Deciphering the Composition and Functional Profile of the Microbial Communities in Chinese Moutai Liquor Starters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antonie Van Leeuwenhoek Journal of Microbiology
Antonie van Leeuwenhoek Journal of Microbiology Kroppenstedtia pulmonis sp. nov. and Kroppenstedtia sanguinis sp. nov., isolated from human patients --Manuscript Draft-- Manuscript Number: ANTO-D-15-00548R1 Full Title: Kroppenstedtia pulmonis sp. nov. and Kroppenstedtia sanguinis sp. nov., isolated from human patients Article Type: Original Article Keywords: Kroppenstedtia species, Kroppenstedtia pulmonis, Kroppenstedtia sanguinis, polyphasic taxonomy, 16S rRNA gene, thermoactinomycetes Corresponding Author: Melissa E Bell, MS Centers for Disease Control and Prevention Atlanta, Georgia UNITED STATES Corresponding Author Secondary Information: Corresponding Author's Institution: Centers for Disease Control and Prevention Corresponding Author's Secondary Institution: First Author: Melissa E Bell, MS First Author Secondary Information: Order of Authors: Melissa E Bell, MS Brent A. Lasker, PhD Hans-Peter Klenk, PhD Lesley Hoyles, PhD Catherine Spröer Peter Schumann June Brown Order of Authors Secondary Information: Funding Information: Abstract: Three human clinical strains (W9323T, X0209T and X0394) isolated from lung biopsy, blood and cerebral spinal fluid, respectively, were characterized using a polyphasic taxonomic approach. Comparative analysis of the 16S rRNA gene sequences showed the three strains belonged to two novel branches within the genus Kroppenstedtia: 16S rRNA gene sequence analysis of W9323T showed closest sequence similarity to Kroppenstedtia eburnea JFMB-ATE T (95.3 %), Kroppenstedtia guangzhouensis GD02T (94.7 %) and strain X0209T (94.6 %); sequence analysis of strain X0209T showed closest sequence similarity to K. eburnea JFMB-ATE T (96.4 %) and K. guangzhouensis GD02T (96.0 %). Strains X0209T and X0394 were 99.9 % similar to each other by 16S rRNA gene sequence analysis. The DNA-DNA relatedness was 94.6 %, confirming that X0209T and X0394 belong to the same species. -
Melghirimyces Thermohalophilus Sp. Nov., a Thermoactinomycete Isolated from an Algerian Salt Lake
International Journal of Systematic and Evolutionary Microbiology (2013), 63, 1717–1722 DOI 10.1099/ijs.0.043760-0 Melghirimyces thermohalophilus sp. nov., a thermoactinomycete isolated from an Algerian salt lake Ammara Nariman Addou,1,2 Peter Schumann,3 Cathrin Spro¨er,3 Amel Bouanane-Darenfed,2 Samia Amarouche-Yala,4 Hocine Hacene,2 Jean-Luc Cayol1 and Marie-Laure Fardeau1 Correspondence 1Aix-Marseille Universite´, Universite´ du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marie-Laure Fardeau Marseille Cedex 09, France [email protected] 2Laboratoire de Biologie Cellulaire et Mole´culaire (e´quipe de Microbiologie), Universite´ des sciences et de la technologie, Houari Boume´die`nne, Bab Ezzouar, Algiers, Algeria 3Leibniz Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany 4Centre de Recherche Nucle´aire d’Alger (CRNA), Algeria A novel filamentous bacterium, designated Nari11AT, was isolated from soil collected from a salt lake named Chott Melghir, located in north-eastern Algeria. The strain is an aerobic, halophilic, thermotolerant, Gram-stain-positive bacterium, growing at NaCl concentrations between 5 and 20 % (w/v) and at 43–60 6C and pH 5.0–10.0. The major fatty acids were iso-C15 : 0, anteiso- C15 : 0 and iso-C17 : 0. The DNA G+C content was 53.4 mol%. LL-Diaminopimelic acid was the diamino acid of the peptidoglycan. The major menaquinone was MK-7, but MK-6 and MK-8 were also present in trace amounts. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and three unidentified phospholipids. -
Westminsterresearch Kroppenstedtia Pulmonis Sp. Nov. And
WestminsterResearch http://www.westminster.ac.uk/westminsterresearch Kroppenstedtia pulmonis sp. nov. and Kroppenstedtia sanguinis sp. nov., isolated from human patients Bell, M.E., Lasker, B.A., Klenk, H.-P., Hoyles, L., Spröer, C., Schumann, P. and Brown, J.M. This is an author's accepted manuscript of an article published in Antonie van Leeuwenhoek Journal of Microbiology, doi:10.1007/s10482-016-0663-z on 24/02/2016. The final publication is available at Springer via: https://dx.doi.org/10.1007/s10482-016-0663-z The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] 1 Kroppenstedtia pulmonis sp. nov. and Kroppenstedtia sanguinis sp. nov., isolated from human patients Melissa E. Bell, Brent A. Lasker, Hans-Peter Klenk, Lesley Hoyles, Catherine Spröer, Peter Schumann, June M. Brown Keywords: Kroppenstedtia species, Kroppenstedtia pulmonis, Kroppenstedtia sanguinis, polyphasic taxonomy, 16S rRNA gene, thermoactinomycetes Corresponding Author M. E. Bell Centers for Disease Control and Prevention, Building 17, Room 2209, Mailstop D-11, 1600 Clifton Road, Atlanta, GA 30333, USA Phone: 404-639-1348 FAX: 404-639-3022 e-mail: [email protected] B. A. Lasker, J. M. Brown Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA H.-P. -
Reorganising the Order Bacillales Through Phylogenomics
Systematic and Applied Microbiology 42 (2019) 178–189 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm Reorganising the order Bacillales through phylogenomics a,∗ b c Pieter De Maayer , Habibu Aliyu , Don A. Cowan a School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa b Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Germany c Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa a r t i c l e i n f o a b s t r a c t Article history: Bacterial classification at higher taxonomic ranks such as the order and family levels is currently reliant Received 7 August 2018 on phylogenetic analysis of 16S rRNA and the presence of shared phenotypic characteristics. However, Received in revised form these may not be reflective of the true genotypic and phenotypic relationships of taxa. This is evident in 21 September 2018 the order Bacillales, members of which are defined as aerobic, spore-forming and rod-shaped bacteria. Accepted 18 October 2018 However, some taxa are anaerobic, asporogenic and coccoid. 16S rRNA gene phylogeny is also unable to elucidate the taxonomic positions of several families incertae sedis within this order. Whole genome- Keywords: based phylogenetic approaches may provide a more accurate means to resolve higher taxonomic levels. A Bacillales Lactobacillales suite of phylogenomic approaches were applied to re-evaluate the taxonomy of 80 representative taxa of Bacillaceae eight families (and six family incertae sedis taxa) within the order Bacillales. -
(ST). the Table
1 SUPPLEMENTAL MATERIALS Growth Media Modern Condition Seawater Freshwater Light T°C Atmosphere AMCONA medium BG11 medium – Synechococcus – – Synechocystis – [C] in PAL [C] in the [C] in the Gas Nutrients Modern Nutrients (ppm) Medium Medium Ocean NaNO3 CO2 ~407.8 Na2SO4 25.0mM 29mM Nitrogen 50 Standard (17.65mM) μmol (ST) NaNO NaNO 20°C O ~209’460 Nitrogen 3 3 MgSO 0.304mM photon 2 (549µM) (13.7µM) 4 /m2s FeCl3 6.56µM 2nM Ammonium 0.6g/L ZnSO 254nM 0.5nM ferric stock N ~780’790 4 2 citrate (10ml NaMoO 105nM 105nM 4 green stock/1L) 2 Table S 1 Description of the experimental condition defined as Standard Condition (ST). The table 3 shows the concentrations of fundamental elements, such as C, N, S, and Fe used for the AMCONA 4 seawater medium (Fanesi et al., 2014) and BG11 freshwater medium (Stanier et al., 1971) flushing air 5 with using air pump (KEDSUM-310 8W pump; Xiolan, China) Growth Media Possible Proterozoic T° Condition Modified Seawater Modified Freshwater Light Atmosphere AMCONA medium BG11 medium C – Synechococcus – – Synechocystis – [C] in [C] in PPr Nutrients PPr Nutrients Medium Gas ppm Medium NH Cl Na SO 3mM Nitrogen 4 3 2 4 (0.0035mM) CO 2 10’000ppm (20%) NH Cl Possible (~ 2’450% Nitrogen 4 3 MgSO 0.035mM 50 with 20ml/ (100µM) 4 Proterozoic PAL) μmol 20° min (PPr) photon C O2 20’000ppm /m2s (in Air) (~ 10% FeCl 200nM with 5ml/ 3 PAL) Ammonium 0.6g/L stock min ferric 10ml N ZnSO 0.0nM 2 4 citrate green stock/1L (100%) Base gas with NaMoO4 10.5nM 200ml/min 6 Table S 2 Description of the experimental condition defined as Possible Proterozoic Condition (PPr). -
Metabolites from Thermophilic Bacteria I
The Journal of Antibiotics (2014) 67, 795–798 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja NOTE Metabolites from thermophilic bacteria I: N-propionylanthranilic acid, a co-metabolite of the bacillamide class antibiotics and tryptophan metabolites with herbicidal activity from Laceyella sacchari Hirofumi Akiyama1, Naoya Oku1, Hiroaki Kasai2, Yoshikazu Shizuri2, Seitaro Matsumoto3 and Yasuhiro Igarashi1 The Journal of Antibiotics (2014) 67, 795–798; doi:10.1038/ja.2014.64; published online 28 May 2014 Since the discovery of gramicidin from Brevibacillus brevis in 1940,1 Thermoflavimicrobium, Planifilum, Mechercharimyces, Shimazuella, many important drugs including antibiotics, immunosuppressants, Desmospora, Kroppenstedtia, Marininema and Melghirimyces, based antidiabetic, antiobesity and anticancer drugs have been developed on List of Prokaryotic Names with Standing in Nomenclature: from the metabolites of mesophilic soil bacteria.2 However, as a http://www.bacterio.cict.fr/classifgenerafamilies.html). only two have reflection of worldwide efforts exerted over the years, discovering new been examined as sources for drug discovery. structures is becoming more and more difficult. Because expanding As part of our program to probe the biosynthetic potential of structural diversity of our chemical reservoir is a key requirement to unexpolited bacterial taxa, we have conducted metabolome mining in the successful drug discovery research, untapped microbes are now a strain identified as Laceyella sacchari, which resulted in the isolation gathering significant attention as new biomedical resources.3,4 of two N-acylanthranillic acids (1 and 2), one of which is new to The family Thermoactinomycetaceae (phylum Firmicutes) is one of natural products, as co-metabolites of bacillamides (3 and 4)and the kinships of Bacillaceae but has long been cataloged into N-acetyltryptamine (5). -
Melghirimyces Algeriensis Gen. Nov., Sp. Nov., a Member of the Family Thermoactinomycetaceae, Isolated from a Salt Lake
International Journal of Systematic and Evolutionary Microbiology (2012), 62, 1491–1498 DOI 10.1099/ijs.0.028985-0 Melghirimyces algeriensis gen. nov., sp. nov., a member of the family Thermoactinomycetaceae, isolated from a salt lake Ammara Nariman Addou,1,2 Peter Schumann,3 Cathrin Spro¨er,3 Hocine Hacene,2 Jean-Luc Cayol1 and Marie-Laure Fardeau1 Correspondence 1Laboratoire de Microbiologie MIO-IRD, UMR 235, Aix-Marseille Universite´, case 925, Marie-Laure Fardeau 163 Avenue de Luminy, 13288 Marseille cedex 9, France [email protected] 2Laboratoire de Biologie Cellulaire et Mole´culaire (e´quipe de Microbiologie), Universite´ des Sciences et de la Technologie, Houari Boume´die`nne, Bab Ezzouar, Algiers, Algeria 3Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany A novel filamentous bacterium, designated NariEXT, was isolated from soil collected from Chott Melghir salt lake, which is located in the south-east of Algeria. The strain was an aerobic, halotolerant, thermotolerant, Gram-positive bacterium that was able to grow in NaCl concentrations up to 21 % (w/v), at 37–60 6C and at pH 5.0–9.5. The major fatty acids were iso- and anteiso-C15 : 0. The DNA G+C content was 47.3 mol%. The major menaquinone was MK-7, but MK-6 and MK-8 were also present. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine (methyl-PE). Results of molecular and phenotypic analysis led to the description of the strain as a new member of the family Thermoactinomycetaceae. The isolate was distinct from members of recognized genera of this family by morphological, biochemical and chemotaxonomic characteristics. -
Antagonistic Properties of Some Halophilic Thermoactinomycetes
Hindawi BioMed Research International Volume 2017, Article ID 1205258, 13 pages https://doi.org/10.1155/2017/1205258 Research Article Antagonistic Properties of Some Halophilic Thermoactinomycetes Isolated from Superficial Sediment of a Solar Saltern and Production of Cyclic Antimicrobial Peptides by the Novel Isolate Paludifilum halophilum Donyez Frikha Dammak,1 Ziad Zarai,2 Soumaya Najah,3 Rayed Abdennabi,4 Lassaad Belbahri,4 Mostafa E. Rateb,5 Hafedh Mejdoub,6 and Sami Maalej1 1 UniteBiodiversit´ eetEcosyst´ emes` Aquatiques Environnementaux (UR/11ES/72), Faculte´ des Sciences de Sfax, Universite´ de Sfax, BP 1171, 3000 Sfax, Tunisia 2LaboratoiredeBiochimieetdeGenie´ Enzymatique des Lipases, ENIS, BPW, 1173 Sfax, Tunisia 3Institut de Biologie Integrative, UMR 9198, Universite´ Paris-Sud, Bat 400, 91405 Orsay Cedex, France 4Laboratory of Soil Biology, University of Neuchatel, 11 Rue Emile Argand, 2000 Neuchatel, Switzerland 5School of Science & Sport, University of the West of Scotland, Paisley PA1 2BE, UK 6Laboratoire des Biotechnologies Veg´ etales´ Appliquees´ al’Am` elioration´ des Cultures, FSS, Universite´ de Sfax, BP 1171, 3000 Sfax, Tunisia Correspondence should be addressed to Sami Maalej; [email protected] Received 23 March 2017; Accepted 18 June 2017; Published 27 July 2017 Academic Editor: Pedro J. Garcia-Moreno Copyright © 2017 Donyez Frikha Dammak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study has focused on the isolation of twenty-three halophilic actinomycetes from two ponds of different salinity and the evaluation of their ability to exert an antimicrobial activity against both their competitors and several other pathogens. -
Risungbinella Massiliensis Sp. Nov., a New Member of Thermoactinomycetaceae Isolated from Human Gut
Antonie van Leeuwenhoek DOI 10.1007/s10482-016-0677-6 ORIGINAL PAPER Risungbinella massiliensis sp. nov., a new member of Thermoactinomycetaceae isolated from human gut Gre´gory Dubourg . Jean-Christophe Lagier . Catherine Robert . Nicholas Armstrong . Carine Couderc . Pierre-Edouard Fournier . Didier Raoult Received: 21 September 2015 / Accepted: 8 March 2016 Ó Springer International Publishing Switzerland 2016 Abstract A novel filamentous bacterium, desig- genome sequence and annotation. The G?C content of nated GD1T, was isolated from the gut microbiota of the genomic DNA was determined to be 40.1 mol %. a 38-year-old male who suffered from a Coxiella The major fatty acids of strain GD1T were identified as burnetii vascular for which he received multiple a iso-C15:0, iso-C17:0, anteiso-C15:0, iso-C14:0 and broad-spectrum antibiotic cocktail at the time of the C16:0. The 3,440,191 bp long genome contains 3540 stool collection. The strain was isolated as a part of protein-coding and 67 RNA genes, including three culturomics study by cultivation on 5 % sheep blood rRNA genes. Strain GD1T (= DSM 46691 = CSUR agar in aerobic condition at 28 °C, after 14 days of P1082) sp. nov. is here classified as the type strain of a incubation. Strain GD1T shows 16S rRNA gene new species, Risungbinella massiliensis, within the sequence similarities of 98.01 % to the type strain of family Thermoactinomycetaceae. To date, strain Risungbinella pyongyangensis. We describe here the GD1T is the first member of the family Thermoacti- features of this bacterium, together with the complete nomycetaceae isolated from human gut and the fourth from a human specimen. -
Melghirimyces Algeriensis Gen. Nov., Sp. Nov., a Member of the Family Thermoactinomycetaceae, Isolated from a Salt Lake
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Melghirimyces algeriensis gen. nov., sp. nov., a member of the family Thermoactinomycetaceae, isolated from a salt lake. Ammara Nariman Addou, Peter Schumann, Cathrin Sproer, Hocine Hacene, Jean Luc Cayol, Marie Laure Fardeau To cite this version: Ammara Nariman Addou, Peter Schumann, Cathrin Sproer, Hocine Hacene, Jean Luc Cayol, et al.. Melghirimyces algeriensis gen. nov., sp. nov., a member of the family Thermoactinomycetaceae, isolated from a salt lake.. International Journal of Systematic and Evolutionary Microbiology, Micro- biology Society, 2012, 62 (7), pp.1491-1498. 10.1099/ijs.0.028985-0. hal-00745961 HAL Id: hal-00745961 https://hal.archives-ouvertes.fr/hal-00745961 Submitted on 22 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Melghirimyces algeriensis gen. nov., sp. nov., a member of the family -
Genus Paludifilum Marie-Laure Fardeau, Jean-Luc Cayol, Bernard Ollivier
Genus Paludifilum Marie-Laure Fardeau, Jean-Luc Cayol, Bernard Ollivier To cite this version: Marie-Laure Fardeau, Jean-Luc Cayol, Bernard Ollivier. Genus Paludifilum. Bergey’s Manual of Systematics of Archaea and Bacteria (BMSAB), Hoboken, New Jersey : Wiley, [2015]-, 2019. hal- 02883924 HAL Id: hal-02883924 https://hal.archives-ouvertes.fr/hal-02883924 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Genus Paludifilum 2 3 Defining publication: Frikha-Dammak, Fardeau, Cayol, Ben Fguira-Fourati, Najeh, 4 Ollivier and Maale 2016, 5371 VP 5 6 Authors: Marie-Laure Fardeau, Jean-Luc Cayol, Bernard Ollivier 7 8 Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of 9 Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France 10 11 12 13 Etymology: 14 Pa.lu.di.fi’lum L. n. palus, -dis a marsh; L.neut. n. filum a thread; N.L. neut. n. Paludifilum a 15 thread from a marsh). 16 17 Abstract 18 The genus Paludifilum at the time of writing, comprises one validly published species, 19 Paludifilum halophilum, which was isolated from superficial sediment of a solar saltern in 20 Sfax, Tunisia. -
Temproal Change in Soil Microbiome Under Influence of Eight Years of Manure Amendment in Cultivated Soils
TEMPROAL CHANGE IN SOIL MICROBIOME UNDER INFLUENCE OF EIGHT YEARS OF MANURE AMENDMENT IN CULTIVATED SOILS By XUWEN WIENEKE Bachelor of Science in Animal Science Northwest A&F University Yangling, Shaanxi 2009 Master of Science in Animal Genetics and Breeding South Dakota State University Brookings, SD 2013 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2017 TEMPROAL CHANGE IN SOIL MICROBIOME UNDER INFLUENCE OF EIGHT YEARS OF MANURE AMENDMENT IN CULTIVATED SOILS Dissertation Approved: Dr. Udaya Desilva Dissertation Adviser Dr. Andrew Doust Dr. Michael Anderson Dr. Scott Carter Dr. Stephen Clarke ii ACKNOWLEDGEMENTS I dedicate this dissertation to our Lord, Jesus Christ. All the achievements in our lives are because of His blessings. I could not wait to show my appreciation to my adviser, Dr. Udaya Desilva. Udaya took me in as a refugee and has truly been my mentor. He earns my full respect and trust by being himself-wise, kind, caring, honest, and trustworthy. Having him as the role model, I have been learning on how to do research and how to be there for others. Life has never been better. I full-heartedly thank my committee members, Dr. Andrew Doust, Dr. Michael Anderson, Dr. Scott Carter, and Dr. Stephen Clarke. You are wise and have always been patient and supportive. I look up to you all and appreciate your tremendous helps. Many thanks to Dr. Noha Youssef. She has been helping me so much on my projects. My appreciation goes to Dr.