case the oft-misused term ‘epoch-making’ seems to be ap- propriate.” In his view, the Spherophone promised nothing less than the “alteration of the entire process of musical listening.”2 Paul Hindemith 52 “The Alchemy of Tone” | 53 noted that the Spherophone was still in an early stage of development 1 but declared it “the most revolutionary invention in the field of musical 2 instruments” and expressed his eagerness to compose for it.3 3 At the time of his 1926 demonstration in Donaueschingen, Mager’s 4 instrument was virtually the only one of its kind in Germany.
    [Show full text]