Ures for the Atlantic Surf Clam and Ocean Quahog Fish

Total Page:16

File Type:pdf, Size:1020Kb

Ures for the Atlantic Surf Clam and Ocean Quahog Fish § 648.70 50 CFR Ch. VI (10–1–13 Edition) available to NMFS, the Regional Ad- Subpart E—Management Meas- ministrator shall determine whether a ures for the Atlantic Surf Clam yellowtail flounder sub-ACL was ex- and Ocean Quahog Fish- ceeded, or is projected to be exceeded, eries by scallop vessels prior to the end of the scallop fishing year ending on Feb- § 648.70 Surfclam and ocean quahog ruary 28/29. The determination shall in- Annual Catch Limit (ACL). clude the amount of the overage or pro- (a) The MAFMC staff shall rec- jected amount of the overage, specified ommend to the MAFMC ACLs for the as a percentage of the overall sub-ACL surfclam and ocean quahog fisheries, for the applicable yellowtail flounder which shall be equal to the ABCs rec- stock, in accordance with the values ommended by the SSC. specified in paragraph (a) of this sec- (1) Sectors. The surfclam and ocean tion. Based on this initial projection in quahog ACLs will be established con- mid-January, the Regional Adminis- sistent with the guidelines contained trator shall implement the AM in ac- in the Atlantic Surfclam and Ocean cordance with the APA and notify own- Quahog FMP. The ACL for ocean qua- ers of limited access and LAGC scallop hog will then be allocated to the Maine vessels by letter identifying the length and non-Maine components of the fish- of the closure and a summary of the ery according to the allocation guide- yellowtail flounder catch, overage, and lines of the Atlantic Surfclam and projection that resulted in the closure. Ocean Quahog FMP as specified in (2) If reliable information is not avail- § 648.78(b). able to make a mid-year determination: (2) Periodicity. The surfclam and Once NMFS has compiled the necessary ocean quahog ACLs may be established information (e.g., when the previous on an annual basis for up to 3 years at fishing year’s observer and catch data a time, dependent on whether the SSC are fully available), the Regional Ad- provides single or multiple year ABC ministrator shall determine whether a recommendations. yellowtail flounder sub-ACL was ex- (b) Performance review. The MAFMC ceeded by scallop vessels following the staff shall conduct a detailed review of end of the scallop fishing year ending the fishery performance relative to the on February 28/29. The determination ACLs at least every 5 years. shall include the amount of the over- (1) If the surfclam or the ocean qua- age, specified as a percentage of the hog ACL is exceeded with a frequency overall sub-ACL for the applicable greater than 25 percent (i.e., more than yellowtail flounder stock, in accord- once in 4 years or any 2 consecutive ance with the values specified in para- years), the MAFMC staff will review graph (a) of this section. Based on this fishery performance information and information, the Regional Adminis- make recommendations to the MAFMC trator shall implement the AM in ac- for changes in measures intended to en- cordance with the APA in Year 3 (e.g., sure the ACL is not exceeded as fre- an accountability measure would be quently. implemented in fishing year 2016 for an (2) The MAFMC may specify more overage that occurred in fishing year frequent or more specific ACL perform- 2014) and notify owners of limited ac- ance review criteria as part of a stock cess and LAGC scallop vessels by letter rebuilding plan following a determina- identifying the length of the closure tion that a stock has become over- and a summary of the yellowtail floun- fished. der catch and overage information. (3) Performance reviews shall not (f) [Reserved] substitute for annual reviews that occur to ascertain if prior year ACLs [76 FR 43770, July 21, 2011, as amended at 77 FR 20742, Apr. 6, 2012; 77 FR 26122, May 2, have been exceeded, but may be con- 2012; 78 FR 27108, May 9, 2013] ducted in conjunction with such re- views. [76 FR 60622, Sept. 29, 2011] 632 VerDate Mar<15>2010 17:45 Jan 02, 2014 Jkt 229238 PO 00000 Frm 00642 Fmt 8010 Sfmt 8010 Q:\50\50V12.TXT ofr150 PsN: PC150.
Recommended publications
  • Zhang Et Al., 2015
    Estuarine, Coastal and Shelf Science 153 (2015) 38e53 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity * Xinzhong Zhang a, , Dale Haidvogel a, Daphne Munroe b, Eric N. Powell c, John Klinck d, Roger Mann e, Frederic S. Castruccio a, 1 a Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA b Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349, USA c Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS 39564, USA d Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA e Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062, USA article info abstract Article history: To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic Received 19 February 2014 surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Accepted 30 November 2014 Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based Available online 10 December 2014 surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and Keywords: recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The surfclam (Spisula solidissima) model results show a typical along-shore connectivity pattern from the northeast to the southwest individual-based model larval transport among the surfclam populations distributed from Georges Bank west and south along the MAB shelf.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Spisula Solidissima) Using a Spatially Northeastern Continental Shelf of the United States
    300 Abstract—The commercially valu- able Atlantic surfclam (Spisula so- Management strategy evaluation for the Atlantic lidissima) is harvested along the surfclam (Spisula solidissima) using a spatially northeastern continental shelf of the United States. Its range has con- explicit, vessel-based fisheries model tracted and shifted north, driven by warmer bottom water temperatures. 1 Declining landings per unit of effort Kelsey M. Kuykendall (contact author) (LPUE) in the Mid-Atlantic Bight Eric N. Powell1 (MAB) is one result. Declining stock John M. Klinck2 abundance and LPUE suggest that 1 overfishing may be occurring off Paula T. Moreno New Jersey. A management strategy Robert T. Leaf1 evaluation (MSE) for the Atlantic surfclam is implemented to evalu- Email address for contact author: [email protected] ate rotating closures to enhance At- lantic surfclam productivity and in- 1 Gulf Coast Research Laboratory crease fishery viability in the MAB. The University of Southern Mississippi Active agents of the MSE model 703 East Beach Drive are individual fishing vessels with Ocean Springs, Mississippi 39564 performance and quota constraints 2 Center for Coastal Physical Oceanography influenced by captains’ behavior Department of Ocean, Earth, and Atmospheric Sciences over a spatially varying population. 4111 Monarch Way, 3rd Floor Management alternatives include Old Dominion University 2 rules regarding closure locations Norfolk, Virginia 23529 and 3 rules regarding closure du- rations. Simulations showed that stock biomass increased, up to 17%, under most alternative strategies in relation to estimated stock biomass under present-day management, and The Atlantic surfclam (Spisula solid- ally not found where average bottom LPUE increased under most alterna- issima) is an economically valuable temperatures exceed 25°C (Cargnelli tive strategies, by up to 21%.
    [Show full text]
  • The Atlantic Coast Surf Clam Fishery, 1965-1974
    The Atlantic Coast Surf Clam Fishery, 1965-1974 JOHN W. ROPES Introduction United States twofold from 0.268 made several innovative technological pounds in 1947 to 0.589 pounds in advances in equipment for catching An intense, active fishery for the At­ 1974 (NMFS, 1975). Much of this con­ and processing the meats which signifi­ lantic surf clam, Spisula solidissima, swnption was in the New England cantly increased production. developed from one that historically region (Miller and Nash, 1971). The industry steadily grew during employed unsophisticated harvesting The fishery is centered in the ocean the 1950's with an increase in demand and marketing methods and had a low off the Middle Atlantic coastal states, for its products, but by the early annual production of less than 2 since surf clams are widely distributed 1960's industry representatives suspect­ million pounds of meats (Yancey and in beds on the continental shelf of the ed that the known resource supply was Welch, 1968). Only 3.2 percent of the Middle Atlantic Bight (Merrill and being depleted and requested research clam meats landed by weight in the Ropes, 1969; Ropes, 1979). Most of assistance (House of Representatives, United States during the half-decade the vessels in the fishery are located 1963). As part of a Federal research 1939-44 were from this resource, but from the State of New York through program begun in 1963 (Merrill and by 1970-74 it amounted to 71.8 per­ Virginia. The modem-day industry Webster, 1964), vessel captains in the cent. Landings from this fishery during surf clam fleet were interviewed to the three-decade period 1945-74 in­ gather data on fishing location, effort, John W.
    [Show full text]
  • Shelled Molluscs
    Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.
    [Show full text]
  • Wildlife Populations: Surf Clam
    "Wllf Po latioi Surf C4 Background last fewyears, this intrusion may have caused mortality in larger surf clams. The possible effects of increased water temperature in the mid-Atlantic region Atlantic surf clams, Spisula solidissima, are distributed in the western North may be a gradual northward shift in the distribution of surf clams. This shift may Atlantic from the southern Gulf of St. Lawrence to Cape Hatteras. Commer- have been indicated in the increase in New York's surf clam biomass over the cial concentrations are found primarily off New Jersey, the Delmarva Penin- past few years after several years of good recruitment in the late 1990s. sula, and on Georges Bank. In New Jersey, surf clams are found from the beach zone to a depth of about 60 meters (m). Below 40 m, however, DEP estimated the total surf clam standing stock for 2003, in New Jersey, to be abundance is low.1 between 3.5 and 4.9 million bushels. The estimated standing stock steadily declined from 15.6 million bushels in 2000 to 4.2 million bushels in 2003. This New Jersey's commercial inshore surf clam season begins October 1 and represented a continuation of the downward trend from the maximum of 26.3 extends to May 31 each year. The Commissioner of the Department of million bushels recorded in 1997 (see chart below). Stock estimates are conser- Environmental Protection, with the advice of the Atlantic Coast Section of the vative because they assume 100 percent removal of all size classes of surf New Jersey Shellfisheries Council and the Surf Clam Advisory Committee, clams within the path of the dredge.
    [Show full text]
  • Wasted Resources: Bycatch and Discards in U. S. Fisheries
    Wasted Resources: Bycatch and discards in U. S. Fisheries by J. M. Harrington, MRAG Americas, Inc. R. A. Myers, Dalhousie University A. A. Rosenberg, University of New Hampshire Prepared by MRAG Americas, Inc. For Oceana July 2005 TABLE OF CONTENTS ACKNOWLEDGEMENTS 7 NATIONAL OVERVIEW 9 Introduction 9 Methodology 11 Discarded Bycatch Estimates for the 27 Major Fisheries in the U.S. 12 Recommendations 17 Definitions of Key Terms Used in the Report 19 Acronyms and Abbreviations Used in the Report 20 NORTHEAST 25 Northeast Groundfish Fishery 27 Target landings 28 Regulations 30 Discards 32 Squid, Mackerel and Butterfish Fishery 41 Target landings 42 Regulations 44 Discards 44 Monkfish Fishery 53 Target landings 53 Regulations 54 Discards 55 Summer Flounder, Scup, and Black Sea Bass Fishery 59 Target landings 59 Regulations 60 Discards 61 Spiny Dogfish Fishery 69 Target landings 69 Regulations 70 Discards 70 Atlantic Surf Clam and Ocean Quahog Fishery 75 Target landings 75 Regulations 76 Discards 76 Atlantic Sea Scallop Fishery 79 Target landings 79 Regulations 80 Discards 81 Atlantic Sea Herring Fishery 85 Target landings 85 Regulations 86 Discards 87 Northern Golden Tilefish Fishery 93 Target landings 93 Regulations 94 Discards 94 Atlantic Bluefish Fishery 97 Target landings 97 Regulations 98 Discards 98 Deep Sea Red Crab Fishery 101 Target landings 101 Regulations 101 Discards 102 SOUTHEAST 103 Shrimp Fishery of the South Atlantic 105 Target landings 105 Regulations 106 Discards 107 Snapper and Grouper of the South Atlantic 111 Target
    [Show full text]
  • Surfclam Aquaculture Techniq
    Final Report Piloting Surf Clam Aquaculture Techniques to Create Commercial Opportunities Award Number: NA16NMF4270241 Award Period: 03/01/2017 – 02/28/2020 Recipient Name: Aquacultural Research Corporation (dba A.R.C. Hatchery) Program Office: Fisheries Headquarters Program Office (FHQ) Program Officer: Deirdre Kimball, 978-281-9290, [email protected] Project Title: Piloting Surf Clam Aquaculture Techniques to Create Commercial Opportunities PIs/PDs: Rick Sawyer Partners: Cape Cod Cooperative Extension/Woods Hole Sea Grant, Cape Cod Commercial Fishermen’s Alliance, Roger Williams University Report Type: Performance Final Report Reporting Period: 03/01/2017 – 02/28/2020 Final Report: Yes Report Due Date: 08/27/2020 1 TABLE OF CONTENTS ACRONYMS/DEFINITIONS ..................................................................................................................4 EXECUTIVE SUMMARY .......................................................................................................................5 PURPOSE ...........................................................................................................................................8 BACKGROUND .............................................................................................................................................. 8 MARKET OPPORTUNITY .................................................................................................................................. 9 IMPORTANCE OF DEVELOPING THIS NEW SPECIES ............................................................................................
    [Show full text]
  • Gametogenic Cycle in the Non-Native Atlantic Surf Clam, Spisula Solidissima (Dillwyn, 1817), Cultured in the Coastal Waters of Georgia
    Gulf and Caribbean Research Volume 9 Issue 2 January 1995 Gametogenic Cycle in the Non-Native Atlantic Surf Clam, Spisula solidissima (Dillwyn, 1817), Cultured in the Coastal Waters of Georgia Christopher R. Spruck University of Georgia Randal L. Walker University of Georgia Mary L. Sweeney University of Georgia Dorset H. Hurley University of Georgia Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Spruck, C. R., R. L. Walker, M. L. Sweeney and D. H. Hurley. 1995. Gametogenic Cycle in the Non-Native Atlantic Surf Clam, Spisula solidissima (Dillwyn, 1817), Cultured in the Coastal Waters of Georgia. Gulf Research Reports 9 (2): 131-137. Retrieved from https://aquila.usm.edu/gcr/vol9/iss2/9 DOI: https://doi.org/10.18785/grr.0902.09 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. GulfResenrchReports, Vol. 9, 2.131-137.1995 No. Manuscript received March 3.1994; accepted March 25, 1994 GAMETOGENIC CYCLE IN THE NON-NATIVE ATLANTIC SURF CLAM, SPISULA SOLIDISSIMA.(DILLWYN, iw), CULTURED IN THE COASTAL WATERS OF GEORGIA Christopher R. Spruck', Randal L. Walker*, Mary L. Sweeney, and Dorset H. Hurley Shelljlsh Research Laboratory, Marine Extension Service, University of Georgia, 20 Ocean Science Circle, Savannah, Georgia 31411-1011 ABSTRACT This study describes the gametogenic cycle of the Atlantic surf clam. Spisula solidissima (Dillwyn, 1817), cultured from fall to spring in the coastal waters of Georgia, where it is non-native.
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • The Evolution of Extreme Longevity in Modern and Fossil Bivalves
    Syracuse University SURFACE Dissertations - ALL SURFACE August 2016 The evolution of extreme longevity in modern and fossil bivalves David Kelton Moss Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Moss, David Kelton, "The evolution of extreme longevity in modern and fossil bivalves" (2016). Dissertations - ALL. 662. https://surface.syr.edu/etd/662 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract: The factors involved in promoting long life are extremely intriguing from a human perspective. In part by confronting our own mortality, we have a desire to understand why some organisms live for centuries and others only a matter of days or weeks. What are the factors involved in promoting long life? Not only are questions of lifespan significant from a human perspective, but they are also important from a paleontological one. Most studies of evolution in the fossil record examine changes in the size and the shape of organisms through time. Size and shape are in part a function of life history parameters like lifespan and growth rate, but so far little work has been done on either in the fossil record. The shells of bivavled mollusks may provide an avenue to do just that. Bivalves, much like trees, record their size at each year of life in their shells. In other words, bivalve shells record not only lifespan, but also growth rate.
    [Show full text]
  • List of All Nominal Recent Species Belonging to the Superfamily Mactroidea Distributed in American Waters
    Appendix A: List of All Nominal Recent Species Belonging to the Superfamily Mactroidea Distributed in American Waters Valid species (in the current combination) Synonym Examined type material Harvella elegans NHMUK 20190673, two syntypes (G.B. Sowerby I, 1825) Harvella pacifica ANSP 51308, syntype Conrad, 1867 Mactra estrellana PRI 21265, holotype Olsson, 1922 M. (Harvella) PRI 2354, holotype sanctiblasii Maury, 1925 Raeta maxima Li, AMNH 268093, lectotype; AMNH 268093a, 1930 paralectotype Harvella elegans PRI 2252, holotype tucilla Olsson, 1932 Mactrellona alata ZMUC-BIV, holotype, articulated specimen; (Spengler, 1802) ZMUC-BIV, paratype, one complete specimen Mactra laevigata ZMUC-BIV 1036, holotype Schumacher, 1817 Mactra carinata MNHN-IM-2000-7038, syntypes Lamarck, 1818 Mactrellona Types not found, based on the figure of the concentrica (Bory de “Tableau of Encyclopedique Methodique…” Saint Vincent, (pl. 251, Fig. 2a, b, pl. 252, Fig. 2c) published in 1827, in Bruguière 1797 without a nomenclatorial act et al. 1791–1827) Mactrellona clisia USNM 271481, holotype (Dall, 1915) Mactrellona exoleta NHMUK 196327, syntype, one complete (Gray, 1837) specimen © Springer Nature Switzerland AG 2019 103 J. H. Signorelli, The Superfamily Mactroidea (Mollusca:Bivalvia) in American Waters, https://doi.org/10.1007/978-3-030-29097-9 104 Appendix A: List of All Nominal Recent Species Belonging to the Superfamily… Valid species (in the current combination) Synonym Examined type material Lutraria ventricosa MCZ 169451, holotype; MCZ 169452, paratype;
    [Show full text]