XMM-Newton Observations of Seyfert Galaxies from the Palomar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, -
Black Hole Mass Scaling Relations for Spiral Galaxies. I. MBH–M*,Sph Benjamin L
The Astrophysical Journal, 873:85 (26pp), 2019 March 1 https://doi.org/10.3847/1538-4357/aaf3b8 © 2019. The American Astronomical Society. All rights reserved. Black Hole Mass Scaling Relations for Spiral Galaxies. I. MBH–M*,sph Benjamin L. Davis1 , Alister W. Graham1 , and Ewan Cameron2 1 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; [email protected] 2 Oxford Big Data Institute, University of Oxford, Oxford OX3 7LF, UK Received 2018 May 18; revised 2018 October 19; accepted 2018 November 13; published 2019 March 6 Abstract ( )–( ) The supermassive black hole mass, MBH bulge stellar mass, M*,sph relation is, obviously, derived using two quantities. We endeavor to provide accurate values for the latter via detailed multicomponent galaxy decompositions for the current full sample of 43 spiral galaxies having directly measured MBH values; 35 of these galaxies have been alleged to contain pseudobulges, 21 have water maser measurements, and three appear bulgeless. This more than doubles the previous sample size of spiral galaxies with a finessed image analysis. We have analyzed near-infrared images, accounting for not only the bulge, disk (exponential, truncated, or inclined), and bar but also spiral arms and rings and additional central components (active galactic nuclei (AGNs),etc.). A symmetric Bayesian analysis finds = +0.35 / 10 +( ± ) υ log (MMBH ☉) (2.44-0.31) log{M*,sph [u(1.15´ 10 M☉ )]} 7.24 0.12 ,with a stellar mass-to-light ratio term. The level of scatter equals that about the MBH–σ* relation. The nonlinear slope rules out the idea that many mergers, coupled with the central limit theorem, produced this scaling relation, and it corroborates previous observational studies and simulations, which have reported a near-quadratic slope at the low-mass end of the MBH– M ,sph diagram. -
The Herschel Sprint PHOTO ILLUSTRATION: PATRICIA GILLIS-COPPOLA, HERSCHEL IMAGE: WIKIMEDIA S&T
The Herschel Sprint PHOTO ILLUSTRATION: PATRICIA GILLIS-COPPOLA, HERSCHEL IMAGE: WIKIMEDIA S&T 34 April 2015 sky & telescope William Herschel’s Extraordinary Night of DiscoveryMark Bratton Recreating the legendary sweep of April 11, 1785 There’s little doubt that William Herschel was the most clearly with his instruments. As we will see, he did make signifi cant astronomer of the 18th century. His accom- occasional errors in interpretation, despite the superior plishments included the discovery of Uranus, infrared optics; for instance, he thought that the planetary nebula radiation, and four planetary satellites, as well as the M57 was a ring of stars. compilation of two extensive catalogues of double and The other factor contributing to Herschel’s interest multiple stars. His most lasting achievement, however, was the success of his sister, Caroline, in her study of the was his exhaustive search for undiscovered star clusters sky. He had built her a small telescope, encouraging her and nebulae, a key component in his quest to understand to search for double stars and comets. She located Messier what he called “the construction of the heavens.” In Her- objects and more, occasionally fi nding star clusters and schel’s time, astronomers were concerned principally with nebulae that had escaped the French astronomer’s eye. the study of solar system objects. The search for clusters Over the course of a year of observing, she discovered and nebulae was, up to that point, a haphazard aff air, with about a dozen star clusters and galaxies, occasionally not- a total of only 138 recorded by all the observers in history. -
A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques. -
Accretion Disk Versus Jet Orientation in H2O Megamaser Galaxies F
A&A 624, A42 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834600 & c F. Kamali et al. 2019 Astrophysics Accretion disk versus jet orientation in H2O megamaser galaxies F. Kamali1;?, C. Henkel1,2, S. Koyama3,1, C. Y. Kuo4, J. J. Condon5, A. Brunthaler1, M. J. Reid6, J. E. Greene7, K. M. Menten1, C. M. V. Impellizzeri5,8, J. A. Braatz5, E. Litzinger9,10, and M. Kadler9 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected], [email protected] 2 Astron. Dept., King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia 3 Academia Sinica Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan 4 Physics Department, National Sun Yat-Sen University, No. 70, Lien-Hai Rd, Kaosiung City 80424, Taiwan 5 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 6 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 7 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 8 Joint ALMA Office, Alonso de Córdova 3107, Vitacura, Santiago, Chile 9 Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Str. 31, 97074 Würzburg, Germany 10 Dr. Remeis-Observatory, Erlangen Centre for Astroparticle, Physics, University of Erlangen-Nuremberg, Sternwartstr. 7, 96049 Bamberg, Germany Received 7 November 2018 / Accepted 11 February 2019 ABSTRACT Context. An essential part of the paradigm describing active galactic nuclei is the alignment between the radio jet and the associated rotation axis of the sub-pc accretion disks. -
April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86. -
DGSAT: Dwarf Galaxy Survey with Amateur Telescopes
Astronomy & Astrophysics manuscript no. arxiv30539 c ESO 2017 March 21, 2017 DGSAT: Dwarf Galaxy Survey with Amateur Telescopes II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems C. Henkel1;2, B. Javanmardi3, D. Mart´ınez-Delgado4, P. Kroupa5;6, and K. Teuwen7 1 Max-Planck-Institut f¨urRadioastronomie, Auf dem H¨ugel69, 53121 Bonn, Germany 2 Astronomy Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 3 Argelander Institut f¨urAstronomie, Universit¨atBonn, Auf dem H¨ugel71, 53121 Bonn, Germany 4 Astronomisches Rechen-Institut, Zentrum f¨urAstronomie, Universit¨atHeidelberg, M¨onchhofstr. 12{14, 69120 Heidelberg, Germany 5 Helmholtz Institut f¨ur Strahlen- und Kernphysik (HISKP), Universit¨at Bonn, Nussallee 14{16, D-53121 Bonn, Germany 6 Charles University, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-18000 Praha 8, Czech Republic 7 Remote Observatories Southern Alps, Verclause, France Received date ; accepted date ABSTRACT The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a dis- criminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way- class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the arXiv:1703.05356v2 [astro-ph.GA] 19 Mar 2017 catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless. -
Gas Accretion from Minor Mergers in Local Spiral Galaxies⋆
A&A 567, A68 (2014) Astronomy DOI: 10.1051/0004-6361/201423596 & c ESO 2014 Astrophysics Gas accretion from minor mergers in local spiral galaxies? E. M. Di Teodoro1 and F. Fraternali1;2 1 Department of Physics and Astronomy, University of Bologna, 6/2, Viale Berti Pichat, 40127 Bologna, Italy e-mail: [email protected] 2 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands Received 7 February 2014 / Accepted 28 May 2014 ABSTRACT We quantify the gas accretion rate from minor mergers onto star-forming galaxies in the local Universe using Hi observations of 148 nearby spiral galaxies (WHISP sample). We developed a dedicated code that iteratively analyses Hi data-cubes, finds dwarf gas-rich satellites around larger galaxies, and estimates an upper limit to the gas accretion rate. We found that 22% of the galaxies have at least one detected dwarf companion. We made the very stringent assumption that all satellites are going to merge in the shortest possible time, transferring all their gas to the main galaxies. This leads to an estimate of the maximum gas accretion rate of −1 0.28 M yr , about five times lower than the average star formation rate of the sample. Given the assumptions, our accretion rate is clearly an overestimate. Our result strongly suggests that minor mergers do not play a significant role in the total gas accretion budget in local galaxies. Key words. galaxies: interactions – galaxies: evolution – galaxies: kinematics and dynamics – galaxies: star formation – galaxies: dwarf 1. Introduction structures in the Universe grow by several inflowing events and have increased their mass content through a small number of The evolution of galaxies is strongly affected by their capabil- major mergers, more common at high redshifts, and through an ity of retaining their gas and accreting fresh material from the almost continuous infall of dwarf galaxies (Bond et al. -
Nuclear Activity in Circumnuclear Ring Galaxies
International Journal of Astronomy and Astrophysics, 2016, 6, 219-235 Published Online September 2016 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/10.4236/ijaa.2016.63018 Nuclear Activity in Circumnuclear Ring Galaxies María P. Agüero1, Rubén J. Díaz2,3, Horacio Dottori4 1Observatorio Astronómico de Córdoba, UNCand CONICET, Córdoba, Argentina 2ICATE, CONICET, San Juan, Argentina 3Gemini Observatory, La Serena, Chile 4Instituto de Física, UFRGS, Porto Alegre, Brazil Received 23 May 2016; accepted 26 July 2016; published 29 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs), compiled from published data. From the properties of this sample a typical circumnuclear ring can be characterized as having a median radius of 0.7 kpc (mean 0.8 kpc, rms 0.4 kpc), located at a spiral Sa/Sb galaxy (75% of the hosts), with a bar (44% weak, 37% strong bars). The sample includes 73 emission line rings, 12 dust rings and 9 stellar rings. The sample was compared with a carefully matched control sample of galaxies with very similar global properties but without detected circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: 1) bright companion galaxies seem -
MIPS 24160 M Photometry for the Herschelspire Local Galaxies
Mon. Not. R. Astron. Soc. 423, 197–212 (2012) doi:10.1111/j.1365-2966.2012.20784.x MIPS 24–160 µm photometry for the Herschel-SPIRE Local Galaxies Guaranteed Time Programs G. J. Bendo,1,2 F. Galliano3 andS.C.Madden3 1UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL 2Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ 3Laboratoire AIM, CEA, Universite´ Paris Diderot, IRFU/Service d’Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France Accepted 2012 February 20. Received 2012 January 23; in original form 2011 November 14 ABSTRACT We provide an overview of ancillary 24-, 70- and 160-µm data from the Multiband Imaging Photometer for Spitzer (MIPS) that are intended to complement the 70–500 µm Herschel Space Observatory photometry data for nearby galaxies obtained by the Herschel-SPIRE Local Galaxies Guaranteed Time Programs and the Herschel Virgo Cluster Survey. The MIPS data can be used to extend the photometry to wavebands that are not observed in these Herschel surveys and to check the photometry in cases where Herschel performs observations at the same wavelengths. Additionally, we measured globally integrated 24–160 µm flux densities for the galaxies in the sample that can be used for the construction of spectral energy distributions. Using MIPS photometry published by other references, we have confirmed that we are obtaining accurate photometry for these galaxies. Key words: catalogues – galaxies: photometry – infrared: galaxies. (SEDs) of the dust emission and to map the distribution of cold 1 INTRODUCTION dust within these galaxies. -
190 Index of Names
Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.