Secure Blockchain Network Communication Using SCION
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Secure Blockchain Network Communication using SCION ALEKSANDAR VORKAPIC KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Secure Blockchain Network Communication using SCION ALEKSANDAR VORKAPIC´ Master in Computer Science Date: December 5, 2018 Supervisor: Panos Papadimitratos Examiner: Mads Dam Principal: Adrian Perrig, ETH Zürich Swedish title: Säker nätverkskommunikation för blockkedja med hjälp av SCION School of Electrical Engineering and Computer Science i Abstract The paper by Apostolaki, Zohar, and Vanbever [3] describes two rout- ing attacks on the Bitcoin network, partition attack and delay attack. By isolating parts of the network or delaying block propagation, a sig- nificant amount of mining power could be wasted, resulting in rev- enue loss and a wide range of exploits could be enabled, such as dou- ble spending. Hence, the Bitcoin’s solution to the double spending problem would be broken, making the technology unreliable and un- available. The Border Gateway Protocol (BGP) is the standardized routing protocol in the current Internet, without any security guarantees. Nu- merous security extensions have been proposed for BGP, but there is still no widely deployed solution. Therefore, some argue that instead of securing BGP, an entirely new inter-domain architecture should be developed. The thesis investigates the possible mitigation of routing attacks in the blockchain technology, by using the new inter-domain architec- ture called SCION. Two solutions are proposed utilizing SCION and IP, namely an application level solution and a SIG proxy solution. The solutions have been evaluated in terms of security, availability and efficiency, with the conclusion that routing attacks can be mitigated using SCION.
[Show full text]