Overview of Routing Security Landscape for the Quilt Member Meeting, Winter 2019 Mark Beadles, CISO, Oarnet [email protected] BGP IDLE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Securing Interdomain Network Routing with Resource Public Key Infrastructure (RPKI)
Securing Interdomain Network Routing with Resource Public Key Infrastructure (RPKI) A Technical Paper prepared for SCTE•ISBE by Mark Goodwin IP Design Engineer Cox Communications, Inc 6305-B Peachtree Dunwoody Rd, Atlanta, GA 30328 404-269-8267 [email protected] © 2019 SCTE•ISBE and NCTA. All rights reserved. Table of Contents Title Page Number Table of Contents .................................................................................................................................... 2 1. Introduction .................................................................................................................................... 4 2. Motivations .................................................................................................................................... 4 2.1. BGP Security Analysis ....................................................................................................... 4 3. RPKI Components ......................................................................................................................... 6 3.1. Certificate Authority (CA) ................................................................................................... 7 3.2. Resource Certificate .......................................................................................................... 7 3.3. Route Origin Authorizations (ROAs)................................................................................... 8 3.4. RPKI Validating Cache ..................................................................................................... -
Chapter 6: Chapter 6: Implementing a Border Gateway Protocol Solution Y
Chapter 6: Implementing a Border Gateway Protocol Solution for ISP Connectivity CCNP ROUTE: Implementing IP Routing ROUTE v6 Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 1 Chapter 6 Objectives . Describe basic BGP terminology and operation, including EBGP and IBGP. ( 3) . Configure basic BGP. (87) . Typical Issues with IBGP and EBGP (104) . Verify and troubleshoot basic BGP. (131) . Describe and configure various methods for manipulating path selection. (145) . Describe and configure various methods of filtering BGP routing updates. (191) Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 2 BGP Terminology, Concepts, and Operation Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 3 IGP versus EGP . Interior gateway protocol (IGP) • A routing protocol operating within an Autonomous System (AS). • RIP, OSPF, and EIGRP are IGPs. Exterior gateway protocol (EGP) • A routing protocol operating between different AS. • BGP is an interdomain routing protocol (IDRP) and is an EGP. Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 4 Autonomous Systems (AS) . An AS is a group of routers that share similar routing policies and operate within a single administrative domain. An AS typically belongs to one organization. • A singgpgyp()yle or multiple interior gateway protocols (IGP) may be used within the AS. • In either case, the outside world views the entire AS as a single entity. If an AS connects to the public Internet using an exterior gateway protocol such as BGP, then it must be assigned a unique AS number which is managed by the Internet Assigned Numbers Authority (IANA). -
Bambauer-Macro-V2-Nov 28.Docx (Do Not Delete) 12/12/14 6:26 Pm
BAMBAUER-MACRO-V2-NOV 28.DOCX (DO NOT DELETE) 12/12/14 6:26 PM FOXES AND HEDGEHOGS IN TRANSITION DEREK E. BAMBAUER* INTRODUCTION .......................................................................................... 1 I. A FLATTER NETWORK ........................................................................... 2 II. UNIVERSAL SERVICE? .......................................................................... 7 III. THE CAST OF CHARACTERS .............................................................. 10 CONCLUSION ........................................................................................... 16 INTRODUCTION The migration from a congeries of communications protocols and technologies to an Internet Protocol-based system is an architectural shift of profound magnitude: it is as though people returned to the city of Babel, abandoning their native tongues for a single lingua franca. Perhaps, after this shift, nothing will be restrained from those who use the Internet.1 And yet, there will inevitably be problems that arise from the shift. Scholars and activists have already raised concerns about equal access to communications capabilities; about the security and resiliency of the new architecture; and about the tension between competing speech interests on the network. One way of thinking about these problems, and potential solutions, is to classify them as either hedgehogs or foxes. The British philosopher Isaiah Berlin suggested that intellectuals can be classified into these two camps, puckishly borrowing from the Greek -
Understanding Linux Internetworking
White Paper by David Davis, ActualTech Media Understanding Linux Internetworking In this Paper Introduction Layer 2 vs. Layer 3 Internetworking................ 2 The Internet: the largest internetwork ever created. In fact, the Layer 2 Internetworking on term Internet (with a capital I) is just a shortened version of the Linux Systems ............................................... 3 term internetwork, which means multiple networks connected Bridging ......................................................... 3 together. Most companies create some form of internetwork when they connect their local-area network (LAN) to a wide area Spanning Tree ............................................... 4 network (WAN). For IP packets to be delivered from one Layer 3 Internetworking View on network to another network, IP routing is used — typically in Linux Systems ............................................... 5 conjunction with dynamic routing protocols such as OSPF or BGP. You c an e as i l y use Linux as an internetworking device and Neighbor Table .............................................. 5 connect hosts together on local networks and connect local IP Routing ..................................................... 6 networks together and to the Internet. Virtual LANs (VLANs) ..................................... 7 Here’s what you’ll learn in this paper: Overlay Networks with VXLAN ....................... 9 • The differences between layer 2 and layer 3 internetworking In Summary ................................................. 10 • How to configure IP routing and bridging in Linux Appendix A: The Basics of TCP/IP Addresses ....................................... 11 • How to configure advanced Linux internetworking, such as VLANs, VXLAN, and network packet filtering Appendix B: The OSI Model......................... 12 To create an internetwork, you need to understand layer 2 and layer 3 internetworking, MAC addresses, bridging, routing, ACLs, VLANs, and VXLAN. We’ve got a lot to cover, so let’s get started! Understanding Linux Internetworking 1 Layer 2 vs. -
Chapter 12, “Configuring Layer 3 Interfaces”
CHAPTER 12 Configuring Layer 3 Interfaces This chapter contains information about how to configure Layer 3 interfaces on the Catalyst 6500 series switches, which supplements the information and procedures in the Release 12.1 publications at this URL: http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/index.htm This chapter consists of these sections: • Configuring IP Routing and Addresses, page 12-2 • Configuring IPX Routing and Network Numbers, page 12-6 • Configuring AppleTalk Routing, Cable Ranges, and Zones, page 12-7 • Configuring Other Protocols on Layer 3 Interfaces, page 12-8 Catalyst 6500 Series Switch Cisco IOS Software Configuration Guide—Release 12.1 E 78-14099-04 12-1 Chapter 12 Configuring Layer 3 Interfaces Configuring IP Routing and Addresses Note • For complete syntax and usage information for the commands used in this chapter, refer to the Catalyst 6500 Series Switch Cisco IOS Command Reference publication and the Release 12.1 publications at this URL: http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/index.htm • Release 12.1(13)E and later releases support configuration of 4,096 Layer 3 VLAN interfaces. – We recommend that you configure a combined total of no more than 2,000 Layer 3 VLAN interfaces and Layer 3 ports on an MSFC2 with either Supervisor Engine 1 or Supervisor Engine 2. – We recommend that you configure a combined total of no more than 1,000 Layer 3 VLAN interfaces and Layer 3 ports on an MSFC. • With releases earlier than Release 12.1(13)E, an MSFC2 with either Supervisor Engine 1 or Supervisor Engine 2 supports a combined maximum of 1,000 Layer 3 VLAN interfaces and Layer 3 ports. -
High Volume of European Network Traffic Re-Routed Through China
Memo 11/06/2019 - TLP:WHITE High volume of European network traffic re-routed through China Telecom Reference: Memo [190611-1] Date: 11/06/2019 - Version: 1.0 Keywords: BGP, digital infrastructure, China Sources: publicly available information Key Points A routing incident led to 70 000 routes used for European traffic being redirected through China Telecom for over 2 hours. Border Gateway Protocol (BGP) errors are a relatively common issue but usually last just a few minutes. China Telecom has still not implemented some basic routing safeguards to detect and remediate them in a timely manner. Summary On June 6, a routing incident led to over 70 000 routes used for European mobile networks being redirected through China Telecom for over two hours. The incident began at 09:43 UTC when Swiss data centre colocation company Safe Host (AS21217) unintentionally leaked over 70 000 routes to China Telecom (AS4134) in Frankfurt, Germany. China Telecom then announced these routes on to the global internet redirecting large amounts of traffic destined for some of the largest European mobile networks through China Telecom’s network. Some of the most impacted European networks included Swisscom (AS3303) of Switzerland, KPN (AS1136) of Holland, Bouygues Telecom (AS5410) and Numericable-SFR (AS21502) of France. Often routing incidents only last for a few minutes, but in this case, many of the leaked routes were in circulation for over two hours. Comments China Telecom, a major international carrier, has still not implemented neither the basic routing safeguards necessary to prevent propagation of routing leaks nor the processes and procedures necessary to detect and remediate them in a timely manner when they inevitably occur. -
TCP/IP Protocol Suite
TCP/IP Protocol Suite Marshal Miller Chris Chase Robert W. Taylor (Director of Information Processing Techniques Office at ARPA 1965-1969) "For each of these three terminals, I had three different sets of user commands. So if I was talking online with someone at S.D.C. and I wanted to talk to someone I knew at Berkeley or M.I.T. about this, I had to get up from the S.D.C. terminal, go over and log into the other terminal and get in touch with them. I said, oh, man, it's obvious what to do: If you have these three terminals, there ought to be one terminal that goes anywhere you want to go where you have interactive computing. That idea is the ARPANET." – New York Times Interview: December 20, 1999 Overview • Terminology • History • Technical Details: – TCP – IP – Related Protocols • Physical Media • Social Implications • Economic Impact 3 Terminology • Protocol – A set of rules outlining the format to be used for communication between systems • Domain Name System (DNS) – Converts an Internet domain into an IP address • Router – A computer or software package used in packet switched networks to look at the source and destination addresses, and decide where to send the packets • Uniform Resource Indicators – Uniform Resource Location (URL) • How to find the resource: HTTP, FTP, Telnet – Uniform Resource Names (URN) • What the resource is: Not as common as URL 4 History: Pre-TCP/IP • Networks existed and information could be transferred within • Because of differences in network implementation communication between networks different for each application • Need for unification in protocols connecting networks 5 History: TCP/IP Development • 1968: Plans develop for using Interface Message Processors (IMPs) • Dec. -
Introduction to the Border Gateway Protocol – Case Study Using GNS3
Introduction to The Border Gateway Protocol – Case Study using GNS3 Sreenivasan Narasimhan1, Haniph Latchman2 Department of Electrical and Computer Engineering University of Florida, Gainesville, USA [email protected], [email protected] Abstract – As the internet evolves to become a vital resource for many organizations, configuring The Border Gateway protocol (BGP) as an exterior gateway protocol in order to connect to the Internet Service Providers (ISP) is crucial. The BGP system exchanges network reachability information with other BGP peers from which Autonomous System-level policy decisions can be made. Hence, BGP can also be described as Inter-Domain Routing (Inter-Autonomous System) Protocol. It guarantees loop-free exchange of information between BGP peers. Enterprises need to connect to two or more ISPs in order to provide redundancy as well as to improve efficiency. This is called Multihoming and is an important feature provided by BGP. In this way, organizations do not have to be constrained by the routing policy decisions of a particular ISP. BGP, unlike many of the other routing protocols is not used to learn about routes but to provide greater flow control between competitive Autonomous Systems. In this paper, we present a study on BGP, use a network simulator to configure BGP and implement its route-manipulation techniques. Index Terms – Border Gateway Protocol (BGP), Internet Service Provider (ISP), Autonomous System, Multihoming, GNS3. 1. INTRODUCTION Figure 1. Internet using BGP [2]. Routing protocols are broadly classified into two types – Link State In the figure, AS 65500 learns about the route 172.18.0.0/16 through routing (LSR) protocol and Distance Vector (DV) routing protocol. -
Lab 2.8.1: Basic Static Route Configuration
Lab 2.8.1: Basic Static Route Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway Fa0/0 172.16.3.1 255.255.255.0 N/A R1 S0/0/0 172.16.2.1 255.255.255.0 N/A Fa0/0 172.16.1.1 255.255.255.0 N/A R2 S0/0/0 172.16.2.2 255.255.255.0 N/A S0/0/1 192.168.1.2 255.255.255.0 N/A FA0/0 192.168.2.1 255.255.255.0 N/A R3 S0/0/1 192.168.1.1 255.255.255.0 N/A PC1 NIC 172.16.3.10 255.255.255.0 172.16.3.1 PC2 NIC 172.16.1.10 255.255.255.0 172.16.1.1 PC3 NIC 192.168.2.10 255.255.255.0 192.168.2.1 Learning Objectives Upon completion of this lab, you will be able to: • Cable a network according to the Topology Diagram. • Erase the startup configuration and reload a router to the default state. • Perform basic configuration tasks on a router. All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 20 CCNA Exploration Routing Protocols and Concepts: Static Routing Lab 2.8.1: Basic Static Route Configuration • Interpret debug ip routing output. • Configure and activate Serial and Ethernet interfaces. • Test connectivity. • Gather information to discover causes for lack of connectivity between devices. • Configure a static route using an intermediate address. -
Detecting IP Prefix Hijack Events Using BGP Activity and AS Connectivity Analysis
University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2017 Detecting IP prefix hijack events using BGP activity and AS connectivity analysis Alshamrani, Hussain Hameed http://hdl.handle.net/10026.1/9566 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Detecting IP prefix hijack events using BGP activity and AS connectivity analysis BY Hussain Hameed Alshamrani A thesis submitted to the University of Plymouth in partial fulfilment for the degree of Doctor of Philosophy Centre for Security, Communications and Network (CSCAN) Plymouth University February 2017 Copyright This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent. Abstract The Border Gateway Protocol (BGP), the main component of core Internet connectivity, suffers vulnerability issues related to the impersonation of the ownership of IP prefixes for Autonomous Systems (ASes). In this context, a number of studies have focused on securing the BGP through several techniques, such as monitoring-based, historical-based and statistical-based behavioural models. In spite of the significant research undertaken, the proposed solutions cannot detect the IP prefix hijack accurately or even differentiate it from other types of attacks that could threaten the performance of the BGP. -
IP Routing & Protocols
Lecture 11: IP routing, IP protocols Contents n Routing principles n Local datagram delivery n ICMP Protocol n UDP Protocol n TCP/IP Protocol n Assuring requirements for streaming TPC n Building and terminating TCP connection n API for network services (brief info on sockets) AE4B33OSS Lecture 11 / Page 2 Silberschatz, Galvin and Gagne ©2005 Datagram routing (1) n Routing is a decision making process on where to forward the datagram (or its fragment). l Any device making such decision is called router l Routing can be direct or indirect Direct routing occurs when the destination host is a part of the LAN directly connected to the router so that the datagram can be delivered directly to the destination. All other cases represent indirect routing l Routers in the Internet form a cooperative interconnected structure. Datagrams pass from router to router until they reach a router capable to deliver directly (locally) to the destination l Table driven routing Every router maintains a routing table with entries in the form of pairs (N, G), where N is netid of the destination network and G is the IP address of the ªnext routerº along the path to the destination network N. The ªnext routerº must be reachable directly so that the datagram can be forwarded there without further routing AE4B33OSS Lecture 11 / Page 3 Silberschatz, Galvin and Gagne ©2005 Datagram routing (2) 20.0.0.5 30.0.0.6 40.0.0.7 Network Network Network Network 10.0.0.0 F 20.0.0.0 G 30.0.0.0 H 40.0.0.0 10.0.0.5 20.0.0.6 30.0.0.7 Destination is on the net Forward datagram to 20.0.0.0 Deliver directly 30.0.0.0 Deliver directly 10.0.0.0 20.0.0.5 40.0.0.0 30.0.0.7 Routing table of G n Default routes l Often LAN's are connected to the ªrest of worldº through a single router. -
Secure Blockchain Network Communication Using SCION
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Secure Blockchain Network Communication using SCION ALEKSANDAR VORKAPIC KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Secure Blockchain Network Communication using SCION ALEKSANDAR VORKAPIC´ Master in Computer Science Date: December 5, 2018 Supervisor: Panos Papadimitratos Examiner: Mads Dam Principal: Adrian Perrig, ETH Zürich Swedish title: Säker nätverkskommunikation för blockkedja med hjälp av SCION School of Electrical Engineering and Computer Science i Abstract The paper by Apostolaki, Zohar, and Vanbever [3] describes two rout- ing attacks on the Bitcoin network, partition attack and delay attack. By isolating parts of the network or delaying block propagation, a sig- nificant amount of mining power could be wasted, resulting in rev- enue loss and a wide range of exploits could be enabled, such as dou- ble spending. Hence, the Bitcoin’s solution to the double spending problem would be broken, making the technology unreliable and un- available. The Border Gateway Protocol (BGP) is the standardized routing protocol in the current Internet, without any security guarantees. Nu- merous security extensions have been proposed for BGP, but there is still no widely deployed solution. Therefore, some argue that instead of securing BGP, an entirely new inter-domain architecture should be developed. The thesis investigates the possible mitigation of routing attacks in the blockchain technology, by using the new inter-domain architec- ture called SCION. Two solutions are proposed utilizing SCION and IP, namely an application level solution and a SIG proxy solution. The solutions have been evaluated in terms of security, availability and efficiency, with the conclusion that routing attacks can be mitigated using SCION.