Specifying Spectra for Musical Scales William A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
The Science of String Instruments
The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D. -
Echo-Enabled Harmonics up to the 75Th Order from Precisely Tailored Electron Beams E
LETTERS PUBLISHED ONLINE: 6 JUNE 2016 | DOI: 10.1038/NPHOTON.2016.101 Echo-enabled harmonics up to the 75th order from precisely tailored electron beams E. Hemsing1*,M.Dunning1,B.Garcia1,C.Hast1, T. Raubenheimer1,G.Stupakov1 and D. Xiang2,3* The production of coherent radiation at ever shorter wave- phase-mixing transformation turns the sinusoidal modulation into lengths has been a long-standing challenge since the invention a filamentary distribution with multiple energy bands (Fig. 1b). 1,2 λ of lasers and the subsequent demonstration of frequency A second laser ( 2 = 2,400 nm) then produces an energy modulation 3 ΔE fi doubling . Modern X-ray free-electron lasers (FELs) use relati- ( 2) in the nely striated beam in the U2 undulator (Fig. 1c). vistic electrons to produce intense X-ray pulses on few-femto- Finally, the beam travels through the C2 chicane where a smaller 4–6 R(2) second timescales . However, the shot noise that seeds the dispersion 56 brings the energy bands upright (Fig. 1d). amplification produces pulses with a noisy spectrum and Projected into the longitudinal space, the echo signal appears as a λ λ h limited temporal coherence. To produce stable transform- series of narrow current peaks (bunching) with separation = 2/ limited pulses, a seeding scheme called echo-enabled harmonic (Fig. 1e), where h is a harmonic of the second laser that determines generation (EEHG) has been proposed7,8, which harnesses the character of the harmonic echo signal. the highly nonlinear phase mixing of the celebrated echo EEHG has been examined experimentally only recently and phenomenon9 to generate coherent harmonic density modu- at modest harmonic orders, starting with the 3rd and 4th lations in the electron beam with conventional lasers. -
3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch. -
MTO 10.1: Wibberley, Syntonic Tuning
Volume 10, Number 1, February 2004 Copyright © 2004 Society for Music Theory Roger Wibberley KEYWORDS: Aristoxenus, comma, Ganassi, Jachet, Josquin, Ptolemy, Rore, tetrachord, Vesper-Psalms, Willaert, Zarlino ABSTRACT: This Essay makes at the outset an important (if somewhat controversial) assumption. This is that Syntonic tuning (Just Intonation) is not—though often presumed to be so—primarily what might be termed “a performer’s art.” On the contrary it is a composer’s art. As with the work of any composer from any period, it is the performer’s duty to render the music according to the composer’s wishes as shown through the evidence. Such evidence may be indirect (perhaps documentary) or it may be explicitly structural (to be revealed through analysis). What will be clear is the fallacy of assuming that Just Intonation can (or should) be applied to any music rather than only to that which was specifically designed by the composer for the purpose. How one can deduce whether a particular composer did, or did not, have the sound world of Just Intonation (henceforward referred to as “JI”) in mind when composing will also be explored together with a supporting analytical rationale. Musical soundscape (especially where voices are concerned) means, of course, incalculably more than mere “accurate intonation of pitches” (which alone is the focus of this essay): its color derives not only from pitch combination, but more importantly from the interplay of vocal timbres. These arise from the diverse vowel sounds and consonants that give life, color and expression. The audio examples provided here are therefore to be regarded as “playbacks” and no claim is being implied or intended that they in any way stand up as “performances.” Some care, nonetheless, has been taken to make them as acceptable as is possible with computer-generated sounds. -
Construction and Verification of the Scale Detection Method for Traditional Japanese Music – a Method Based on Pitch Sequence of Musical Scales –
International Journal of Affective Engineering Vol.12 No.2 pp.309-315 (2013) Special Issue on KEER 2012 ORIGINAL ARTICLE Construction and Verification of the Scale Detection Method for Traditional Japanese Music – A Method Based on Pitch Sequence of Musical Scales – Akihiro KAWASE Department of Corpus Studies, National Institute for Japanese Language and Linguistics, 10-2 Midori-cho, Tachikawa City, Tokyo 190-8561, Japan Abstract: In this study, we propose a method for automatically detecting musical scales from Japanese musical pieces. A scale is a series of musical notes in ascending or descending order, which is an important element for describing the tonal system (Tonesystem) and capturing the characteristics of the music. The study of scale theory has a long history. Many scale theories for Japanese music have been designed up until this point. Out of these, we chose to formulate a scale detection method based on Seiichi Tokawa’s scale theories for traditional Japanese music, because Tokawa’s scale theories provide a versatile system that covers various conventional scale theories. Since Tokawa did not describe any of his scale detection procedures in detail, we started by analyzing his theories and understanding their characteristics. Based on the findings, we constructed the scale detection method and implemented it in the Java Runtime Environment. Specifically, we sampled 1,794 works from the Nihon Min-yo Taikan (Anthology of Japanese Folk Songs, 1944-1993), and performed the method. We compared the detection results with traditional research results in order to verify the detection method. If the various scales of Japanese music can be automatically detected, it will facilitate the work of specifying scales, which promotes the humanities analysis of Japanese music. -
MTO 20.2: Wild, Vicentino's 31-Tone Compositional Theory
Volume 20, Number 2, June 2014 Copyright © 2014 Society for Music Theory Genus, Species and Mode in Vicentino’s 31-tone Compositional Theory Jonathan Wild NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.wild.php KEYWORDS: Vicentino, enharmonicism, chromaticism, sixteenth century, tuning, genus, species, mode ABSTRACT: This article explores the pitch structures developed by Nicola Vicentino in his 1555 treatise L’Antica musica ridotta alla moderna prattica . I examine the rationale for his background gamut of 31 pitch classes, and document the relationships among his accounts of the genera, species, and modes, and between his and earlier accounts. Specially recorded and retuned audio examples illustrate some of the surviving enharmonic and chromatic musical passages. Received February 2014 Table of Contents Introduction [1] Tuning [4] The Archicembalo [8] Genus [10] Enharmonic division of the whole tone [13] Species [15] Mode [28] Composing in the genera [32] Conclusion [35] Introduction [1] In his treatise of 1555, L’Antica musica ridotta alla moderna prattica (henceforth L’Antica musica ), the theorist and composer Nicola Vicentino describes a tuning system comprising thirty-one tones to the octave, and presents several excerpts from compositions intended to be sung in that tuning. (1) The rich compositional theory he develops in the treatise, in concert with the few surviving musical passages, offers a tantalizing glimpse of an alternative pathway for musical development, one whose radically augmented pitch materials make possible a vast range of novel melodic gestures and harmonic successions. -
Major and Minor Scales Half and Whole Steps
Dr. Barbara Murphy University of Tennessee School of Music MAJOR AND MINOR SCALES HALF AND WHOLE STEPS: half-step - two keys (and therefore notes/pitches) that are adjacent on the piano keyboard whole-step - two keys (and therefore notes/pitches) that have another key in between chromatic half-step -- a half step written as two of the same note with different accidentals (e.g., F-F#) diatonic half-step -- a half step that uses two different note names (e.g., F#-G) chromatic half step diatonic half step SCALES: A scale is a stepwise arrangement of notes/pitches contained within an octave. Major and minor scales contain seven notes or scale degrees. A scale degree is designated by an Arabic numeral with a cap (^) which indicate the position of the note within the scale. Each scale degree has a name and solfege syllable: SCALE DEGREE NAME SOLFEGE 1 tonic do 2 supertonic re 3 mediant mi 4 subdominant fa 5 dominant sol 6 submediant la 7 leading tone ti MAJOR SCALES: A major scale is a scale that has half steps (H) between scale degrees 3-4 and 7-8 and whole steps between all other pairs of notes. 1 2 3 4 5 6 7 8 W W H W W W H TETRACHORDS: A tetrachord is a group of four notes in a scale. There are two tetrachords in the major scale, each with the same order half- and whole-steps (W-W-H). Therefore, a tetrachord consisting of W-W-H can be the top tetrachord or the bottom tetrachord of a major scale. -
Generation of Attosecond Light Pulses from Gas and Solid State Media
hv photonics Review Generation of Attosecond Light Pulses from Gas and Solid State Media Stefanos Chatziathanasiou 1, Subhendu Kahaly 2, Emmanouil Skantzakis 1, Giuseppe Sansone 2,3,4, Rodrigo Lopez-Martens 2,5, Stefan Haessler 5, Katalin Varju 2,6, George D. Tsakiris 7, Dimitris Charalambidis 1,2 and Paraskevas Tzallas 1,2,* 1 Foundation for Research and Technology—Hellas, Institute of Electronic Structure & Laser, PO Box 1527, GR71110 Heraklion (Crete), Greece; [email protected] (S.C.); [email protected] (E.S.); [email protected] (D.C.) 2 ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, 6720 Szeged, Hungary; [email protected] (S.K.); [email protected] (G.S.); [email protected] (R.L.-M.); [email protected] (K.V.) 3 Physikalisches Institut der Albert-Ludwigs-Universität, Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg, Germany 4 Dipartimento di Fisica Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy 5 Laboratoire d’Optique Appliquée, ENSTA-ParisTech, Ecole Polytechnique, CNRS UMR 7639, Université Paris-Saclay, 91761 Palaiseau CEDEX, France; [email protected] 6 Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9., 6720 Szeged, Hungary 7 Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany; [email protected] * Correspondence: [email protected] Received: 25 February 2017; Accepted: 27 March 2017; Published: 31 March 2017 Abstract: Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. -
The Unexpected Number Theory and Algebra of Musical Tuning Systems Or, Several Ways to Compute the Numbers 5,7,12,19,22,31,41,53, and 72
The Unexpected Number Theory and Algebra of Musical Tuning Systems or, Several Ways to Compute the Numbers 5,7,12,19,22,31,41,53, and 72 Matthew Hawthorn \Music is the pleasure the human soul experiences from counting without being aware that it is counting." -Gottfried Wilhelm von Leibniz (1646-1716) \All musicians are subconsciously mathematicians." -Thelonius Monk (1917-1982) 1 Physics In order to have music, we must have sound. In order to have sound, we must have something vibrating. Wherever there is something virbrating, there is the wave equation, be it in 1, 2, or more dimensions. The solutions to the wave equation for any given object (string, reed, metal bar, drumhead, vocal cords, etc.) with given boundary conditions can be expressed as a superposition of discrete partials, modes of vibration of which there are generally infinitely many, each with a characteristic frequency. The partials and their frequencies can be found as eigenvectors, resp. eigenvalues of the Laplace operator acting on the space of displacement functions on the object. Taken together, these frequen- cies comprise the spectrum of the object, and their relative intensities determine what in musical terms we call timbre. Something very nice occurs when our object is roughly one-dimensional (e.g. a string): the partial frequencies become harmonic. This is where, aptly, the better part of harmony traditionally takes place. For a spectrum to be harmonic means that it is comprised of a fundamental frequency, say f, and all whole number multiples of that frequency: f; 2f; 3f; 4f; : : : It is here also that number theory slips in the back door. -
Frequency Spectrum Generated by Thyristor Control J
Electrocomponent Science and Technology (C) Gordon and Breach Science Publishers Ltd. 1974, Vol. 1, pp. 43-49 Printed in Great Britain FREQUENCY SPECTRUM GENERATED BY THYRISTOR CONTROL J. K. HALL and N. C. JONES Loughborough University of Technology, Loughborough, Leics. U.K. (Received October 30, 1973; in final form December 19, 1973) This paper describes the measured harmonics in the load currents of thyristor circuits and shows that with firing angle control the harmonic amplitudes decrease sharply with increasing harmonic frequency, but that they extend to very high harmonic orders of around 6000. The amplitudes of the harmonics are a maximum for a firing delay angle of around 90 Integral cycle control produces only low order harmonics and sub-harmonics. It is also shown that with firing angle control apparently random inter-harmonic noise is present and that the harmonics fall below this noise level at frequencies of approximately 250 KHz for a switched 50 Hz waveform and for the resistive load used. The noise amplitude decreases with increasing frequency and is a maximum with 90 firing delay. INTRODUCTION inductance. 6,7 Literature on the subject tends to assume that noise is due to the high frequency Thyristors are now widely used for control of power harmonics generated by thyristor switch-on and the in both d.c. and a.c. circuits. The advantages of design of suppression components is based on this. relatively small size, low losses and fast switching This investigation has been performed in order to speeds have contributed to the vast growth in establish the validity of this assumption, since it is application since their introduction, when they were believed that there may be a number of perhaps basically a solid-state replacement for mercury-arc separate sources of noise in thyristor circuits. -
Tuning and Intervals
CHAPTER 4 Tuning and Intervals Sitting on the riverbank, Pan noticed the bed of reeds was swaying in the wind, making a mournful moaning sound, for the wind had broken the tops of some of the reeds. Pulling the reeds up, Pan cut them into pieces and bound them together to create a musical instrument, which he named “Syrinx”, in memory of his lost love Ovid (Roman Poet; 43 BC - AD 18/19) Have you ever watched someone tune a guitar? Or maybe even a piano? The lengths of the strings have to be adjusted by hand to exactly the right sound,bymakingthestringstighteror looser. Bue how does the tuner know which sound is the right one? This question has been asked throughout history and different cultures at different times have found different answers. Many cultures tune their instruments differently than we do. Listen for instance to the Indian instrument sarod in http://www.youtube.com/watch?v=hobK_8bIDvk.Also,2000yearsago,theGreekwere using different tuning ideas than we do today. Of course the Greek did not have guitars or pianos at that time, but they were still thinking about tuning for theinstrumentstheyhadandaboutthe structure of music in general. The pan flute,oneoftheoldestmusicalinstrumentsintheworld, was used by the ancient Greeks and is still being played today.Itconsistsofseveralpipesofbamboo of increasing lengths. The name is a reference to the Greek godPanwhoisshownplayingtheflute in Figure 1. Figure 1. Pan playing the pan flute. For the following investigations you need to make your own “pan flute” out of straws. Straws for bubble tea1,workbetterthanregularstrawssincetheyhaveawiderdiameter. You need to plug the bottom with a finger to get a clear pitch.