Species Delimitation in Silene Acaulis (L.)L. (Caryophyllaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Species Delimitation in Silene Acaulis (L.)L. (Caryophyllaceae) Species delimitation in Silene acaulis (L.)L. (Caryophyllaceae) based on multi-locus DNA sequence data Patrik Cangren Degree project for Master of Science (Two Years) in Biodiversity and systematics Degree course in (Biodiversity and systematics, BIO707) 60 hec Autumn and Spring 2015 - 16 Department of Biological and Environmental Sciences University of Gothenburg Examiner: Bernard Pfeil Department of Biological and Environmental Sciences University of Gothenburg Supervisor: Bengt Oxelman Department of Biological and Environmental Sciences University of Gothenburg Cover photo by Jörg Hempel, published under Creative Commons License. Abstract Species delimitation has for a long time been seen as an arbitrary endeavour and has historically been separated from phylogenetics which aims to infer the evolutionary history of species. This separation is problematic since neither species boundaries or evolutionary histories can be inferred without knowledge of the other. Since species are the basis for many biological research problems, the results of erroneous delimitations can have a great impact on scientific accuracy. In Silene acaulis, a wide spread perennial, alpine cushion plant with an almost circumpolar distribution across the northern hemisphere, a large number of subspecies has been described. There is little consensus and knowledge regarding the validity of these names and their application also varies between continents. Using recently developed methods for automated species delimitation based on Bayesian inference and the multi-species coalescent, this study aims to infer the evolutionary history and genetic subdivision of Silene acaulis. The data used include DNA sequences captured from 142 probes through hybrid capture and Illumina sequencing from 86 populations of Silene acaulis and two closely related taxa for which the relation to Silene acaulis is unclear. Of the 142 probes 90 were processed during the study, resulting in 57 informative alignments with complete sequences. Of these a large proportion displayed signs of paralogy and the final STACEY analysis included 8 genes. The results points towards a complicated genetic history with gene duplications or introgression. There was no support for any genetic differentiation between the previously described subspecies but the results indicate the presence of several geographically restricted populations with high internal similarity and little external gene flow. I also present an estimation of the extent of paralogy within Silene acaulis and present an alternative solution for phasing which circumvents a previously unknown and highly problematic error in the commonly used software package samtools. Table of contents Introduction ............................................................................................................................................. 6 General introduction to taxonomy and systematics ........................................................................... 6 Target capture and the multi species coalescent ................................................................................ 6 Gene duplications ................................................................................................................................ 7 Silene acaulis: current knowledge, history and distribution. .............................................................. 8 Aims of this thesis................................................................................................................................ 9 Material and methods ............................................................................................................................. 9 Materials used ..................................................................................................................................... 9 Sequence capture data set .............................................................................................................. 9 Transcriptome data set ................................................................................................................. 12 DNA preparation and next generation sequencing........................................................................... 13 Sequence capture data set ............................................................................................................ 13 Data preparation ............................................................................................................................... 18 Sequence capture dataset ............................................................................................................. 18 Transcriptome dataset .................................................................................................................. 20 Data exploration ................................................................................................................................ 21 Sequence capture dataset ............................................................................................................. 21 Data analysis ...................................................................................................................................... 22 Sequence capture dataset ............................................................................................................. 22 Estimation of phylogeny and species delimitation ........................................................................... 23 Sequence capture dataset ............................................................................................................. 23 Transcriptome dataset .................................................................................................................. 24 Results ................................................................................................................................................... 24 Data preparation: .............................................................................................................................. 24 Sequence capture data set ............................................................................................................ 24 Data exploration ................................................................................................................................ 25 Sequences capture dataset ........................................................................................................... 25 Analyses ............................................................................................................................................. 27 Sequence capture dataset ............................................................................................................. 27 Transcriptome dataset .................................................................................................................. 32 Discussion .............................................................................................................................................. 36 Target capture sequencing results and possible missing genes .................................................... 36 Low read depth and catch-n-de novo approach ........................................................................... 37 Problem in the allele phasing software BCFtools .......................................................................... 37 Summarizing and visualizing mapping parameters ....................................................................... 38 Alignment "finishing" .................................................................................................................... 38 Calculating and plotting pairwise distance against read depth .................................................... 39 Unmapped reads ........................................................................................................................... 39 Paralogy issues .............................................................................................................................. 39 SNAPP analysis............................................................................................................................... 40 Species delimitation and phylogeny .............................................................................................. 41 Acknowledgements ............................................................................................................................... 43 References ............................................................................................................................................. 44 Supplemental material .......................................................................................................................... 47 Introduction General introduction to taxonomy and systematics Nearly 300 years ago Linnaeus began his enormous project of classifying all living organisms into groups and is considered by many as the father of the science of taxonomy. Some of the ideas formalized by him still remain, such as the binomial nomenclature system and an hierarchical classification system with formal ranks, but in other respects much has changed. Linnaeus classified organisms into categories based on shared morphological features and initially saw them as independently created and unchangeable (Linnaeus, 1758). This concept was gradually abolished by the scientific community after Darwin's publication of ´On the Origin
Recommended publications
  • Tesis. Síndromes De Polinización En
    Dr. Luis Giménez Benavides, Profesor Contratado Doctor del Departamento de Biología y Geología, Física y Química Inorgánica de la Universidad Rey Juan Carlos, CERTIFICA Que los trabajos de investigación desarrollados en la memoria de tesis doctoral, “Síndromes de polinización en Silene. Evolución de las interacciones polinizador-depredador con Hadena” son aptos para ser presentados por el Ldo. Samuel Prieto Benítez ante el tribunal que en su día se consigne, para aspirar al Grado de Doctor en el Programa de Doctorado de Conservación de Recursos Naturales por la Universidad Rey Juan Carlos de Madrid. V°B° Director de Tesis Dr. Luis Giménez Benavides TESIS DOCTORAL Síndromes de polinización en Silene. Evolución de las interacciones polinizador- depredador con Hadena. Samuel Prieto Benítez Dirigida por: Luis Giménez Benavides Departamento de Biología y Geología, Física y Química Inorgánica Universidad Rey Juan Carlos Mayo 2015 A mi familia y a Sofía, gracias por el apoyo y el cariño que me dais. ÍNDICE RESUMEN Antecedentes 11 Objetivos 19 Metodología 20 Conclusiones 25 Referencias 27 Lista de manuscritos 33 CAPÍTULOS/CHAPTERS Capítulo 1/Chapter 1 35 Revisión y actualización del estado de conocimiento de las relaciones polinización- depredación entre Caryophyllaceae y Hadena (Noctuidae). Capítulo 2/Chapter 2 65 Diel Variation in Flower Scent Reveals Poor Consistency of Diurnal and Nocturnal Pollination Syndromes in Sileneae. Capítulo 3/Chapter 3 113 Floral scent evolution in Silene: a multivariate phylogenetic analysis. Capítulo 4/Chapter 4 145 Flower circadian rhythm restricts/constraints pollination generalization and prevents the escape from a pollinator-seed predating specialist in Silene. Capítulo 5/Chapter 5 173 Spatio-temporal variation in the interaction outcome between a nursery pollinator and its host plant when other other pollinators, fruit predators and nectar robbers are present.
    [Show full text]
  • Foliar Anatomy of the Genus Silene L. (Caryophyllaceae) at Sectional Level in Iran
    DOI: http://dx.doi.org/10.22092/ijb.2016.107954 FOLIAR ANATOMY OF THE GENUS SILENE L. (CARYOPHYLLACEAE) AT SECTIONAL LEVEL IN IRAN M. Nejati Edalatian, F. Ghahremaninejad & F. Attar Received 2015. 06. 08; accepted for publication 2016. 11. 02 Nejati Edalatian, M., Ghahremaninejad, F. & Attar, F. 2016. 12. 30: Foliar anatomy of the genus Silene L. (Caryophyllaceae) at sectional level in Iran. -Iran. J. Bot. 22 (2): 138-158. Tehran. In this research, Iranian species of 20 sections of the genus Silene L. have been anatomically studied for the first time. Some of the most important anatomical characters of leaf in this genus are listed here: general shape of leaves in transverse section, type of stomata cells, form of trichome, type of mesophyll (dorsiventral or isobilateral), presence or absence and type of collenchyma, thickness of sclerenchyma, existence or lack of water-storage, shape of vascular bundles, number of parenchyma layers in midrib, form and number of spongy and palisade parenchyma, presence or absence of parenchyma bundle sheath, number of vascular bundles in midrib. Based on our results we are able to identify and classify sections of this genus (tables 2, 3). In addition, we selected the most important characters related to midrib and lamina. All of these results confirm anatomical characters have taxonomic value for separating sections in the genus Silene. Maliheh Nejati Edalatian & Farrokh Ghahremaninejad (correspondence<[email protected]>) Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 43 Dr. Mofatteh Avenue, Postal code 15719-14911, Tehran, Iran. -Farideh Attar, Tehran University, College of Sciences, School of Biology, Department of Botany, Central Herbarium, Tehran, Iran.
    [Show full text]
  • Rare Plant Survey of San Juan Public Lands, Colorado
    Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Peggy Lyon and Julia Hanson Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 December 2005 Cover: Imperiled (G1 and G2) plants of the San Juan Public Lands, top left to bottom right: Lesquerella pruinosa, Draba graminea, Cryptantha gypsophila, Machaeranthera coloradoensis, Astragalus naturitensis, Physaria pulvinata, Ipomopsis polyantha, Townsendia glabella, Townsendia rothrockii. Executive Summary This survey was a continuation of several years of rare plant survey on San Juan Public Lands. Funding for the project was provided by San Juan National Forest and the San Juan Resource Area of the Bureau of Land Management. Previous rare plant surveys on San Juan Public Lands by CNHP were conducted in conjunction with county wide surveys of La Plata, Archuleta, San Juan and San Miguel counties, with partial funding from Great Outdoors Colorado (GOCO); and in 2004, public lands only in Dolores and Montezuma counties, funded entirely by the San Juan Public Lands. Funding for 2005 was again provided by San Juan Public Lands. The primary emphases for field work in 2005 were: 1. revisit and update information on rare plant occurrences of agency sensitive species in the Colorado Natural Heritage Program (CNHP) database that were last observed prior to 2000, in order to have the most current information available for informing the revision of the Resource Management Plan for the San Juan Public Lands (BLM and San Juan National Forest); 2.
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • Caryophyllaceae)
    BIBL., INST. SYST. BOT., UPPSALA. Kapsel: Nordic Journal of Botany Nummer: Correction - By mistake, a draft version of this paper was published in Nord. J. Bot. 20: 513-518. The correct version is published here. A revised generic classification ofthe tribe Sileneae (Caryophyllaceae) B. Oxelman, M. Lidén, R. K. Rabeler and M. Popp Oxelman, B, Lidén, M., Rabeler, R. K. &. Popp, M. 2001. A revised generic classification of the tribe Sileneae (Caryophyllaceae) - Nord. J. Bot. 20: 743-748. Copenhagen. ISSN-0105-055X. A reclassification of the tribe Sileneae compatible with molecular data is presented. The genus Eudianthe (E. laeta and E. coeli-rosa) is restored. Viscaria, Ixoca (heliosperma), and Atocion together form a well supported monophyletic group distinct from Silene and Lychnis, and are recognized at generic level. With Agrostemma and Petrocoptis, the number of genera in the tribe sums up to eight. The new combinations Silene samojedora, Silene ajanensis, Lychnis abyssinica, Atocion asterias, Atocion compacta, Atocion lerchenfeldiana, and Atocion rupestris are made. B. Oxelman, Evolutionsbiologlskt Centrum (EBC), Uppsala Universitet, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. E-mail: [email protected]. - M. Lidén,, Botaniska trädgården, Uppsala universitet, Villavägen 6, SE-752 36 Uppsala, Sweden. E-mail: [email protected]. - R. K. Rabeler, University of Michigan Herbarium, 1205 North University Ave., Ann Arbor MI 48109-1057 USA. E-mail: [email protected]. - M. Popp, Evolutionsbiologlskt Centrum (EBC), Uppsala Universitet, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. E-mail: magnus. popp@ebc. uu.se. Introduction Apocynaceae (Sennblad & Bremer 1996). Careful analyses of molecular and/or morphological data have With the recent advances in biotechnology, in particular in all these eases revealed that at least one other taxon, the rapid development of the polymerase chain reaetion traditionally recognized at the same rank, is actually an (PCR) and DNA sequencing, our understanding of the ingroup in the respective taxon (i.e.
    [Show full text]
  • Sileneae, Caryophyllaceae)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 328 Taxonomy and Reticulate Phylogeny of Heliosperma and Related Genera (Sileneae, Caryophyllaceae) BOžO FRAJMAN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-6946-7 2007 urn:nbn:se:uu:diva-8171 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, EBC, Norbyvägeb 18A, Uppsala, Thursday, September 27, 2007 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Frajman, B. 2007. Taxonomy and Reticulate Phylogeny of Heliosperma and Related Genera (Sileneae, Caryophyllaceae). Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 328. 34 pp. Uppsala. ISBN 978-91-554-6946-7. Heliosperma (nom. cons prop.) comprises 15—20 taxa, most of them endemic to the Balkan Peninsula. DNA sequences from the chloroplast (rps16 intron, psbE-petG spacer) and the nuclear genome (ITS and four putatively unlinked RNA polymerase genes) are used to elucidate phylogenetic relationships within Heliosperma, and its position within Sileneae. Three main lineages are found within Heliosperma: Heliosperma alpestre, H. macranthum and the H. pusillum-clade. The relationships among the lineages differ between the plastid and the nuclear trees. Relative dates are used to discriminate among inter- and intralineage processes causing such incongruences, and ancient homoploid hybridisation is the most likely explanation. The chloroplast data strongly support two, geographically correlated clades in the H. pusillum-group, whereas the relationships appear poorly resolved by the ITS data, when analysed under a phylogenetic tree model. However, a network analysis finds a geographic structuring similar to that in the chloroplast data.
    [Show full text]
  • In Vitro Propagation and DNA Barcode Analysis of the Endangered Silene Schimperiana in Saint Katherine Protectorate
    Ghareb et al. Journal of Genetic Engineering and Biotechnology (2020) 18:41 Journal of Genetic Engineering https://doi.org/10.1186/s43141-020-00052-8 and Biotechnology RESEARCH Open Access In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate Heba El-Sayed Ghareb1, Shafik Darwish Ibrahim2 and Ghada Abd El-Moneim Hegazi1* Abstract Background: Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of Silene schimperiana through in vitro propagation and DNA barcode analysis. Results: To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA3), 1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse.
    [Show full text]
  • Red List of Vascular Plants of the Czech Republic: 3Rd Edition
    Preslia 84: 631–645, 2012 631 Red List of vascular plants of the Czech Republic: 3rd edition Červený seznam cévnatých rostlin České republiky: třetí vydání Dedicated to the centenary of the Czech Botanical Society (1912–2012) VítGrulich Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. – Preslia 84: 631–645. The knowledge of the flora of the Czech Republic has substantially improved since the second ver- sion of the national Red List was published, mainly due to large-scale field recording during the last decade and the resulting large national databases. In this paper, an updated Red List is presented and compared with the previous editions of 1979 and 2000. The complete updated Red List consists of 1720 taxa (listed in Electronic Appendix 1), accounting for more then a half (59.2%) of the native flora of the Czech Republic. Of the Red-Listed taxa, 156 (9.1% of the total number on the list) are in the A categories, which include taxa that have vanished from the flora or are not known to occur at present, 471 (27.4%) are classified as critically threatened, 357 (20.8%) as threatened and 356 (20.7%) as endangered. From 1979 to 2000 to 2012, there has been an increase in the total number of taxa included in the Red List (from 1190 to 1627 to 1720) and in most categories, mainly for the following reasons: (i) The continuing human pressure on many natural and semi-natural habitats is reflected in the increased vulnerability or level of threat to many vascular plants; some vulnerable species therefore became endangered, those endangered critically threatened, while species until recently not classified may be included in the Red List as vulnerable or even endangered.
    [Show full text]
  • Pucciniomycotina: Microbotryum) Reflect Phylogenetic Patterns of Their Caryophyllaceous Hosts
    Org Divers Evol (2013) 13:111–126 DOI 10.1007/s13127-012-0115-1 ORIGINAL ARTICLE Contrasting phylogenetic patterns of anther smuts (Pucciniomycotina: Microbotryum) reflect phylogenetic patterns of their caryophyllaceous hosts Martin Kemler & María P. Martín & M. Teresa Telleria & Angela M. Schäfer & Andrey Yurkov & Dominik Begerow Received: 29 December 2011 /Accepted: 2 October 2012 /Published online: 6 November 2012 # Gesellschaft für Biologische Systematik 2012 Abstract Anther smuts in the genus Microbotryum often is a factor that should be taken into consideration in delimitat- show very high host specificity toward their caryophyllaceous ing species. Parasites on Dianthus showed mainly an arbitrary hosts, but some of the larger host groups such as Dianthus are distribution on Dianthus hosts, whereas parasites on other crucially undersampled for these parasites so that the question Caryophyllaceae formed well-supported monophyletic clades of host specificity cannot be answered conclusively. In this that corresponded to restricted host groups. The same pattern study we sequenced the internal transcribed spacer (ITS) was observed in the Caryophyllaceae studied: morphological- region of members of the Microbotryum dianthorum species ly described Dianthus species did not correspond well with complex as well as their Dianthus hosts. We compared phy- monophyletic clades based on molecular data, whereas other logenetic trees of these parasites including sequences of anther Caryophyllaceae mainly did. We suggest that these different smuts from other Caryophyllaceae, mainly Silene,withphy- patterns primarily result from different breeding systems and logenies of Caryophyllaceae that are known to harbor anther speciation times between different host groups as well as smuts. Additionally we tested whether observed patterns in difficulties in species delimitations in the genus Dianthus.
    [Show full text]
  • Vascular Flora and Geoecology of Mont De La Table, Gaspésie, Québec
    RHODORA, Vol. 117, No. 969, pp. 1–40, 2015 E Copyright 2015 by the New England Botanical Club doi: 10.3119/14-07; first published on-line March 11, 2015. VASCULAR FLORA AND GEOECOLOGY OF MONT DE LA TABLE, GASPE´ SIE, QUE´ BEC SCOTT W. BAILEY USDA Forest Service, 234 Mirror Lake Road, North Woodstock, NH 03262 e-mail: [email protected] JOANN HOY 21 Steam Mill Road, Auburn, NH 03032 CHARLES V. COGBILL 82 Walker Lane, Plainfield, VT 05667 ABSTRACT. The influence of substrate lithology on the distribution of many vascular and nonvascular plants has long been recognized, especially in alpine, subalpine, and other rocky habitats. In particular, plants have been classified as dependent on high-calcium substrates (i.e., calcicoles) based on common restriction to habitats developed in calcareous rocks, such as limestone and marble. In a classic 1907 paper on the influence of substrate on plants, M. L. Fernald singled out a particular meadow on Mont de la Table in the Chic-Choc Mountains of Que´bec for its unusual co-occurrence of strict calcicole and calcifuge (i.e., acidophile) plant taxa. We re-located this site, investigated substrate factors responsible for its unusual plant diversity, and documented current plant distributions. No calcareous rocks were found on site. However, inclusions of calcareous rocks were found farther up the mountain. The highest pH and dissolved calcium concentrations in surface waters were found in a series of springs that deliver groundwater, presumably influenced by calcareous rocks up the slope. Within the habitat delineated by common occurrences of calcicole species, available soil calcium varied by a factor of five and soil pH varied by almost 1.5 units, depending on microtopography and relative connection with groundwater.
    [Show full text]
  • A New Subspecies of Silene Acaulis (Caryophyllaceae) from East Anatolia, Turkey
    Ann. Bot. Fennici 42: 143–149 ISSN 0003-3847 Helsinki 27 April 2005 © Finnish Zoological and Botanical Publishing Board 2005 A new subspecies of Silene acaulis (Caryophyllaceae) from East Anatolia, Turkey Fevzi Özgökçe1, Kit Tan2* & Vladimir Stevanović3 1) Yüzüncü Yıl University, Faculty of Science and Arts, Department of Biology, 65080 Van, Turkey 2) Institute of Biology, University of Copenhagen, Øster Farimagsgade 2D, DK-1353 Copenhagen K, Denmark (*corresponding author’s e-mail: [email protected]) 3) Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, Belgrade 11000, Serbia and Montenegro Received 21 Oct. 2004, revised version received 27 Dec. 2004, accepted 28 Dec. 2004 Özgökçe, F., Tan, K. & Stevanović, V. 2005: A new subspecies of Silene acaulis (Caryophyll- aceae) from East Anatolia, Turkey. — Ann. Bot. Fennici 42: 143–149. Silene acaulis (L.) Jacq. subsp. vanensis Özgökçe & Kit Tan (Caryophyllaceae), a new taxon occurring in the province of Van in East Anatolia, Turkey, is described and illustrated. Its closest affinities are with S. acaulis subsp. bryoides, a plant occurring more than 2000 km away in the mountains of central and southern Europe. The exist- ence of a new subspecies of S. acaulis in the extremely disjunct locality is interesting from a phytogeographical viewpoint. It is possible that during the post-glacial period the present-day Arctic-Alpine flora migrated not only southwards to the mountains of central and southern Europe but also to the highlands of eastern Turkey. Key words: Caryophyllaceae, new subspecies, phytogeography, Silene, taxonomy Silene is one of the larger genera of flowering During field work in spring 1997 to early plants in the world, comprising ca.
    [Show full text]
  • From Cacti to Carnivores: Improved Phylotranscriptomic Sampling And
    Article Type: Special Issue Article RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Short Title: Walker et al.—Phylotranscriptomic analysis of Caryophyllales From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales Joseph F. Walker1,13, Ya Yang2, Tao Feng3, Alfonso Timoneda3, Jessica Mikenas4,5, Vera Hutchison4, Caroline Edwards4, Ning Wang1, Sonia Ahluwalia1, Julia Olivieri4,6, Nathanael Walker-Hale7, Lucas C. Majure8, Raúl Puente8, Gudrun Kadereit9,10, Maximilian Lauterbach9,10, Urs Eggli11, Hilda Flores-Olvera12, Helga Ochoterena12, Samuel F. Brockington3, Michael J. Moore,4 and Stephen A. Smith1,13 Manuscript received 13 October 2017; revision accepted 4 January 2018. 1 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048 USA 2 Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108 USA 3 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 4 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097 USA 5 Current address: USGS Canyonlands Research Station, Southwest Biological Science Center, 2290 S West Resource Blvd, Moab, UT 84532 USA 6 Institute of Computational and Mathematical Engineering (ICME), Stanford University, 475 Author Manuscript Via Ortega, Suite B060, Stanford, CA, 94305-4042 USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]