Polybrominated Diphenyl Ethers (Pbdes)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptorchidism and Endocrine Disrupting Chemicals ⇑ Helena E
Molecular and Cellular Endocrinology 355 (2012) 208–220 Contents lists available at SciVerse ScienceDirect Molecular and Cellular Endocrinology journal homepage: www.elsevier.com/locate/mce Review Cryptorchidism and endocrine disrupting chemicals ⇑ Helena E. Virtanen , Annika Adamsson Department of Physiology, University of Turku, Finland article info abstract Article history: Prospective clinical studies have suggested that the rate of congenital cryptorchidism has increased since Available online 25 November 2011 the 1950s. It has been hypothesized that this may be related to environmental factors. Testicular descent occurs in two phases controlled by Leydig cell-derived hormones insulin-like peptide 3 (INSL3) and tes- Keywords: tosterone. Disorders in fetal androgen production/action or suppression of Insl3 are mechanisms causing Cryptorchidism cryptorchidism in rodents. In humans, prenatal exposure to potent estrogen diethylstilbestrol (DES) has Testis been associated with increased risk of cryptorchidism. In addition, epidemiological studies have sug- Endocrine disrupting chemical gested that exposure to pesticides may also be associated with cryptorchidism. Some case–control stud- ies analyzing environmental chemical levels in maternal breast milk samples have reported associations between cryptorchidism and chemical levels. Furthermore, it has been suggested that exposure levels of some chemicals may be associated with infant reproductive hormone levels. Ó 2011 Elsevier Ireland Ltd. All rights reserved. Contents 1. Background. -
Scientific Committee on Toxicity, Ecotoxicity and the Environment
EUROPEAN COMMISSION DIRECTORATE-GENERAL HEALTH AND CONSUMER PROTECTION Directorate C - Scientific Opinions Unit C2 – Management of Scientific Committees; scientific co-operation and networks Scientific Committee on Toxicity, Ecotoxicity and the Environment Brussels,C2/AST/csteeop/Octabromo Hum & Env 31102002/D(02) SCIENTIFIC COMMITTEE ON TOXICITY, ECOTOXICITY AND THE ENVIRONMENT (CSTEE) Opinion on the results of the Risk Assessment of: Diphenyl ether, octabromo derivative Environmental and Human Health Part CAS No.: 32536-52-0 EINECS No.: 251-087-9 Carried out in the framework of Council Regulation (EEC) 793/93 on the evaluation and control of the risks of existing substances1 1 Regulation 793/93 provides a systematic framework for the evaluation of the risks to human health and the environment of those substances if they are produced or imported into the Community in volumes above 10 tonnes per year. The methods for carrying out an in-depth Risk Assessment at Community level are laid down in Commission Regulation (EC) 1488/94, which is supported by a technical guidance document. 2 Terms of reference In the context of regulation 793/93 (Existing Substances Regulation) and on the basis of the examination of the Risk Assessment Report provided by the European Chemicals Bureau, The CSTEE is invited to examine the following issues. RISK TO THE ENVIRONMENT The risk assessment report concludes that: 1 There is a need for limiting the risks with regard to secondary poisoning concerns for the hexabromodiphenyl ether (hexa-BDE) component that is present in the commercial octa- BDE product. 2. As concerns secondary poisoning concerning octa-BDE and its debromination products, there is a need for further information and/or testing, although risk reduction measures should be considered in the absence of adequate scientific knowledge. -
OFR Staff Plan
Staff Briefing Package Project Plan: Organohalogen Flame Retardant Chemicals Assessment July 1, 2020 CPSC Consumer Hotline and General Information: 1-800-638-CPSC (2772) CPSC's Web Site: http://www.cpsc.gov THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Acknowledgments The preparation, writing, and review of this report was supported by a team of staff. We acknowledge and thank team members for their significant contributions. Michael Babich, Ph.D., Directorate for Health Sciences Charles Bevington, M.P.H., Directorate for Health Sciences Xinrong Chen, Ph.D., D.A.B.T., Directorate for Health Sciences Eric Hooker, M.S., D.A.B.T., Directorate for Health Sciences Cynthia Gillham, M.S., Directorate for Economic Analysis John Gordon, Ph.D., Directorate for Health Sciences Kristina Hatlelid, Ph.D., M.P.H., Directorate for Health Sciences Barbara Little, Attorney, Office of the General Counsel Joanna Matheson, Ph.D., Directorate for Health Sciences ii THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Table of Contents Briefing Memo ............................................................................................................................... iv 1. Executive summary .............................................................................................................. 5 2. Introduction ......................................................................................................................... -
TOXIC EQUIVALENCY FACTORS for DIOXIN-LIKE Pcbs
Chemosphere, Vol. 28, No. 6, pp. 1049-1067, 1994 Perl~amon ELsevier Science Ltd Printed in Great Britain 0045-6535/94 $6.00+0.00 0045-6535(94)E0070-A TOXIC EQUIVALENCY FACTORS FOR DIOXIN-LIKE PCBs Report on a WHO-ECEH and IPCS consultation, December 1993 Ahlborg UG 1., Becking GC 2, Birnbaum LS 3, Brouwer A 4, Derks HJGM s, Feeley M6, Color G 7, Hanberg A 1, Larsen JC s, Liem AKD s, Safe SH9, Schlatter C 10, Wvern F 1, Younes M 11, Yrj~inheikki E 12 1 Karolinska Institutet, Box 210, S-171 77 Stockholm, Sweden 2IPCS/IRRU, Research Triangle Park, NC, USA; 3USEPA, Research Triangle Park, NC, USA; 4Agricultural University, Wageningen, The Netherlands; 5Nan Inst Publ Health and Environmental Protection, Bilthoven, The Netherlands; C~Iealth and Welfare Canada, Ottawa, Canada; 7Freie Universit~t Berlin, Bedin-Dahlem, Germany; 8National Food Agency, S~aorg, Denmark; 9Texas A & M University, College Station TX, USA; l°Swiss Federal Institute of Toxicology, Schwerzenbach, Ziirich, Switzerland; 11WHOEuropean Centre for Environment and Health, Bilthoven, The Netherlands; 12Occupational Safety and Health Division, Tampere, Finland (Received in Germany 10 February 1994; accepted 16 February 1994) ABSTRACT The WHO-European Centre for Environment and Health (WHO-ECEH) and the International Programme on Chemical Safety (IPCS), have initiated a project to create a data base containing information relevant to the setting of Toxic Equivalency Factors (TEFs), and, based on the available information, to assess the relative potencies and to derive consensus TEFs for PCDDs, PCDFs and dioxin-like PCBs. Available data on the relative toxicities of dioxin-like PCBs with respect to a number of endpoints were collected and analyzed. -
The Ozonolysis of Phenyl Grignard Reagent
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1971 The ozonolysis of phenyl Grignard reagent Gale Manning Sherrodd The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sherrodd, Gale Manning, "The ozonolysis of phenyl Grignard reagent" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 8297. https://scholarworks.umt.edu/etd/8297 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE OZONOLYSIS OF PHENYL GRIGNARD REAGENT By Gale M. Sherrodd B.S., Rocky Mountain College, I969 Presented in partial fulfillment of the requirements for the degree of Master of Arts for Teachers UNIVERSITY OF MONTANA 1971 Approved by: Chairman, Board of Examiners De^ , Graduate *School / n ? / Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP39098 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT DiMMtstion PuWiahing UMI EP39098 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. -
Nuclear Receptors & Endocrine / Metabolic Disruption
NUCLEAR RECEPTORS & ENDOCRINE / METABOLIC DISRUPTION Jack Vanden Heuvel, INDIGO Biosciences Inc., State College, PA Table of Contents Overview............................................................................................................ 3 a. Endocrine Disruption ........................................................................... 3 b Metabolic Disruption ............................................................................. 3 A Common Molecular Mechanism for Endocrine Disruption and Metabolic Disruption ...................... 4 Example endocrine and metabolic disruptors .................................. 5 a. Pesticides ................................................................................................... 6 b. “Dioxins” .................................................................................................... 7 c. Organotins ................................................................................................ 8 d. Polyfluoroalkyl compounds .............................................................. 9 e. Brominated flame retardants ............................................................ 10 f. Alkylphenols .............................................................................................. 11 g. Bisphenol A .............................................................................................. 12 h. Phthalates ................................................................................................. 13 Endocrine and metabolic disruption: Mechanistic -
Polybrominated Diphenyl Ethers (Pbdes)
America’s Children and the Environment, Third Edition DRAFT Indicators Biomonitoring: Polybrominated diphenyl ethers (PBDEs) EPA is preparing the third edition of America’s Children and the Environment (ACE3), following the previous editions published in December 2000 and February 2003. ACE is EPA’s compilation of children’s environmental health indicators and related information, drawing on the best national data sources available for characterizing important aspects of the relationship between environmental contaminants and children’s health. ACE includes four sections: Environments and Contaminants, Biomonitoring, Health, and Special Features. EPA has prepared draft indicator documents for ACE3 representing 23 children's environmental health topics and presenting a total of 42 proposed children's environmental health indicators. This document presents the draft text, indicator, and documentation for the PBDEs topic in the Biomonitoring section. THIS INFORMATION IS DISTRIBUTED SOLELY FOR THE PURPOSE OF PRE- DISSEMINATION PEER REVIEW UNDER APPLICABLE INFORMATION QUALITY GUIDELINES. IT HAS NOT BEEN FORMALLY DISSEMINATED BY EPA. IT DOES NOT REPRESENT AND SHOULD NOT BE CONSTRUED TO REPRESENT ANY AGENCY DETERMINATION OR POLICY. For more information on America’s Children and the Environment, please visit www.epa.gov/ace. For instructions on how to submit comments on the draft ACE3 indicators, please visit www.epa.gov/ace/ace3drafts/. March 2011 DRAFT: DO NOT QUOTE OR CITE Biomonitoring: Polybrominated Diphenyl Ethers (PBDEs) 1 Polybrominated Diphenyl Ethers (PBDEs) 2 3 Polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardant chemicals 4 that have been incorporated into a variety of manufactured products, including foam cushioning 5 used in furniture and plastics used in televisions and computers. -
Exposure and Use Assessment for Five PBT Chemicals
EPA Document # EPA-740-R1-8002 June 2018 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Exposure and Use Assessment of Five Persistent, Bioaccumulative and Toxic Chemicals Peer Review Draft June 2018 Contents TABLES ................................................................................................................................................................... 7 FIGURES ................................................................................................................................................................. 7 1. EXECUTIVE SUMMARY ................................................................................................................................ 15 2. BACKGROUND ............................................................................................................................................. 15 3. APPROACH .................................................................................................................................................. 17 4. DECABROMODIPHENYL ETHER (DECABDE) .................................................................................................. 21 4.1. Chemistry and Physical-Chemical Properties ................................................................................ 21 4.2. Uses ................................................................................................................................................ 21 4.3. Characterization of Expected Environmental Partitioning -
Flame Retardants Used in Flexible Polyurethane Foam
FLAME RETARDANTS USED IN FLEXIBLE POLYURETHANE FOAM: AN ALTERNATIVES ASSESSMENT UPDATE SECTIONS 1-6 August 2015 EPA Publication 744-R-15-002 Table of Contents 1 Introduction .......................................................................................................................... 1-1 1.1 The Furniture Flame Retardancy Partnership .............................................................. 1-1 1.2 Updating the 2005 Furniture Flame Retardancy Report .............................................. 1-1 1.3 Alternatives Assessment as a Risk Management Tool ................................................ 1-4 1.4 DfE Alternatives Assessment and the Toxic Substances Control Act ......................... 1-6 2 Hazard Evaluation Results for Flame Retardants Used in Flexible Polyurethane Foam ..... 2-1 2.1 Hazard Comparison Table ........................................................................................... 2-1 2.2 Hazard and Fate Results by Chemical Group .............................................................. 2-5 2.3 Hazard and Fate Results by Endpoint .......................................................................... 2-6 3 Flexible Polyurethane Foam Flame Retardants and Flammability Standards ..................... 3-1 3.1 Flexible Polyurethane Foam ........................................................................................ 3-1 3.2 Flame Retardant Classification and Exposure Considerations .................................... 3-1 3.3 Sources of Data for Identifying Foam Flame Retardants -
Examining Reproductive Health Outcomes in Females Exposed to Polychlorinated Biphenyl and Polybrominated Biphenyl Michael F
www.nature.com/scientificreports OPEN Examining Reproductive Health Outcomes in Females Exposed to Polychlorinated Biphenyl and Polybrominated Biphenyl Michael F. Neblett II1*, Sarah W. Curtis2, Sabrina A. Gerkowicz1, Jessica B. Spencer1, Metrecia L. Terrell3, Victoria S. Jiang1, M. Elizabeth Marder4, Dana Boyd Barr4, Michele Marcus5 & Alicia K. Smith 6 In 1973, accidental contamination of Michigan livestock with polybrominated biphenyls (PBBs) led to the establishment of a registry of exposed individuals that have been followed for > 40 years. Besides being exposed to PBBs, this cohort has also been exposed to polychlorinated biphenyls (PCBs), a structurally similar class of environmental pollutants, at levels similar to average US exposure. In this study, we examined the association between current serum PCB and PBB levels and various female reproductive health outcomes to build upon previous work and inconsistencies. Participation in this cross-sectional study required a blood draw and completion of a detailed health questionnaire. Analysis included only female participants who had participated between 2012 and 2015 (N = 254). Multivariate linear and logistic regression models were used to identify associations between serum PCB and PBB levels with each gynecological and infertility outcome. Additionally, a generalized estimating equation (GEE) model was used to evaluate each pregnancy and birth outcome in order to account for multiple pregnancies per woman. We controlled for age, body mass index, and total lipid levels in all analyses. A p-value of <0.05 was used for statistical signifcance. Among the women who reported ever being pregnant, there was a signifcant negative association with higher total PCB levels associating with fewer lifetime pregnancies ( β = −0.11, 95% CI = −0.21 to −0.005, p = 0.04). -
A Review of Environmental Occurrence, Fate, and Toxicity Of
Critical Review Cite This: Environ. Sci. Technol. 2019, 53, 13551−13569 pubs.acs.org/est A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants † ‡ † ‡ † ‡ † ‡ § † ‡ § Ping Xiong, , Xueting Yan, , Qingqing Zhu, , Guangbo Qu, , , Jianbo Shi, , , † ‡ § † ‡ Chunyang Liao,*, , , and Guibin Jiang , † State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China ‡ College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China § Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China *S Supporting Information ABSTRACT: Use of legacy brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD), has been reduced due to adverse effects of these chemicals. Several novel brominated flame retardants (NBFRs), such decabromodiphenyl ethane (DBDPE) and bis(2,4,6-tribromophenoxy) ethane (BTBPE), have been developed as replacements for PBDEs. NBFRs are used in various industrial and consumer products, which leads to their ubiquitous occurrence in the environment. This article reviews occurrence and fate of a select group of NBFRs in the environment, as well as their human exposure and toxicity. Occurrence of NBFRs in both abiotic, including air, water, dust, soil, sediment and sludge, and biotic matrices, including bird, fish, and human serum, have been documented. Evidence regarding the degradation, -
Bis(Pentabromophenyl) Ether
EUROPEAN COMMISSION JOINT RESEARCH CENTRE Institute for Health and Consumer Protection European Chemicals Bureau I-21020 Ispra (VA) Italy BIS(PENTABROMOPHENYL) ETHER CAS No: 1163-19-5 EINECS No: 214-604-9 Summary Risk Assessment Report 2003 Special Publication I.02.78 BIS(PENTABROMOPHENYL) ETHER CAS No: 1163-19-5 EINECS No: 214-604-9 SUMMARY RISK ASSESSMENT REPORT Summary report, 2003 France and United Kingdom This document has been prepared by the French and UK rapporteurs on behalf of the European Union. The scientific work on the environmental part was prepared by the Building Research Establishment Ltd (BRE), under contract to the UK rapporteur. Contact points Human health: Ministère des Affaires Sociales, du Travail et de la Solidarité 39/43 Quai André Citroën 75739 Paris Cedex 15 France Environment: Environment Agency Chemicals Assessment Section Ecotoxicology and Hazardous Substances National Centre Isis House, Howbery Park Wallingford, Oxfordshire, OX10 8BD Date of last literature search: 2002 Review of report by MS Technical Experts finalised: 2002 Final risk assessment report: 2002 © European Communities, 2003 PREFACE This report provides a summary, with conclusions, of the risk assessment report of the substance bis(pentabromophenyl) ether (decabromodiphenyl ether) that has been prepared by France and the UK in the context of Council Regulation (EEC) No. 793/93 on the evaluation and control of existing substances. For detailed information on the risk assessment principles and procedures followed, the underlying data and the literature references the reader is referred to the comprehensive Final Risk Assessment Report (Final RAR) that can be obtained from the European Chemicals Bureau1.