In Vitro Propagation and DNA Barcode Analysis of the Endangered Silene Schimperiana in Saint Katherine Protectorate

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro Propagation and DNA Barcode Analysis of the Endangered Silene Schimperiana in Saint Katherine Protectorate Ghareb et al. Journal of Genetic Engineering and Biotechnology (2020) 18:41 Journal of Genetic Engineering https://doi.org/10.1186/s43141-020-00052-8 and Biotechnology RESEARCH Open Access In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate Heba El-Sayed Ghareb1, Shafik Darwish Ibrahim2 and Ghada Abd El-Moneim Hegazi1* Abstract Background: Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of Silene schimperiana through in vitro propagation and DNA barcode analysis. Results: To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA3), 1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of Silene schimperiana was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) and RNA polymerase subunit (rpoC1) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer (ITS). Phylogenetic analysis revealed a successful identification of Silene schimperiana on the species and genus levels and supported the inclusion of Silene schimperiana in genus Silene. Conclusions: In this study, a relevant in vitro propagation method was established to facilitate the recovery of Silene schimperiana, in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources. Keywords: Caryophyllaceae, Micropropagation, DNA barcoding, Southern Sinai, Egypt * Correspondence: [email protected] 1Tissue Culture Unit, Department of Genetic Resources, Desert Research Center, 1 Mathaf El-Matareya Street, Cairo, El-Matareya 11357, Egypt Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Ghareb et al. Journal of Genetic Engineering and Biotechnology (2020) 18:41 Page 2 of 15 Background Studying the molecular phylogeny of plants depends Saint Katherine Protectorate is one of the largest pro- mainly on the sequencing of the chloroplast genome, be- tected areas in Egypt with the highest mountains. It sup- cause of its simple and stable genetic structure. Univer- ports surprising biodiversity and a high proportion of sal primers are used for these target sequences endemic and rare plants. The flora of the mountains dif- amplification, such as 1,5-bisphosphate carboxylase/oxy- fers from the other areas, due to its unique geological, genase large subunit (rbcL) and RNA polymerase sub- morphological, and climatic aspects [1]. The protection unit (rpoC1) have been heavily relied upon for the and conservation of endemic plant species is a world- development of markers for plant DNA barcoding [15]. wide need; especially under the threat of climate change. The Consortium for the Barcode of Life (CBOL) [16] Endemic species are the most defenseless, because of plant working group evaluated the efficacy of the chloro- their unique evolutionary history and low population es- plast DNA marker (cpDNA), rbcL among the recom- timate [2]. mended markers. The rbcL gene is the most published Silene schimperiana Boiss. is a perennial herb, belong- plastid barcode due to its high amplification success rate ing to the largest genus from family Caryophyllaceae. Its and is considered a core DNA barcoding marker for the Arabic name is Wesbi or Losseiq [3]. The plant is a determination of plant diversity [13, 17, 18]. Besides, the hemicryptophyte, growing on rocky wadi beds. It is po- nuclear ribosome DNA marker (ncDNA), internal tran- tentially an ornamental plant with attractive white scribed spacer (ITS) and cpDNA, rpoC1 were frequently flowers [4] and has economic importance in grazing pro- evaluated as plant barcodes [12, 19]. DNA barcoding cesses as a pastoral plant [5]. markers are universal and the choice of the correct loci Silene schimperiana is endangered in Egypt and is is challenging [20]. endemic to the high mountain of Saint Katherine To date, there has been no published researches on Protected Area in southern Sinai. The plant popula- the in vitro culture or DNA barcoding of Silene schim- tions are severely fragmented with a continuing de- periana and therefore, the aim of the present study was cline in habitat quality [5]. Drought is the major the ex situ conservation of Silene schimperiana as an en- threat affecting the distribution of Silene schimperi- dangered plant, endemic to Saint Katherine, through ana, in addition to climate change. The plant has low in vitro propagation and identification by DNA barcode viability due to destructive overgrazing, causing loss analysis using two cpDNA genes: rpoC1 and rbcL and a of reproductive organs. With drought, the effect of ncDNA gene, ITS. overgrazing is more harmful and the wild populations of this species could be in extreme danger in the near Methods future [5]. Ex situ conservation by in vitro propaga- Plant material tion and molecular identification are important ac- Leaf specimens and seeds of Silene schimperiana were tions needed to conserve the plant [5]. collected from shrubs grown in Gebel Tennia, Saint In vitro propagation of other species of Silene have Katherine, South of Sinai E: 33.90090 N: 28.57364 Alt: been achieved previously, such as S. leucophylla [6], S. 1810 (Figs. 1 and 2). Identification of plant was carried fetissovii, S. obovata, S. sussamyrica and S. ladyginae [7], out by Dr. Omran Ghaly, Head of Plant Taxonomy Unit, Silene cretacea [8], Silene bolanthoides [9]andSilene Desert Research Center, Egypt, given the voucher num- fabaria subsp. domokina [10]. ber CAIH-1003-R and voucher specimens were depos- Identification of rare and endemic plant species is an ited in the Herbarium of Desert Research Center important base for evolutionary and phytogeographic (CAIH). studies as well as for the determination of conservation priorities [11]. In vitro experiments DNA barcoding is a molecular marker-based tech- In vitro germination nique, in which short fragments of DNA from a stan- Collected seeds of Silene schimperiana were washed with dardized genome position are utilized. This technique running tap water and detergent, then surface sterilized identifies plant species more definite than the traditional by soaking in commercial bleach containing sodium taxonomic tools, with unrecognizable plant parts and hypochlorite (5.25%) under laminar airflow cabinet (Hol- without requiring taxonomic experience [12, 13]. DNA ten LaminAir HVR 2448, USA), at different concentra- barcoding has applications in biodiversity monitoring, tions (0.5, 1.0, and 1.5% sodium hypochlorite solution). conservation impact assessment, forensic botany, moni- After 15 min, seeds were taken out and thoroughly toring illegal trading, etc. Also, DNA is stable and is washed thrice with sterilized distilled water. Seeds were found in all tissues; therefore, DNA barcoding of medi- cultured on half-strength Murashige and Skoog (1/2 cinal plants can be used for identifying powdered or MS) [21] medium (Duchefa, Haarlem, the Netherlands) processed plant materials [14]. supplemented with 3% (w/v) sucrose and 5.77 μM Ghareb et al. Journal of Genetic Engineering and Biotechnology (2020) 18:41 Page 3 of 15 Fig. 1 A map showing the location of Gebel Tennia, the collection site of Silene schimperiana gibberellic acid (GA3; Sigma Cell Culture, min. 90%, St. min. 90%, St. Louis, USA). MS medium without plant Louis, USA) (0.45 μm filter sterilized) for germination. growth regulators (PGRs) served as a control. The pH of The pH was adjusted to 5.7 ± 0.1, then medium was the medium was adjusted to 5.7 ± 0.1 and autoclaved at gelled with 0.3% (w/v) phytagel (Duchefa, Haarlem, the a pressure of 1.06 kg/cm and 121 °C for 15 min. Cultures Netherlands) before autoclaving at a pressure of 1.06 kg/ were incubated at 25 ± 1 °C at a photoperiod of 16/8 h cm, and 121 °C for 15 min (Harvey Sterilemax autoclave, light/darkness under cool white fluorescent tubes of Thermo Scientific, USA). Cultures were incubated under 2500-3000 lux. The survival and growth percentage (%), cool fluorescent tubes at day-night regime of 16-h the mean number and length (cm) of axillary shoots/ex- photoperiod with the light intensity of 2500-3000 lux plant were recorded after 3 weeks of culture.
Recommended publications
  • Foliar Anatomy of the Genus Silene L. (Caryophyllaceae) at Sectional Level in Iran
    DOI: http://dx.doi.org/10.22092/ijb.2016.107954 FOLIAR ANATOMY OF THE GENUS SILENE L. (CARYOPHYLLACEAE) AT SECTIONAL LEVEL IN IRAN M. Nejati Edalatian, F. Ghahremaninejad & F. Attar Received 2015. 06. 08; accepted for publication 2016. 11. 02 Nejati Edalatian, M., Ghahremaninejad, F. & Attar, F. 2016. 12. 30: Foliar anatomy of the genus Silene L. (Caryophyllaceae) at sectional level in Iran. -Iran. J. Bot. 22 (2): 138-158. Tehran. In this research, Iranian species of 20 sections of the genus Silene L. have been anatomically studied for the first time. Some of the most important anatomical characters of leaf in this genus are listed here: general shape of leaves in transverse section, type of stomata cells, form of trichome, type of mesophyll (dorsiventral or isobilateral), presence or absence and type of collenchyma, thickness of sclerenchyma, existence or lack of water-storage, shape of vascular bundles, number of parenchyma layers in midrib, form and number of spongy and palisade parenchyma, presence or absence of parenchyma bundle sheath, number of vascular bundles in midrib. Based on our results we are able to identify and classify sections of this genus (tables 2, 3). In addition, we selected the most important characters related to midrib and lamina. All of these results confirm anatomical characters have taxonomic value for separating sections in the genus Silene. Maliheh Nejati Edalatian & Farrokh Ghahremaninejad (correspondence<[email protected]>) Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 43 Dr. Mofatteh Avenue, Postal code 15719-14911, Tehran, Iran. -Farideh Attar, Tehran University, College of Sciences, School of Biology, Department of Botany, Central Herbarium, Tehran, Iran.
    [Show full text]
  • Caryophyllaceae)
    BIBL., INST. SYST. BOT., UPPSALA. Kapsel: Nordic Journal of Botany Nummer: Correction - By mistake, a draft version of this paper was published in Nord. J. Bot. 20: 513-518. The correct version is published here. A revised generic classification ofthe tribe Sileneae (Caryophyllaceae) B. Oxelman, M. Lidén, R. K. Rabeler and M. Popp Oxelman, B, Lidén, M., Rabeler, R. K. &. Popp, M. 2001. A revised generic classification of the tribe Sileneae (Caryophyllaceae) - Nord. J. Bot. 20: 743-748. Copenhagen. ISSN-0105-055X. A reclassification of the tribe Sileneae compatible with molecular data is presented. The genus Eudianthe (E. laeta and E. coeli-rosa) is restored. Viscaria, Ixoca (heliosperma), and Atocion together form a well supported monophyletic group distinct from Silene and Lychnis, and are recognized at generic level. With Agrostemma and Petrocoptis, the number of genera in the tribe sums up to eight. The new combinations Silene samojedora, Silene ajanensis, Lychnis abyssinica, Atocion asterias, Atocion compacta, Atocion lerchenfeldiana, and Atocion rupestris are made. B. Oxelman, Evolutionsbiologlskt Centrum (EBC), Uppsala Universitet, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. E-mail: [email protected]. - M. Lidén,, Botaniska trädgården, Uppsala universitet, Villavägen 6, SE-752 36 Uppsala, Sweden. E-mail: [email protected]. - R. K. Rabeler, University of Michigan Herbarium, 1205 North University Ave., Ann Arbor MI 48109-1057 USA. E-mail: [email protected]. - M. Popp, Evolutionsbiologlskt Centrum (EBC), Uppsala Universitet, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. E-mail: magnus. popp@ebc. uu.se. Introduction Apocynaceae (Sennblad & Bremer 1996). Careful analyses of molecular and/or morphological data have With the recent advances in biotechnology, in particular in all these eases revealed that at least one other taxon, the rapid development of the polymerase chain reaetion traditionally recognized at the same rank, is actually an (PCR) and DNA sequencing, our understanding of the ingroup in the respective taxon (i.e.
    [Show full text]
  • U Niversity of Graz Samentauschverzeichnis
    Instutute of Plant Sciences –University of Graz Pflanzenwissenschaften Institut für Karl-Franzens-Universität Graz Samentauschverzeichnis Botanischer Garten - Seminum Index - 2015 SAMENTAUSCHVERZEICHNIS Index Seminum Seed list Catalogue de graines des Botanischen Gartens der Karl-Franzens-Universität Graz Ernte / Harvest / Récolte 2015 Herausgegeben von Christian BERG & Kurt MARQUART ebgconsortiumindexseminum2012 Institut für Pflanzenwissenschaften, Januar 2016 Botanical Garden, Institute of Plant Sciences, Karl- Franzens-Universität Graz 2 Botanischer Garten Institut für Pflanzenwissenschaften Karl-Franzens-Universität Graz Holteigasse 6 A - 8010 Graz, Austria Fax: ++43-316-380-9883 Email- und Telefonkontakt: [email protected], Tel.: ++43-316-380-5651 [email protected], Tel.: ++43-316-380-5747 Webseite: http://garten.uni-graz.at/ Zitiervorschlag : BERG, C. & MARQUART, K. (2015): Samentauschverzeichnis – Index Seminum - des Botanischen Gartens der Karl-Franzens-Universität Graz, Samenernte 2015. – 58 S., Karl-Franzens-Universität Graz. Personalstand des Botanischen Gartens Graz: Institutsleiter: Ao. Univ.-Prof. Mag. Dr. Helmut MAYRHOFER Wissenschaftlicher Gartenleiter: Dr. Christian BERG Gartenverwalter: Jonathan WILFLING, B. Sc. Gärtnermeister: Friedrich STEFFAN GärtnerInnen: Doris ADAM-LACKNER Viola BONGERS Magarete HIDEN Franz HÖDL Kurt MARQUART Franz STIEBER Ulrike STRAUSSBERGER Gartenarbeiter: Herbert GRÜBLER / Philip FRIEDL René MICHALSKI Alfred PROBST / Oliver KROPIWNICKI Gärtnerlehrlinge: Bahram EMAMI (1. Lehrjahr)
    [Show full text]
  • Phylogenetic Relationships of Silene Sect. Melandrium and Allied Taxa
    ! "#! $ %&'(%)($ *++%,-,./,0 *+)%12.,.--0.1-,,. ! 3 4 3 3!!35.,6626 !" # $%&%&&'&'()&* * * + ,- . , / ",%&&',+ / *, " - 0 1 * $ 2 -," , 3)',4& , ,'5!6' 6774657 63, -* *8 0 1 " 9 * : * , * 8 ," . ; * : * , * * 0 1,- * * ,- " ,- ; : * . , < . ** * =>? . 6 +/ ,- ; , " * , ! , $ 8* " ,@ * * ,* ! * , - . * **, "# $= $ = =-"=- " "/" /+"%/+%/+%=> =? <-= @ %&' ( ) *+,-./# A" 8/ %&&' <== 37 63% 4 <='5!6' 6774657 63 ( ((( 6 &&!&30 (BB ,:,B C D ( ((( 6 &&!&31 Cover illustrations: Barry Breckling, Sara Gold, Kjell Lännerholm, Anja Rautenberg and Wiebke Rautenberg. List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Rautenberg, A., Filatov, D., Svennblad, B., Heidari, N., Oxel- man, B. (2008) Conflicting phylogenetic signals in the SlX1/Y1 gene in Silene. BMC Evolutionary Biology, 8:299 II Rautenberg, A., Hathaway, L., Oxelman, B., Prentice, H. C. Phylogenetic relationships of Silene section Elisanthe (Caryo- phyllaceae) as inferred from chloroplast and nuclear DNA se- quences. Manuscript. III Rautenberg, A., Hathaway, L., Prentice, H. C., Oxelman, B. Phylogenetic relationships
    [Show full text]
  • Composition Patterns of Ornamental Flora in the Czech Republic
    A peer-reviewed open-access journal NeoBiota 52: 87–109 (2019) Composition patterns of ornamental flora 87 doi: 10.3897/neobiota.52.39260 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions Composition patterns of ornamental flora in the Czech Republic Petr Petřík1, Jiří Sádlo2, Martin Hejda2, Kateřina Štajerová2,3, Petr Pyšek2,3, Jan Pergl2 1 Czech Academy of Sciences, Institute of Botany, Department of GIS and Remote Sensing, CZ-252 43 Průhonice, Czech Republic 2 Czech Academy of Sciences, Institute of Botany, Department of Invasion Eco- logy, CZ-252 43 Průhonice, Czech Republic 3 Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague, Czech Republic Corresponding author: Petr Petřík ([email protected]) Academic editor: I. Kowarik | Received 20 August 2019 | Accepted 28 October 2019 | Published 12 November 2019 Citation: Petřík P, Sádlo J, Hejda M, Štajerová K, Pyšek P, Pergl J (2019) Composition patterns of ornamental flora in the Czech Republic. NeoBiota 52: 87–109. https://doi.org/10.3897/neobiota.52.39260 Abstract Ornamental plants are an important component of urban floras and a significant source of alien plant invasions to the surrounding landscapes. We studied ornamental flora across 174 settlements in the Czech Republic, Central Europe. The aims of the study were to (i) identify clusters of sites that are defined as distinctive groups of ornamental taxa reflecting environmental or socioeconomic factors and (ii) apply the classification approach which is traditionally used for spontaneous vegetation in order to evaluate the potential of different settlement types to act as source sites of invasive species.
    [Show full text]
  • Flavonoids of the Caryophyllaceae
    Phytochem Rev https://doi.org/10.1007/s11101-021-09755-3 (0123456789().,-volV)( 0123456789().,-volV) Flavonoids of the Caryophyllaceae Katarzyna Jakimiuk . Michael Wink . Michał Tomczyk Received: 1 December 2020 / Accepted: 9 April 2021 Ó The Author(s) 2021 Abstract The plant family Caryophyllaceae, com- flavonols, isoflavones, and their O-orC-glycosides, monly known as the pink family, is divided into 3 exhibit multiple interesting biological and pharmaco- subfamilies and contains over 80 genera with more logical activities, such as antioxidant, anti-inflamma- than 2600 species that are widely distributed in tory, anti-oedemic, antimicrobial, and temperate climate zones. Plants belonging to this immunomodulatory effects. Thus, this review anal- family produce a variety of secondary metabolites ysed the flavonoid composition of 26 different genera important in an ecological context; however, some of and more than 120 species of Caryophyllaceae for the these metabolites also show health-promoting activi- first time. ties. The most important classes of phytochemicals include saponins, phytoecdysteroids, other sterols, Keywords Caryophyllaceae Á Phytochemistry Á flavonoids, lignans, other polyphenols, essential oils, Flavonoids Á Secondary metabolites and N-containing compounds such as vitamins, alka- loids or cyclopeptides. Flavonoids are polyphenolic compounds that remain one of the most extensively studied constituents of the Caryophyllaceae family. Introduction Numerous structurally diverse aglycones, including flavones, flavonols, flavonones (dihydroflavones), The Caryophyllaceae family, commonly known as the pink family, contains over 80 genera with more than 2600 species. The pink family is divided into 3 K. Jakimiuk Á M. Tomczyk (&) subfamilies, Paronychioideae, Alsinoideae, and Department of Pharmacognosy, Faculty of Pharmacy with Caryophylloideae, according to the presence or the Division of Laboratory Medicine, Medical University absence of stipules as well as the type of calyx and of Białystok, ul.
    [Show full text]
  • Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties
    Diversity 2014, 6, 415-499; doi:10.3390/d6030415 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Review Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties Nilufar Z. Mamadalieva 1, Rene Lafont 2 and Michael Wink 3,* 1 Institute of the Chemistry of Plant Substances AS RUz, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan; E-Mail: [email protected] 2 Sorbonne Universités, Université Pierre et Marie Curie, IBPS-BIOSIPE, Case Courrier n°29, 7 Quai Saint Bernard F-75252, Paris cedex 05, France; E-Mail: [email protected] 3 Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-6221-54-4881; Fax: +49-6221-54-4884. Received: 21 May 2014; in revised form: 26 June 2014 / Accepted: 1 July 2014 / Published: 11 July 2014 Abstract: The genus Silene (family Caryophyllaceae) comprises more than 700 species, which are widely distributed in temperate zones of the Northern Hemisphere, but are also present in Africa and have been introduced in other continents. Silene produces a high diversity of secondary metabolites and many of them show interesting biological and pharmacological activities. More than 450 compounds have been isolated; important classes include phytoecdysteroids (which mimic insect molting hormones), triterpene saponins (with detergent properties), volatiles, other terpenoids and phenolics. This review focusses on the phytochemical diversity, distribution of Silene secondary metabolites and their biological activities. Keywords: Silene; Caryophyllaceae; diversity; secondary metabolites; pharmacology; biological properties Diversity 2014, 6 416 1.
    [Show full text]
  • 8 Phylogenetic Relationships Using Restriction Site Variation of the Chloroplast DNA Inverted Repeat
    8 Phylogenetic Relationships Using Restriction Site Variation of the Chloroplast DNA Inverted Repeat STEPHEN R. DOWNIE and JEFFREY D. PALMER 8.1 Introduction Despite intensive multidisciplinary studies using nonmolecular characters, relationships among families comprising the Caryophyllales remain unclear. Recmistruction of phylogenies from molecular data has become an increas­ ingly common approach in systematics and has often provided valuable insight into historical relationships. Of the three genomes present in plants, the chloroplast genome is now the most widely used for phylogenetic inference. The chloroplast genomes of photosynthetic land plants are circular DNA molecules ranging in size from 120 to 217 kilobase pairs (kb) (Palmer 1985). Complete restriction maps are available for several species of Caryo­ phyllidae; their chloroplast genomes range between 147.and 158kb (Palmer 1982, 1985; Downie and Palmer 1992a). Chloroplast genomes contain, with few exceptions, two duplicate regions in reverse orientation known as the inverted repeat (IR). In a typical angiosperm chloroplast genome of 150 kb, each of the two IR copies is about 25 kb. These repeated regions separate the remainder of the molecule into large single-copy and small single-copy regions (Fig. 8.1). The expansion or contraction of the IR.into, or out of, adjacent single-copy regions·, and changes in sequence complexity due to insertion or deletion of unique sequences are largely responsible for variation in size of the molecule. Recent studies of chloroplast DNA ( cpDNA) genome evolution have revealed a high degree of conservatism in size, structure, primary sequence, gene content, and linear order of genes among major lineages of land plants (Palmer 1985, 1991; Palmer and Stein 1986; Downie and Palmer 1992a).
    [Show full text]
  • Plant-Virus Infection Inhibitors: the Great Potential of Caryophyllales Species
    Physiological and Molecular Plant Pathology 113 (2021) 101597 Contents lists available at ScienceDirect Physiological and Molecular Plant Pathology journal homepage: www.elsevier.com/locate/pmpp Plant-virus infection inhibitors: The great potential of Caryophyllales species Lígia Maria Lembo Duarte a,*, Maria Am´elia Vaz Alexandre a, Alexandre Levi Rodrigues Chaves a, D´eborah Yara Alves Cursino dos Santos b, Ana Claudia Oliveira de Souza c, Luis Carlos Bernacci c a Laboratorio´ de Fitovirologia e Fisiopatologia, Instituto Biologico,´ Sao~ Paulo, Brazil b Laboratorio´ de Fitoquímica, Departamento de Botanica,^ Instituto de Bioci^encias, Universidade de Sao~ Paulo, Sao~ Paulo, Brazil c Centro de Recursos Gen´eticos Vegetais, Instituto Agronomico^ de Campinas, Sao~ Paulo, Brazil ARTICLE INFO ABSTRACT Keywords: Caryophyllales is one of the largest orders in eudicots and comprises 39 families with approximately 12,500 Caryophyllales species. Although extracts from species of this order have been considered potential inhibitors of plant virus Antiviral protein infection since the early 20th century, few species have actually been investigated. In this review, we present an Defense inducer exhaustive analysis of published papers that investigate this inhibitory effect, organized into one table with more Inhibitor mode of action than 100 species. In addition, the main hypotheses regarding the mode of action by which the compounds inhibit Signaling plant defense viral infection are discussed, providing several examples. The proteinaceous nature of antiviral proteins (AVP) produced by Caryophyllales, as well as the role of ribosome-inactivating proteins (RIPs) and pathogenesis-related proteins (PRs) as plant-defense inducers have received considerable attention. It is worth mentioning that data concerning the role of AVPs produced by species of Caryophyllales as signaling plant defense against viruses are scarce.
    [Show full text]
  • The Origin and Number of Introductions of the Hawaiian Endemic Silene Species (Caryophyllaceae)1
    American Journal of Botany 94(2): 210–218. 2007. THE ORIGIN AND NUMBER OF INTRODUCTIONS OF THE HAWAIIAN ENDEMIC SILENE SPECIES (CARYOPHYLLACEAE)1 FRIDA EGGENS,2,7 MAGNUS POPP,2,3 MOLLY NEPOKROEFF,4 WARREN L. WAGNER,5,6 AND BENGT OXELMAN2 2Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyva¨gen 18D, SE-752 36 Uppsala, Sweden; 3National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway; 4Department of Biology, University of South Dakota, Vermillion, South Dakota 57069 USA; 5Department of Botany, MRC-166, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012 USA; and 6National Tropical Botanical Garden, 3530 Papalina Road, Kalaheo, Hawaii 96741 USA The Hawaiian endemic Silene are a small group of woody or semiwoody representatives from a large, predominantly herbaceous, species-rich genus. We here investigated the origin and number of introductions of the endemic Hawaiian Silene based on phylogenetic relationships inferred from DNA sequences from both the plastid (the rps16 intron) and the nuclear (ribosomal internal transcribed sequences, ITS, and intron 23 of the RPB2 gene) genomes. Silene antirrhina, a widespread weedy American annual, is strongly supported as sister to a monophyletic group consisting of the Hawaiian Silene, indicating a single colonization event. There are no obvious morphological similarities between S. antirrhina and any of the species of Hawaiian Silene. Our results suggest an American origin for the Hawaiian endemics because that would require only a single trans-ocean dispersal. Two of the Hawaiian endemics (S. struthioloides and S. hawaiiensis) that form a subclade in the analyses have evolved woodiness after introduction to the Hawaiian Islands.
    [Show full text]
  • Species Delimitation in Silene Acaulis (L.)L. (Caryophyllaceae)
    Species delimitation in Silene acaulis (L.)L. (Caryophyllaceae) based on multi-locus DNA sequence data Patrik Cangren Degree project for Master of Science (Two Years) in Biodiversity and systematics Degree course in (Biodiversity and systematics, BIO707) 60 hec Autumn and Spring 2015 - 16 Department of Biological and Environmental Sciences University of Gothenburg Examiner: Bernard Pfeil Department of Biological and Environmental Sciences University of Gothenburg Supervisor: Bengt Oxelman Department of Biological and Environmental Sciences University of Gothenburg Cover photo by Jörg Hempel, published under Creative Commons License. Abstract Species delimitation has for a long time been seen as an arbitrary endeavour and has historically been separated from phylogenetics which aims to infer the evolutionary history of species. This separation is problematic since neither species boundaries or evolutionary histories can be inferred without knowledge of the other. Since species are the basis for many biological research problems, the results of erroneous delimitations can have a great impact on scientific accuracy. In Silene acaulis, a wide spread perennial, alpine cushion plant with an almost circumpolar distribution across the northern hemisphere, a large number of subspecies has been described. There is little consensus and knowledge regarding the validity of these names and their application also varies between continents. Using recently developed methods for automated species delimitation based on Bayesian inference and the multi-species coalescent, this study aims to infer the evolutionary history and genetic subdivision of Silene acaulis. The data used include DNA sequences captured from 142 probes through hybrid capture and Illumina sequencing from 86 populations of Silene acaulis and two closely related taxa for which the relation to Silene acaulis is unclear.
    [Show full text]
  • The Names of Plants, Third Edition
    THE NAMES OF PLANTS The Names of Plants is a handy, two-part reference book for the botanist and amateur gardener. The book begins by documenting the historical problems associated with an ever-increasing number of common names of plants and the resolution of these problems through the introduction of International Codes for both botanical and horticultural nomenclature. It also outlines the rules to be followed when plant breeders name a new species or cultivar of plant. The second part of the book comprises an alphabetical glossary of generic and specific plant names, and components of these, from which the reader may interpret the existing names of plants and construct new names. For the third edition, the book has been updated to include explanations of the International Codes for both Botanical Nomen- clature (2000) and Nomenclature for Cultivated Plants (1995). The glossary has similarly been expanded to incorporate many more commemorative names. THE NAMES OF PLANTS THIRD EDITION David Gledhill Formerly Senior Lecturer, Department of Botany, University of Bristol and Curator of Bristol University Botanic Garden Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521818636 © Cambridge University Press 2002 This book is in copyright. Subject to statutory exception and to the provision of
    [Show full text]