Cidaris Revista Ilicitana de Paleontología y Mineralogía

Núm. 30 2010

VIII Encuentro de Jóvenes Investigadores en Paleontología VOLUMEN DE ACTAS

GRUPO CULTURAL PALEONTOLÓGICO DE ELCHE SNAKE FOSSIL REMAINS FROM THE MIDDLE MIOCENE STRATIGRAPHIC SERIES OF ABOCADOR DE CAN MATA (ELS HOSTALETS DE PIEROLA, , )

RESTOS FÓSILES DE SERPIENTES DE LA SERIE ESTRATIGRÁFICA DEL MIOCENO MEDIO DEL ABOCADOR DE CAN MATA (ELS HOSTALETS DE PIEROLA, CATALUÑA, ESPAÑA)

Raül Carmona1, David M. Alba2, Massimo Delfi no3, Josep M. Robles1, Cheyenn Rotgers1, Juan V. Bertó Mengual1, Jordi Balaguer1, Jordi Galindo2 and Salvador Moyà-Solà4

1FOSSILIA Serveis Paleontològics i Geològics, S.L. c/ Jaume I 87, 1er 5a , (Spain). E-mail: raul.carmona@ fossilia.com, [email protected], [email protected], [email protected], [email protected] 2Institut Català de Paleontologia, Universitat Autònoma de Barcelona. Edifi ci ICP, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona (Spain). E-mail: [email protected], [email protected] 3Dipartimento di Scienze della Terra, Università di Firenze. Via G. La Pira 4, 50121 Florence (Italy). E-mail: massimo.delfi no@unifi .it 4ICREA at Institut Català de Paleontologia and Unitat d’Antropologia Biològica (Dept. BABVE), Universitat Autònoma de Barcelona. Edifi ci ICP, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona (Spain). E-mail: [email protected]

ABSTRACT

Very few studies have been devoted to the Miocene snakes from Catalonia. Here we report the preliminary taxonomic attribution of ophidian vertebral remains from several middle Miocene (MN 7 and MN 8) localities of the stratigraphic se- ries of Abocador de Can Mata (els Hostalets de Pierola, Spain): C2-B3, C3-A7, C3-B3, BCV1, C4-A1, C5-C3. Two taxa are identifi ed: Naja sp. and “Colubrinae” indet. This constitutes the fi rst citation of cobras from the Vallès-Penedès Basin, being indicative of a warm climate. A more precise taxonomic attribution is hampered by the fragmentary preservation of the available remains and the small size of the sample. We hope that this contribution will constitute a starting point for a renewed interest on the study of Miocene snakes from Catalonia.

Keywords: Naja, colubrines, Ophidia, Vallès-Penedès basin, middle Miocene, vertebrates.

RESUMEN

Las serpientes miocénicas de Cataluña han sido objeto de muy pocos estudios. Aquí damos a conocer la atribución taxo- nómica preliminar de los restos vertebrales de ofi dios de varias localidades del Mioceno medio (MN 7 y MN 8) de la serie estratigráfi ca local del Abocador de Can Mata (els Hostalets de Pierola, España): C2-B3, C3-A7, C3-B3, BCV1, C4-A1, C5-C3. Se han identifi cado dos taxones: Naja sp. y “Colubrinae” indet. Ello constituye la primera cita de cobras de la cuenca del Vallès-Penedès, la cual indicaría un clima cálido. No es posible una atribución taxonómica más precisa debido a la preservación fragmentaria de los restos disponibles y el pequeño tamaño de la muestra. Esperamos que esta contribución constituya el inicio de un interés renovado en las serpientes miocénicas de Cataluña.

Palabras clave: Naja, colubrinos, Ophidia, cuenca del Vallès-Penedès, Mioceno medio, vertebrados.

1. INTRODUCTION (e.g. Bailon et al., 2002; Murelaga et al., 2004; Sanchiz, The ophidian fossil record from the Miocene of Cata- 1981; Szyndlar, 1985; Szyndlar and Schleich, 1994) or lonia is poorly known and there are no studies exclusively elsewhere in Europe (e.g. Rage, 1981; Mlynarski, 1984; devoted to Miocene Catalan snakes. Besides some cita- Szyndlar, 1991a,b, 2009; Venczel, 1994, 1998; Augé and tions appearing in faunal lists without description of the Rage, 2000; Ivanov, 2000, 2001, 2002; Miklas-Tempfer, material (e.g., Alba et al., 2006a), the most recent relevant 2003; Szyndlar and Rage, 2003; Rage and Bailon, 2005), publication is that of Crusafont Pairó and Villalta (1952). where relevant publications on Miocene ophidians have This contrasts with the situation in other Iberian basins been published much more recently.

Cidaris (2010).30 - VIII EJIP, pág. 77-84 77 Raül Carmona et al.

Figure 1. Left: snake vertebral column showing the four main regions (plus atlas and axis). Drawing modifi ed from Szyndlar (1984). Right: the four basic types of vertebrae of the snake vertebral column: A, cervical vertebra in cranial (A1) and left lateral (A2) views; B, trunk vertebra in cranial (B1) and left lateral (B2) views; C, cloacal vertebra in cranial view; D, caudal vertebra in cranial view. Abbreviations: HE, hemapophyses; HK, haemal keel; HY, hypapohysis; LY, lymphapophyses; PLE, pleurapophyses. Not to scale.

This work intends to partially fi ll this gap on the transport effi ciency (Casanovas-Vilar et al., 2008). The knowledge of Miocene ophidians from Catalonia on the series is about 300 m-thick and includes more than 150 basis of recently recovered Late Aragonian material from fossil vertebrate localities (Alba et al., 2009), which can the area of els Hostalets de Pierola (Vallès-Penedès Basin, be accurately dated on the basis of lito-, bio- and mag- Catalonia, Spain). In particular, the fossil remains repor- netostratigraphic data (Moyà-Solà et al., 2009). The se- ted here were recovered during the works of paleontolo- ries approximately ranges from 12.5 to 11.3 Ma, mainly gical control and excavation carried out in the Abocador corresponding to the MN 7 and MN 8 biozones (sensu de Can Mata (ACM; see Alba et al., 2006a,b, 2007, 2009). Mein and Ginsburg, 2002: Late Aragonian, middle Mio- To date, more than 43,000 large vertebrate remains and cene). The material described in this work comes from a several thousands of microvertebrate remains have been total of six different localities, with the following estima- recovered (Alba et al., 2009). Among others, this has led ted age: C2-B3 and C3-B3 (subchron C5An.1r, MN 7, ca. to the recovery of several ophidian vertebrae, although in 12.2 Ma); BCV1 and C3-A7 (subchron C5r.3r, MN 7, ca. many instances the fragmentary preservation precludes an 11.9 Ma); C5-C3 (subchron C5r.3r, MN 8, ca. 11.8 Ma); accurate taxonomic attribution. In this work, we report the and C4-A1 (subchron C5r.3r; MN 8, ca. 11.7 Ma). preliminary taxonomic attribution of the ophidian verte- bral remains from the local series of ACM that have been 3. MATERIALS AND METHODS thus far prepared for study.

2. GEOLOGY AND AGE 3.1. OPHIDIAN VERTEBRAL ANATOMY AND NOMENCLATURE The sediments exposed on the ACM local stratigraphic series are mainly composed by clayish levels, sometimes The snake vertebral column can be subdivided into with sandstone and conglomeratic levels intercalated. four basic regions (Szyndlar, 1984; see Fig. 1): cervical The clay levels are usually reddish to gold-yellowish co- vertebrae, trunk vertebrae, cloacal vertebrae, and cau- loured, with a metric to decametric thickness. Nodules, dal vertebrae; cervical and trunk vertebrae are collec- pedogenic processes, bioturbation and decoloured marks tively referred to as precloacal vertebrae. The vertebral are more or less common on this beds. These deposits are nomenclature used in this work follows Holman (2000, interpreted to have originated in alluvial-fan marginal to after Auffenberg, 1963; see Fig. 2). Snake vertebrae are distal environments, with a fl uctuating radius span and procoelus, i.e. the cranial surface of the centrum (the co- 78 Cidaris Fossil snakes from Abocador de Can Mata

Figure 2. General structures of a trunk vertebra of a typical extant colubrid snake. A, cranial view; B, lateral view; C, caudal view; D, ventral view; E, dorsal view. Abbreviations: C, centrum; CD, condyle; CT, cotyle; D, dyapophysis; ES, epizygapophyseal spine; HK, haemal keel; IR, interzygapophyseal ridge; LF, lateral foramina; NA, neural arch; NC, neural canal; NS, neural spine; P, parapo- physis; PAF, parazygantral foramina; PCF, paracotylar foramen; PO, postzygapophyses; POA, postzygapophyseal articular facet; PR, prezygapophysis; PRA, prezygapophyseal articular facet; PRP, prezygapophyseal accessory process; SF, subcentral foramina; SG, subcentral groove; SN, synapophysis; SR, subcentral ridge; ZG, zygantrum; ZGF, zygantral articular facet; ZY, zygosphene; ZYF, zygosphenal articular facet. tyle) is convex, while the caudal surface (the condyle) is postcervical thoracic vertebrae, partially contradicts the spherical and concave. Like in other vertebrates, snake systematic divisions employed for extant taxa. As such, vertebrae are mainly composed by two principal struc- following Szyndlar (1991a), here we employ these terms tures: the centrum and the neural arch. These two main informally, in order to refer to a particular vertebral mor- parts are important for classifying snakes at the super- phology. family, or even family, levels, but they are not further informative at lower taxonomic ranks. In order to attain 3.2. MEASUREMENTS more precise taxonomic identifi cations, the confi gura- tion of the apophyses and other special structures (i.e., In order to distinguish the Colubroidea, Elapoidea the prezygapophyseal accesory process, hypapophyses, and Viperoidea from the Booidea, the CL/NAW ratio is pleurapophyses, etc.) must be taken into account. Of all usually employed, where CL is the centrum length and the projecting parts of ophidian vertebrae, those taxono- NAW is the centrum width (Fig. 1; after Auffenberg, mically more informative are the neural spine and the 1963). CL is defi ned as the distance between the cotyle ventral projecting parts (i.e., hypapophyses, haemal keel lip and the end of the condyle, whereas NAW corre- and hemapophyses). sponds the width of the interzygapophyseal constriction. A CL/NAW ratio lower than 1 characterizes the Booidea, Cervical vertebrae always display hypapophyses (a long whereas the other groups display the opposite condition. ventral projection fused to the centrum). The trunk region Nevertheless, no reliable identifi cations can be reached displays ribs articulated with the vertebrae, whereas in the exclusively on the basis of metrical evidence (Szyndlar, caudal region the ribs are fused to the vertebrae. Finally, 1984), so that morphological features are also required. both the cloacal and caudal vertebrae display hemapo- Measurements were based on photographs taken with physes (paired structures fused to the centrum), although a Leica IC3D stereomicroscope and photocamera con- the former further display lymphapophyses (fused, forked nected to a computer, with the software package Leica ribs), while the latter display pleurapophyses (fused, non- Application Suite v.2.8.1. All measurements are given in forked ribs). Ribs articulate with the synapophyses (also millimeters (mm). known as paradiapophyses), which are more or less sub- divided into the dorsal diapophysis and the ventral para- 3.3. THE FOSSIL SAMPLE pophysis, depending on the taxa. Within the Colubridae, hypapohyses are present in all trunk vertebrae of the “Na- All the studied specimens are housed at the Institut tricinae”, but are only present in the cervical vertebrae of Català de Paleontologia (Catalonia, Spain). A list of the the “Colubrinae”, whereas in the Elapidae and the Vipe- studied specimens, further specifying the locality of prov- ridae they are also present in all trunk vertebrae. As no- enance and the taxonomic and anatomical identifi cation, ted by Szyndlar (1991a), the traditional division of fossil is reported in Fig. 3. Several specimens were recovered Colubridae into two subfamilies, Colubrinae and Natrici- during screen-washing the fossiliferous sediment, while nae, based on the absence/presence of hypapophyses on others were recovered during manual excavation. Cidaris 79 Raül Carmona et al.

Material: IPS29786, IPS42218, IPS42237, IPS42252, IPS42253, IPS42258, IPS42296, IPS42390, IPS42392, IPS42393, IPS42445, IPS42472, IPS42501, IPS42503, IPS43580, IPS43688, IPS46481.

Identifi cation: most of this material (15 precloacal vertebrae) comes from locality C5-C3, although two ad- ditional precloacal vertebrae are also available from C3- A7 and C4-A1. The vertebrae of cobras resemble those of large-sized “colubrines”, by being stoutly-build, with a wide but elongate centrum, a round and large cotyle, synapophyses divided into diapophysis and parapophy- sis, vaulted neural arch, presence of lateral foramina, etc. However, those of cobras are usually more robust than those of colubrids (mean CL/NAW ratio 1,17) and can be further distinguished from them on the basis of the pres- ence of hypapophyses along all the precaudal region and the generally lower neural spines (Szyndlar, 1991b). Vi- perids also display hypapophyses on all precaudal verte- brae, but they differ from the described material in having longer hypapophyses and prezygapophyseal processes, postzygapophyses strongly expanded laterally as well as posteriorly depressed neural arches (Szyndlar, 1991b). Figure 3. List of the vertebral fossil material of snakes from the ACM local stratigraphic series studied in this work. The genus Naja is thus far the only elapid genus thus far recorded in Europe (Szyndlar, 1991b). An identifi cation at the species level of our material is precluded by the lack 4. SYSTEMATIC PALEONTOLOGY of cranial elements. It should be noted that this taxon has Class Reptilia Laurenti 1768 not been thus far recorded from the other localities, where a “colubrine” has been identifi ed. Subclass Diapsida Osborn 1903 Serpentes indet. Infraclass Lepidosauria Haeckel 1866 Material: IPS45771 and IPS46483. Order Squamata Oppel 1811 Suborder Serpentes Linnaeus 1758 Identifi cation: these two vertebrae (one caudal and one precaudal), recovered from two different localities Superfamily Colubroidea Oppel 1811 (C3-B3 and C5-C3), are left unassigned. Unlike precau- Family Colubridae Oppel 1811 dal vertebrae, caudal ones are not informative enough for “Colubrinae” indet. providing a taxonomic assignment, and IPS46483 it too damaged to provide a reliable assignment even at the fam- (Fig. 4A-C) ily level.

Material: IPS42482, IPS45772, IPS46480 and 5. DISCUSSION IPS46482. Miocene sites with ophidian fossil remains are well Identifi cation: the taxonomic identifi cation of these known from the early and middle Miocene of Europe four partial trunk vertebrae from three different localities (Rage, 1981; Rage and Bailon, 2005; Ivanov, 2000, 2002; (BCV1, C2-B3 and C3-B3) as “colubrines” is based on Murelaga et al., 2004; Szyndlar, 1987, 2009) as well as their lightly-build morphology, a CL/NAW mean ratio of from the late Miocene (Harzauser and Tempfer, 2004; 1.56, and the following anatomical features: lack of hypa- Szyndlar, 1985, 2005; Tempfer, 2005). However, remains pophyses, presence of haemal keel, synapophyses divided from the middle Miocene (particularly the MN 7 and MN into diapophysis and parapophysis, presence of lateral 8) are generally poorly known, having been mainly reco- foramina, straight interzygapophyseal ridge, and straight vered from La Grive Saint-Alban in France (Augé and subcentral ridge. Rage, 2000; Rage and Holman, 1984; Szyndlar and Rage, 1990) and Steinheim am Albuch in Germany (Rage, 1984; Superfamily Elapoidea Boie 1827 Szyndlar and Rage, 2003); additional remains are also Family Elapidae Boie 1827 available from the MN 7 locality of Opole 2 in Poland (Mlynarski et al., 1982). Genus Naja Laurenti 1768 Naja sp. Although the ACM fossil ophidian assemblage repor- (Fig. 4D-L) ted here is very restricted, it resembles those from the 80 Cidaris Fossil snakes from Abocador de Can Mata

Figure 4. Snake vertebrae from several localities of ACM. A, Trunk vertebra of “Colubrinae” indet. IPS45772 from C3-B3, in cranial (A1), right lateral (A2) and ventral (A3) views. B, Precloacal vertebra of Naja sp. IPS42390 from C5-C3, in cranial (B1), caudal (B2), dorsal (B3), ventral (B4), right lateral (B5), and left lateral (B6) views. C, Precloacal vertebra of Naja sp. IPS42218 from C5-C3, in caudal (C1), dorsal (C2) and ventral (C3) views. above-mentioned MN 7 and MN 8 European sites, which The presence of a cobra of the genus Naja in the ACM are characterized by a modern snake fauna that, among is remarkable and constitutes the fi rst citation of this genus others, includes Colubridae and Elapidae. Representati- from the Vallès-Penedès Basin. Nevertheless, it should ves of these taxa are recorded from the ACM series. A be taken into account that elapids are well documented previous publication from the area of els Hostalets de Pie- amongst the fossil snakes from the European Neogene rola (Crusafont and Villalta, 1952), without distinguishing (Szyndlar, 1985; Szyndlar and Rage, 1990; Szyndlar and between Aragonian and Vallesian levels, reported the pre- Zerova, 1990; Szyndlar, 1991b; Tempfer, 2005). Most sence of indeterminate colubrids and boids, as well as of of these extinct elapids belong to the extant genus Naja, the genus Vipera Laurenti, 1768. This material, however, which is currently represented by two lineages: an Asian was never fi gured nor described, and should be therefo- one (Naja s.s.), and an African one (represented by three re revised in order to confi rm these identifi cations. Taken additional subgenera; see Wallach et al., 2009). In the together, however, the ophidian assemblages reported Miocene fossil record, the former lineage, apparently from the area of els Hostalets de Pierola fi t quite well with more primitive and perhaps paraphyletic, is represented the view that modern snake faunas replaced older faunas not only by Naja antiqua Rage, 1976 from Morocco, but (mainly composed by Boidae) during the Early/Middle also by N. iberica Szyndlar, 1985 from Spain, whereas Miocene, with boids having been almost completely re- remains from Central and Eastern European localities are placed by the middle/late Miocene (Ivanov, 2000, 2001). attributed to N. romani (Hofstetter, 1939), which belongs Cidaris 81 Raül Carmona et al.

Cabrera, L., Almécija, S. and Obradó, P. (2006a): Los vertebrados to the Asian lineage (Szyndlar and Rage, 1990). Cranial fósiles del Abocador de Can Mata (els Hostalets de Pierola, l’, material would be required in order to discern whether the Cataluña), una sucesión de localidades del Aragoniense superior cobra from the ACM belongs to one or the other lineage. (MN6 y MN7+8) de la cuenca del Vallès-Penedès. Campañas 2002- 2003, 2004 y 2005. Estudios Geológicos, 62, 295-312. Alba, D.M., Galindo, J., Casanovas-Vilar, I. and Moyà-Solà, S. (2006b): Like other reptiles, snakes are considered good envi- La intervenció paleontològica al dipòsit controlat de residus de Can ronmental indicators (Bachmayer and Szyndlar, 1985; Mata (els Hostalets de Pierola, Anoia): campanya novembre 2002- Szyndlar, 2005). While the identifi cation of “colubrines” agost 2003. Tribuna d’Arqueologia, 2003-2004, 7-22. Alba, D.M., Galindo, J., Casanovas-Vilar, I., Robles, J.M., Moyà-Solà, S., is not good paleonvironmental markers, unless a generic Köhler, M., Garcés, M., Cabrera, L., Almécija, S., Rotgers, C., Furió, attribution is available, cobras (Naja), together with other M. and Angelone, C. (2007): La intervenció paleontològica al dipòsit taxa thus far not recorded from the ACM series (Vipera controlat de residus de Can Mata (els Hostalets de Pierola, Anoia): and some boids), are amongst the most termophilous taxa campanya novembre 2002-agost 2003. Tribuna d’Arqueologia, 2006, 7-33. (Szyndlar, 2009). In particular, the identifi cation of cobras Alba, D.M., Robles, J.M., Rotgers, C., Casanovas-Vilar, I., Galindo, J., from the ACM series would be indicative of a warm cli- Moyà-Solà, S., Garcés, M., Cabrera, L., Carmona, R. and Bertó Men- mate and a relatively dry environment with the presence gual, J.V. (2009): Middle Miocene vertebrate localities from Abo- of water nearby (Bachmayer and Szyndlar, 1985), which cador de Can Mata (Els Hostalets de Pierola, Vallès-Penedès basin, Catalonia, Spain): an update after the 2006-2008 fi eld campaigns. would be compatible with previously-published paleoen- Paleolusitana, 1, 59-73. vironmental interpretations based on mammals (Casano- Auffenberg, W. (1963): The fossil snakes of Florida. Tulane Studies in vas-Vilar et al., 2008; Alba et al., 2009). Zoology, 10, 131-216. Augé, M. and Rage, J.C. (2000): Les Squamates (Reptilia) du Miocène moyen de Sansan. Mémoires du Muséum National d’Histoire Na- 6. SUMMARY AND CONCLUSIONS turelle, 183, 263-313. Bachmayer, F. and Szyndlar, Z. (1985): Ophidians (Reptilia: Serpentes) The fragmentary preservation of the ACM material re- from the Kohfi disch fi ssures of Burgenland, Austria. Annalen des Na- ported here precludes in many instances a precise taxo- turhistorischen Museums in Wien, 87, 79-100. Bailon, S., Garcia-Porta, J. and Quintana-Cardona, J. (2002): Première nomic attribution. At least two taxa are recorded: “Colu- découverte de Viperidae (Reptilia, Serpentes) dans les îles Baléares brinae” indet. and Naja sp. The latter constitutes the fi rst (Espagne): des vipères du Néogène de Minorque. Description d’une citation of cobras from the Vallès-Penedès Basin, being nouvelle espèce du Pliocène. Comptes Rendus Palevol, 1, 227-234. indicative of a warm environment. Casanovas-Vilar, I., Alba, D.M,. Moyà-Solà, S., Galindo, J., Cabrera, L., Garcés, M., Furió, M., Robles, J.M., Köhler, M. and Angelone, C. (2008): Biochronological, taphonomical and paleoenvironmental Paleontological works at ACM are still ongoing, and background of the fossil great ape Pierolapithecus catalaunicus (Pri- the tasks of screen-washing of many levels and prepa- mates, Hominidae). Journal of Human Evolution, 55, 589-603. ration of many specimens has not yet been fi nished. As Crusafont Pairó, M. and Villalta, J.F. de (1952): Sobre los pequeños rep- tiles y anfi bios del Mioceno del Vallés-Penedés. Estudios Geológicos, such, many more ophidian fossil remains will be surely 16, 213-221. available for study in the future. Hence, the results pre- Harzhauser, M. and Tempfer, P.M. (2004): Late Pannonian wetland eco- sented here must be considered preliminary, although we logy of the Vienna Basin based on molluscs and lower vertebrate hope that this contribution will serve as a starting point assemblages (Late Miocene, MN9, Austria). Courier Forschungs- Institut Senckenberg, 246, 55-68. for prompting a renewed emphasis on the study of fossil Hoffstetter, R. (1939): Contribution à l’étude des Elapidae actuels et fos- snakes from the Miocene of Catalonia, and their contex- siles et de l’ostéologie des ophidiens. Archives du Muséum d’Histoire tualization among European fossil faunal assemblages. Naturelle de Lyon, 15, 1-78. Holman, J.A. (2000): Fossil snakes of North America: origin, evolution, distribution, paleoecology. Indiana University Press, Bloomington. 7. ACKNOWLEDGMENTS Ivanov, M. (2000): Snakes of the lower/middle Miocene transition at Vieux Collonges (Rhône, France), with comments on the colonisation This work has supported by the Ministerio de Ciencia of western Europe by colubroids. Geodiversitas, 22, 559-588. e Innovación (project CGL2008-00325/BTE and Progra- Ivanov, M. (2001): Changes in the composition of the European snake fauna during the Early Miocene and at the Early/Middle transition. ma Ramón y Cajal RYC-2009-04533 to DMA) and the Paläontologische Zeitschrift, 74, 563-573. Departament d’Innovació, Universitats i Empresa of the Ivanov, M. (2002): The oldest known Miocene snake fauna from Central (Grup de Paleoprimatologia i Europe: Merkur-North locality, Czech Republic. Acta Palaentologica Paleontologia Humana, 2009 SGR 754, GRC). Fieldwork Polonica, 47, 513-534. Laurenti, J.N. (1768): Austriaci viennensis specimen medicum, exhibens at ACM has been funded by CESPA Gestión de Residuos, synopsin reptilium emendatam cum experimentis circa venena et an- S.A. We further acknowledge the collaboration of the Ajun- tidota reptilium austriacorum. J.T. De Trattnern, Vienna, 214 pp. tament dels Hostalets de Pierola, the work of preparation Mein, P. and Ginsburg, L. (2002): Sur l’âge relatif des différents dépôts carried out by the Preparation and Conservation division of karstiques miocènes de La Grive-Saint-Alban (Isère). Cahiers Scien- tifi ques du Muséum d’Histoire Naturelle de Lyon, 2/2002, 7–47. the Institut Català de Paleontologia, and the comments and Miklas-Tempfer, P.M. (2003): The Miocene herpetofaunas of Grund suggestions by Salvador Bailon on a previous version of (Caudata; Chelonii, Sauria, Serpentes) and Mühlbach am Manharsts- this paper. Finally, DMA is particularly grateful to Lorenzo berg (Chelonii, Sauria, Amphisbaenia, Serpentes), Lower Austria. Rook and Laura Longo for their kindness and long-lasting Annalen des Naturhistorischen Museums in Wien, 104, 195-235. Mlynarski, M. (1984): Notes on the amphibian and reptilian fauna of the hospitality during his stays in Firenze. Polish Miocene. Acta Zoologica Cracoviensia, 27, 127-148. Mlynarski, M., Szyndlar, Z., Estes, R. and Sanchiz, B. (1982): Lower vertebrate fauna from the Miocene of Opole (Poland). Estudios Geo- 8. REFERENCES lógicos, 38, 103-119. Alba, D.M., Moyà-Solà, S., Casanovas-Vilar, I., Galindo, J., Robles, Moyà-Solà, S., Köhler, M., Alba, D.M., Casanovas-Vilar, I., Galindo, J.M., Rotgers, C., Furió, M., Angelone, C., Köhler, M., Garcés, M., J., Robles, J.M., Cabrera, L., Garcés, M., Almécija, S. and Beamud, 82 Cidaris Fossil snakes from Abocador de Can Mata

E. (2009): First partial face and upper dentition of the Middle Mio- Szyndlar, Z. (1991b): A review of Neogene and Quaternary snakes of cene hominoid Dryopithecus fontani from Abocador de Can Mata Central and Eastern Europe. Part II: Natricinae, Elapidae, Viperidae. (Vallès-Penedès Basin, Catalonia, NE Spain): taxonomic and phylo- Estudios Geológicos, 47, 237-266. genetic implications. American Journal of Physical Anthropology, Szyndlar, Z. (2005): Snake fauna from the Late Miocene of Rudabánya. 139, 126-145. Palaentographia Italica, 90, 31-52. Murelaga, X., Pereda-Suberbiola, X., de Lapparent-de Broin, F., Rage, Szyndlar, Z. (2009): Snake fauna (Reptilia: Serpentes) from the Early/ J.C., Duffaud, S., Astibia, H. and Badiola, A. (2004): Amphibians and Middle Miocene of Sandelzhausen and Rothenstein 13 (Germany). reptiles from the Early Miocene of the Bardenas Reales of Navarre Paläontologische Zeitschrift, 83, 55-66. (Ebro Basin, Iberian Peninsula). Geobios, 35, 347-365. Szyndlar, Z. and Rage, J.C. (1990): West Paleartic cobras of the genus Rage, J.-C. (1976): Les squamates du Miocène de Beni Mellal. Géologie Naja (Sepentes: Elapidae): interrelationships among extinct and ex- Méditerranéenne, 3, 57-69. tant species. Amphibia-Reptilia, 11, 385-400. Rage, J.C. (1981): Les Colubridae (Reptilia, Serpentes) du Néogène Szyndlar, Z. and Rage, J.C. (2003): Non-erycine Booidea from the Oligo- Français. Le problème des espèces du Miocène de Sansan (Gers). cene and Miocene of Europe. Institute of Systematics and Evolution Geobios, 14, 537-542. of Animals of the Polish Academy of Sciences, Kraków. Rage, J.C. (1984): Serpentes. Part 11. In: Handbuch der Paläoherpetolo- Szyndlar, Z. and Schleich, H.H. (1994): Two species of the genus Eryx gy (P. Wellnhofer, ed.). Gustav Fischer Verlag, München. (Serpentes; Boidae; Erycinae) from the Spanish Neogene with com- Rage, J.C. and Bailon, S. (2005): Amphibians and squamate reptiles from the late early Miocene (MN4) of Béon 1 (Montréal-du-Gers, ments on the past distribution of the genus in Europe. Amphibia- southwestern France). Geodiversitas, 27, 413-441. Reptilia, 15, 233-248. Rage, J.C. and Holman, J.A. (1984): Des Serpents (Reptilia, Squamata) Szyndlar, Z. and Zerova, G.A. (1990): Neogene cobras of the genus Naja de type Nord-Américain dans le Miocène Français. Évolution para- (Serpentes: Elapidae) of East Europe. Annalen des Naturhistorischen llèle ou dispersion? Géobios, 17, 89-104. Museums in Wien, 91, 53-61. Sanchiz, B. (1981): Nota sobre la herpetofauna Miocénica de los Valles Tempfer, P.M. (2005): The Herpetofauna (Amphibia: Caudata, Anura; de Fuentidueña (Segovia). Estudios Geológicos, 37, 355-358. Reptilia: Scleroglossa) of the Upper Miocene Locality Kohfi disch Szyndlar, Z. (1984): Fossil snakes from Poland. Acta Zoologica Craco- (Burgenland, Austria). Beiträge zur Paläontologie, 29, 145-253. viensia, 28, 1-156. Venczel, M. (1994): Late Miocene snakes from Polgárdi (Hungary). Acta Szyndlar, Z. (1985): Ophidian fauna (Reptilia, Serpentes) from the upper- Zoologica Cracoviensia, 37, 1-29 most Miocene of Algora (Spain). Estudios Geológicos, 41, 447-465. Venczel, M. (1998): Late Miocene snakes (Reptilia: Serpentes) from Szyndlar, Z. (1987): Snakes from the Lower Miocene locality of Dolnice Polgárdi (Hungary): a second contribution. Acta Zoologica Craco- (Czechoslovakia). Journal of Vertebrate Paleontology, 7, 55-71. viensia, 41, 1-22. Szyndlar, Z. (1991a): A review of Neogene and Quaternary snakes of Wallach, W., Wüster, W. and Broadley, D.G. (2009): In praise of subgen- Central and Eastern Europe. Part I: Scolecophidia, Boidae, Colubri- era: taxonomic status of cobras of the genus Naja Laurenti (Serpentes: nae. Estudios Geológicos, 47, 103-126. Elapidae). Zootaxa, 2236, 26-36.

Cidaris 83