An Overview of Alternatives to Tetrabromobisphenol a (TBBPA) and Hexabromocyclododecane (HBCD)

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of Alternatives to Tetrabromobisphenol a (TBBPA) and Hexabromocyclododecane (HBCD) An Overview of Alternatives to Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecane (HBCD) By Gregory Morose A Publication Of the Lowell Center For Sustainable Production Prepared for The Jennifer University of Massachusetts Altman Foundation Lowell March 2006 Purpose of this Study The Jennifer Altman Foundation has commissioned the Lowell Center for Sustainable Production (LCSP) of the University of Massachusetts Lowell to conduct a study of potential alternatives to TBBPA and HBCD. The Lowell Center for Sustainable Production The Lowell Center for Sustainable Production develops, studies, and promotes environmentally sound systems of production, healthy work environments, and economically viable work organizations. The Center operates on the premise that environmental quality, safe and healthy workplaces, and social accountability can be achieved while at the same time enhancing the economic life of firms and communities. This is accomplished by broadening the fundamental design criteria for all productive activities to include an explicit and comprehensive commitment to sustainability. The Center is composed of faculty and staff at the University of Massachusetts Lowell who work directly with industrial firms, social services institutions, citizen organizations, and government agencies to promote sustainable production. The LCSP is based at the University of Massachusetts Lowell, where it works closely with the Massachusetts Toxics Use Reduction Institute (TURI) and the Department of Work Environment. An Overview of Alternatives to Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecane (HBCD) March, 2006 Prepared for: The Jennifer Altman Foundation By Gregory Morose A Publication of the Lowell Center for Sustainable Production University of Massachusetts Lowell One University Avenue Lowell, MA 01854 978-934-2980 Table of Contents INTRODUCTION......................................................................................... ……………………6 SECTION I: TBBPA & HBCD USES..........................................................................................5 TBBPA: Applications.................................................................................................................................................................5 TBBPA: Global use ....................................................................................................................................................................6 TBBPA: TRI Reporting.............................................................................................................................................................6 HBCD: Global Use.....................................................................................................................................................................8 HBCD: Tri Reporting................................................................................................................................................................8 SECTION II: POTENTIAL ALTERNATIVES & INITIAL ASSESSMENT................................9 Alternatives to TBBPA: Epoxy Resin for PWB Laminate.......................................................................................................9 Alternatives to TBBPA: Manufacturing Printed Wiring Boards with Halogen-free Materials...........................................14 Alternatives to TPPBA: Encapsulation of Electronics Components....................................................................................15 Alternatives to TBBPA: ABS Applications .............................................................................................................................16 Alternatives to HBCD: EPS and XPS for Building and Construction Industry...................................................................17 SECTION III: RECOMMENDATIONS & CONCLUSIONS:…………………………………….21 SOURCES.................................................................................................................................23 _________________________________________________________________________________________________ The information for this report was generated by INTRODUCTION the following methods: Objectives and Scope • Literature search of publicly available information, and The Jennifer Altman Foundation has commissioned • Information requests and discussions with the Lowell Center for Sustainable Production to manufacturers of products containing HBCD review available information relative to the uses and TBBPA flame retardants, as well as and potential alternatives for two brominated flame manufacturers of products containing retardants, tetrabromobisphenol A (TBBPA) and alternative flame retardant materials. hexabromocyclododecane HBCD. The objective of this study is to accomplish the following: Because the study does not include an in-depth evaluation of the environmental, technical • Investigate TBBPA and HBCD product and performance, or economic impact for these application information that is available in the alternatives. This study will not recommend specific public domain. alternatives for TBBPA and HBCD. Instead it will • Identify potential alternatives to the products discuss additional steps to be taken before specific identified. recommendations can be made for viable alternatives. It is outside of the scope of this report to assess the • Conduct a preliminary and qualitative review possible environmental and human health risks of potential alternatives. associated with TBBPA and HBCD. This study presents a high level overview of the findings. No chemical analyses, toxicological Background studies, performance evaluations, or economic In 2003, fire departments responded to 1,584,500 assessments were included as part of this study. fires in the United States. Every 20 seconds a fire department responds to a fire somewhere in the This paper is organized into three major sections nation. In 2003, there were 3,925 deaths, 18,125 as follows: injuries, and approximately $12 billion in property damage as a result of these fires (Karter, 2004). In order to reduce the risks of fires and provide adequate Section I: TBBPA & HBCD Uses time for egress during building fires, governments, The various applications and uses of TBBPA and product manufacturers, and professional associations HBCD are described. have promoted the use of flame retardants in products and building materials likely to burn. This is Section II: Potential Alternatives & Initial Assessment particularly true for polymeric materials. The potential alternatives for the various TBBPA and HBCD uses are identified, as well as an initial Flame retardants can be added to polymer materials identification of the key health, environmental, to enhance their flame retardancy. Flame retardant and performance concerns for these alternatives. polymer materials are used in various commercial products to protect people and property from Section III: Recommendations and Conclusions potential fire hazards. Flame retardants used in The overall conclusions from this study are provided, polymer materials are added in order to accomplish as well as recommendations for further research of one or more of the following functions during TBBPA and HBCD alternatives. the course of a fire: OVERVIEW OF ALTERNATIVES TO TBBPA & HBCD ● Lowell Center for Sustainable Production _________________________________________________________________________________________________ • Raising the ignition temperature of Of particular interest for this study is the use of the polymer; brominated flame retardants. Certain brominated flame retardants are persistent in the environment • Reducing the rate of burning; and have been found in the food chain, and in the bodies of animals and humans. Research has shown that • Reducing flame spread; or one type of brominated flame retardants, polybrominated diphenyl ethers (PBDEs), is often found in various environmental media, throughout the food chain, • Reducing smoke generation. and in human breast milk, serum, and adipose tissue. Tetrabromobisphenol A (TBBPA) and There are four main types of flame retardants hexabromocyclododecane (HBCD) are two used with polymeric materials: brominated chemicals that are used as flame retardant materials in a variety of products. These flame Inorganic: Includes flame retardants such as retardants have desirable properties, and have proven antimony trioxide, alumina trihydrate, and to be successful flame retardant materials during years magnesium hydroxide. When heated, the of use for a variety of applications. For example, hydroxides release water vapor that helps HBCD combines high effectiveness with very low cool the substrate and perform other flame loading levels which enable polystyrene insulation retardant functions. Antimony trioxide is products used in the building industry to meet typically used as a synergist in combination required flame retardancy standards, while with other flame retardants. maintaining their insulation properties. Halogenated: These flame retardants are There are several studies underway investigating the primarily based on chlorine and bromine possible environmental and human health effects of substances such as halogenated paraffins, TBBPA and HBCD. The OSPAR Commission’s List of chlorinated alicyclic compounds, and Chemicals for Priority Action includes both HBCD and brominated aromatic compounds. These TBBPA. (OSPAR, 2004) The OSPAR Commission flame retardants act primarily by chemically was formed for the protection of the
Recommended publications
  • Petition to Order Testing of Tetrabromobisphenol a (“TBBPA”)
    PETITION TO ORDER TESTING OF TETRABROMOBISPHENOL A (CAS NO. 79-94-7) UNDER SECTION 4(a) OF THE TOXIC SUBSTANCES CONTROL ACT (DECEMBER 13, 2016) Via Federal Express & Electronic Mail Gina McCarthy, Administrator U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code: 1101A Washington D.C. 20460 [email protected] Dear Administrator McCarthy: Earthjustice,1 Natural Resources Defense Council (NRDC), 2 Toxic-Free Future (TFF),3 Safer Chemicals, Healthy Families (SCHF),4 BlueGreen Alliance (BGA),5 and Environmental Health Strategy Center (EHSC),6 submit this Petition to the U.S. Environmental Protection Agency (“EPA”), pursuant to section 21 of the Toxic Substances Control Act (“TSCA”),7 to 1 Earthjustice is the nation’s largest environmental law organization. Protecting people and the environment from exposure to toxic substances is a key part of its mission. Earthjustice submits this petition on behalf of NRDC, SCHF, TFF, BGA, and EHSC. 2 NRDC is an international nonprofit environmental organization with more than 2 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world's natural resources, public health, and the environment. Protecting families and communities from toxic chemicals is a key NRDC goal. 3 TFF advocates for the use of safer products, chemicals, and practices through advanced research, advocacy, grassroots organizing, and consumer engagement to ensure a healthier tomorrow. 4 SCHF is a coalition representing over 450 organizations and businesses united by a common concern about toxic chemicals in our homes, places of work, and products we use every day.
    [Show full text]
  • Uncovering Evidence for Endocrine-Disrupting Chemicals That Elicit Differential Susceptibility Through Gene-Environment Interactions
    toxics Review Uncovering Evidence for Endocrine-Disrupting Chemicals That Elicit Differential Susceptibility through Gene-Environment Interactions Dylan J. Wallis 1 , Lisa Truong 2 , Jane La Du 2, Robyn L. Tanguay 2 and David M. Reif 1,* 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; [email protected] 2 Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; [email protected] (L.T.); [email protected] (J.L.D.); [email protected] (R.L.T.) * Correspondence: [email protected] Abstract: Exposure to endocrine-disrupting chemicals (EDCs) is linked to myriad disorders, charac- terized by the disruption of the complex endocrine signaling pathways that govern development, physiology, and even behavior across the entire body. The mechanisms of endocrine disruption in- volve a complex system of pathways that communicate across the body to stimulate specific receptors that bind DNA and regulate the expression of a suite of genes. These mechanisms, including gene regulation, DNA binding, and protein binding, can be tied to differences in individual susceptibility across a genetically diverse population. In this review, we posit that EDCs causing such differential responses may be identified by looking for a signal of population variability after exposure. We begin Citation: Wallis, D.J.; Truong, L.; La by summarizing how the biology of EDCs has implications for genetically diverse populations. We Du, J.; Tanguay, R.L.; Reif, D.M. then describe how gene-environment interactions (GxE) across the complex pathways of endocrine Uncovering Evidence for Endocrine- signaling could lead to differences in susceptibility. We survey examples in the literature of individual Disrupting Chemicals That Elicit susceptibility differences to EDCs, pointing to a need for research in this area, especially regarding Differential Susceptibility through the exceedingly complex thyroid pathway.
    [Show full text]
  • Scientific Committee on Toxicity, Ecotoxicity and the Environment
    EUROPEAN COMMISSION DIRECTORATE-GENERAL HEALTH AND CONSUMER PROTECTION Directorate C - Scientific Opinions Unit C2 – Management of Scientific Committees; scientific co-operation and networks Scientific Committee on Toxicity, Ecotoxicity and the Environment Brussels,C2/AST/csteeop/Octabromo Hum & Env 31102002/D(02) SCIENTIFIC COMMITTEE ON TOXICITY, ECOTOXICITY AND THE ENVIRONMENT (CSTEE) Opinion on the results of the Risk Assessment of: Diphenyl ether, octabromo derivative Environmental and Human Health Part CAS No.: 32536-52-0 EINECS No.: 251-087-9 Carried out in the framework of Council Regulation (EEC) 793/93 on the evaluation and control of the risks of existing substances1 1 Regulation 793/93 provides a systematic framework for the evaluation of the risks to human health and the environment of those substances if they are produced or imported into the Community in volumes above 10 tonnes per year. The methods for carrying out an in-depth Risk Assessment at Community level are laid down in Commission Regulation (EC) 1488/94, which is supported by a technical guidance document. 2 Terms of reference In the context of regulation 793/93 (Existing Substances Regulation) and on the basis of the examination of the Risk Assessment Report provided by the European Chemicals Bureau, The CSTEE is invited to examine the following issues. RISK TO THE ENVIRONMENT The risk assessment report concludes that: 1 There is a need for limiting the risks with regard to secondary poisoning concerns for the hexabromodiphenyl ether (hexa-BDE) component that is present in the commercial octa- BDE product. 2. As concerns secondary poisoning concerning octa-BDE and its debromination products, there is a need for further information and/or testing, although risk reduction measures should be considered in the absence of adequate scientific knowledge.
    [Show full text]
  • OFR Staff Plan
    Staff Briefing Package Project Plan: Organohalogen Flame Retardant Chemicals Assessment July 1, 2020 CPSC Consumer Hotline and General Information: 1-800-638-CPSC (2772) CPSC's Web Site: http://www.cpsc.gov THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Acknowledgments The preparation, writing, and review of this report was supported by a team of staff. We acknowledge and thank team members for their significant contributions. Michael Babich, Ph.D., Directorate for Health Sciences Charles Bevington, M.P.H., Directorate for Health Sciences Xinrong Chen, Ph.D., D.A.B.T., Directorate for Health Sciences Eric Hooker, M.S., D.A.B.T., Directorate for Health Sciences Cynthia Gillham, M.S., Directorate for Economic Analysis John Gordon, Ph.D., Directorate for Health Sciences Kristina Hatlelid, Ph.D., M.P.H., Directorate for Health Sciences Barbara Little, Attorney, Office of the General Counsel Joanna Matheson, Ph.D., Directorate for Health Sciences ii THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Table of Contents Briefing Memo ............................................................................................................................... iv 1. Executive summary .............................................................................................................. 5 2. Introduction .........................................................................................................................
    [Show full text]
  • FLAME RETARDANTS in PRINTED CIRCUIT BOARDS Chapter 5
    FLAME RETARDANTS IN PRINTED CIRCUIT BOARDS Chapter 5 FINAL REPORT August 2015 EPA Publication 744-R-15-001 5 Potential Exposure to Flame Retardants and Other Life- Cycle Considerations Many factors must be considered to evaluate the risk to human health and the environment posed by any flame-retardant chemical. Risk is a function of two parameters, hazard and exposure. The hazard associated with a particular substance or chemical is its potential to impair human health, safety, or ecological health. While some degree of hazard can be assigned to most substances, the toxicity and harmful effects of other substances are not fully understood. The exposure potential of a given substance is a function of the exposure route (inhalation, ingestion, and dermal), the concentration of the substance in the contact media, and the frequency and duration of the exposure. The purpose of this chapter is to identify the highest priority routes of exposure to flame- retardant chemicals used in printed circuit boards (PCBs). Section 5.1 through Section 5.4 provide general background regarding potential exposure pathways that can occur during different life-cycle stages, discuss factors that affect exposure potential in an industrial setting, provide process descriptions for the industrial operations involved in the PCB manufacturing supply chain (identifying the potential primary release points and exposure pathways), and discuss potential consumer and environmental exposures. Following this general discussion, Section 5.5 highlights life-cycle considerations for the ten flame retardants evaluated by this partnership. The chapter is intended to help the reader identify and characterize the exposure potential of flame-retardant chemicals based on factors including physical and chemical properties and reactive versus additive incorporation into the epoxy resin.
    [Show full text]
  • June 19, 2019 Transmitted Electronically
    June 19, 2019 Transmitted Electronically Document Control Manager Office of Pollution Prevention and Toxics (OPPT) US EPA 1200 Pennsylvania Avenue, NW Washington, DC 20460-0001 Dear Sir/Maddam, The Center for Environmental Health (CEH) hereby submits these comments on the proposed Toxic Substances Control Act high-priority candidates (EPA-HQ-OPPT-2019-0131- 0001). As required by the Toxic Substances Control Act (TSCA), the United States Environmental Protection Agency (USEPA) must regularly release a list of chemicals that are under review for prioritization for risk evaluation. This list consists of 20 high-priority and 20 low-priority candidates. These comments identify data on the 2019 list of the 20 high-priority candidates (Table 1) in the literature that support the notion that these chemicals may be endocrine disrupting compounds (EDCs). EDCs are a class of chemicals that can interfere with the production, action, transport, or metabolism of endogenous hormones in the body.1 For the purposes of these comments, an EDC will be considered any compound that showed an effect on an endocrine system at any dose or concentration, thus accounting for any potential dose responses that may be non-monotonic. This is supported in the literature wherein disruption of upstream signaling, even at low doses and within “normal” levels of hormone variability, adverse outcomes can be observed.2,3 These comments will describe various studies to determine whether the compound of interest could be considered an EDC. This was accomplished by searching PubMed as well as The Endocrine Disruption Exchange’s List of Potential Endocrine Disruptors for peer- reviewed articles by searching with the CAS Registry Number for each chemical; USEPA’s Computational Toxicology Dashboard was also searched.
    [Show full text]
  • TBBPA Clh Report
    CLH REPORT FOR TBBPA CLH report Proposal for Harmonised Classification and Labelling Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2 International Chemical Identification: 2,2',6,6'-tetrabromo-4,4'-isopropylidenediphenol; tetrabromobisphenol-A (TBBPA) EC Number: 201-236-9 CAS Number: 79-94-7 Index Number: 604-074-00-0 Contact details for dossier submitter: Norwegian Environment Agency P.O. Box 5672 Torgarden, 7485 Trondheim, Norway [email protected] +47 73 58 05 00 Co-submitter: The Danish Environmental Protection Agency Version number: 2.0 Date: 18.09.2020 [04.01-MF-003.01] CLH REPORT FOR TBBPA CONTENTS 1 IDENTITY OF THE SUBSTANCE........................................................................................................................1 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE...............................................................................................1 1.2 COMPOSITION OF THE SUBSTANCE..........................................................................................................................2 2 PROPOSED HARMONISED CLASSIFICATION AND LABELLING............................................................3 2.1 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA............................3 3 HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING ......................................................5 4 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL.................................................5 5 IDENTIFIED USES..................................................................................................................................................5
    [Show full text]
  • Tetrabromobisphenol A
    NTP TECHNICAL REPOrt ON THE TOXICOLOGY STUDIES OF TEtrABROMOBIspHENOL A (CASRN 79-94-7) IN F344/NTAC RAts AND B6C3F1/N MICE AND TOXICOLOGY AND CARCINO- GENESIS STUDIES OF TEtrA- BROMOBIspHENOL A IN WIS- TAR HAN [CRL:WI(HAN)] RAts AND B6C3F1/N MICE (GAVAGE STUDIES) NTP TR 587 SEPTEMBER 2014 NTP Technical Report on the Toxicology Studies of Tetrabromobisphenol A (CASRN 79-94-7) in F344/NTac Rats and B6C3F1/N Mice and Toxicology and Carcinogenesis Studies of Tetrabromobisphenol A in Wistar Han [Crl:WI(Han)] Rats and B6C3F1/N Mice (Gavage Studies) Technical Report 587 September 2014 National Toxicology Program Public Health Service U.S. Department of Health and Human Services ISSN: 2378-8925 Research Triangle Park, North Carolina, USA Tetrabromobisphenol A, NTP TR 587 Foreword The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute.
    [Show full text]
  • Tetrabromobisphenol a [79-94-7]
    Tetrabromobisphenol A [79-94-7] Review of Toxicological Literature June 2002 Tetrabromobisphenol A [79-94-7] Review of Toxicological Literature Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Karen E. Haneke, M.S. Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709 June 2002 Toxicological Summary for Tetrabromobisphenol A [79-94-7] 06/2002 Executive Summary Basis for Nomination Tetrabromobisphenol A (TBBPA) was nominated by the NIEHS for toxicological characterization including neurodevelopmental toxicity studies and carcinogenicity. The nomination is based on its high production volume, widespread human exposures, and suspicion to cause thyroid toxicity and thyroid tumors. Nontoxicological Information TBBPA contains 58.7% bromine. When pyrolyzed in open quartz tubes for ten minutes, TBBPA produces polybrominated dibenzo-p-dioxins (PBDDs) and -furans (PBDFs) at 700 °C. When used as a flame retardant, TBBPA contains <0.01 to 0.05 µg/kg PBDDs and <0.01 to 0.02 µg/kg PBDFs. TBBPA can be detected by chromatographic methods coupled with mass spectrometry (MS) or other detectors. Gas chromatography (GC) and GC/MS are used after conversion of TBBPA to the diethyl derivative by ethylation. The Occupational Safety and Health Administration (OSHA) air sampling method for TBBPA is high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. TBBPA has been determined in human plasma using solid-phase extraction (SPE) and GC with electron-capture MS (ECMS) detection in the concentration range of 4-200 pg/g plasma; the estimated detection limit was 0.8 pg/g plasma.
    [Show full text]
  • ROHS Annex II Dossier for TBBP-A Restriction Proposal for Substances in Electrical and Electronic Equipment Under Rohs
    www.oeko.de ROHS Annex II Dossier for TBBP-A Restriction proposal for substances in electrical and electronic equipment under RoHS Report No. 2 Version 2 Substance Name: Tetrabromobisphenol A 04/12/2019 (TBBP-A, flame retardant) (2,2',6,6'-tetrabromo-4,4'-isopropylidenediphenol) EC Number: 201-236-9 CAS Number: 79-94-7 Head Office Freiburg P.O. Box 17 71 79017 Freiburg Street address Merzhauser Strasse 173 79100 Freiburg Tel. +49 761 45295-0 Office Berlin Schicklerstrasse 5-7 10179 Berlin Tel. +49 30 405085-0 Office Darmstadt Rheinstrasse 95 64295 Darmstadt Tel. +49 6151 8191-0 [email protected] www.oeko.de RoHS Annex II Dossier, V. 2 TBBP-A (flame retardant) Table of Contents List of Tables 4 Abbreviations 5 CONTEXT and SCOPE of the Substance Assessment 7 1. IDENTIFICATION, CLASSIFICATION AND LABELLING, LEGAL STATUS AND USE RESTRICTIONS 9 1.1.1. Name, other identifiers, and composition of the substance 9 1.1.2. Physico-chemical properties 10 1.2. Classification and labelling status 10 1.3. Legal status and use restrictions 11 1.3.1. Regulation of the substance under REACH 11 1.3.2. Other legislative measures 12 1.3.3. Non-governmental initiatives 12 2. USE IN ELECTRICAL AND ELECTRONIC EQUIPMENT 14 2.1. Function of the substance 14 2.2. Types of applications / types of materials 14 2.3. Quantities of the substance used 17 3. HUMAN HEALTH HAZARD PROFILE 19 3.1. Endpoints of concern 19 3.2. Existing Guidance values (DNELs, OELs) 20 3.3. Non-testing information opposing existing DNELs 21 4.
    [Show full text]
  • Environmental Pollutants and the Reproductive System in Birds
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 565 _____________________________ _____________________________ Environmental Pollutants and the Reproductive System in Birds Developmental Effects of Estrogenic Compounds BY CECILIA BERG ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy in Environmental Toxicology presented at Uppsala University in 2000 ABSTRACT Berg, C. 2000. Environmental Pollutants and the Reproductive System in Birds. Developmental effects of estrogenic compounds. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 565, 63 pp. Uppsala. ISBN 91-554-4798-8. A number of environmental pollutants have been shown to mimick the action of the female sex hormone estrogen and are, therefore, suspected to be responsible for reproductive abnormalities seen in wildlife. Test systems which can be used in hazard and risk assessment of chemicals with estrogenic effects are consequently needed. In this thesis, I propose the avian egg as an in vivo test system for estrogenic compounds. I conclude that malformation of the left testis and the Müllerian ducts (MDs: embryonic oviducts) in avian embryos can be used as endpoints to examine estrogenic activity of chemicals. MD malformation is more easily determined and thereby faster to use as an endpoint than histologically observed feminization of the testis. The usefulness of MD/oviduct malformations as biomarkers for estrogenic effects in wild birds should be considered. The environmental pollutants bisphenol A (BPA) and o,p´-DDT induced similar effects as the synthetic estrogens, ethynylestradiol and diethylstilbestrol. BPA caused MD malformations in quail embryos and ovotestis formation in chicken embryos.
    [Show full text]
  • OCTABROMODIPHENYL ETHER – PORPHYROGENICITY AFTER REPEATED ADMINISTRATION to RATS ELŻBIETA BRUCHAJZER, BARBARA FRYDRYCH, and JADWIGA A
    ORIGINAL PAPERS International Journal of Occupational Medicine and Environmental Health 2012;25(4):392 – 403 DOI 10.2478/S13382-012-0055-1 OCTABROMODIPHENYL ETHER – PORPHYROGENICITY AFTER REPEATED ADMINISTRATION TO RATS ELŻBIETA BRUCHAJZER, BARBARA FRYDRYCH, and JADWIGA A. SZYMAŃSKA Medical University of Łódź, Łódź, Poland Department of Toxicology Abstract Objectives: Octabromodiphenyl ether (OctaBDE) is a flame retardant which has been withdrawn from common use due to its negative effect on the environment. The literature data regarding its toxicity addresses its effect on liver function, the endocrine and reproductive systems, as well as its developmental toxicology aspects. The aim of this study was to investigate the effect of repeated administration of OctaBDE on heme biosynthesis in rats. Materials and Methods: The study was per- formed on female Wistar rats. OctaBDE was administered intragastrically at four different doses (2, 8, 40 or 200 mg/kg/day) for 7, 14, 21 or 28 days. The following measures of heme synthesis disturbance were used: urinary excretion of porphyrins, liver concentration of porphyrins, the activity of delta-aminolevulinate synthase (ALA-S) and delta-aminolevulinate dehy- dratase (ALA-D) in the liver. Results: After 28 days of exposure, lower ALA-S and ALA-D activity was observed in the liver. Additionally, increased concentrations of high carboxylated porphyrins (octa- and heptacarboxyporphyrins) were found in the liver: from 2- to 10-fold after the 2 mg/kg/day doses and from 4- to 14-fold after the 8–200 mg/kg/day doses. The porphyrogenic effect of OctaBDE was also evidenced by augmented, dose-dependent and exposure time-dependent, concentrations of total porphyrins in urine (2–7.5-fold increase) and their urinary excretion (2–9-fold increase).
    [Show full text]