Craniotomy for Anterior Cranial Fossa Meningiomas: Historical Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Middle Cranial Fossa Sphenoidal Region Dural Arteriovenous Fistulas: Anatomic and Treatment Considerations
ORIGINAL RESEARCH INTERVENTIONAL Middle Cranial Fossa Sphenoidal Region Dural Arteriovenous Fistulas: Anatomic and Treatment Considerations Z.-S. Shi, J. Ziegler, L. Feng, N.R. Gonzalez, S. Tateshima, R. Jahan, N.A. Martin, F. Vin˜uela, and G.R. Duckwiler ABSTRACT BACKGROUND AND PURPOSE: DAVFs rarely involve the sphenoid wings and middle cranial fossa. We characterize the angiographic findings, treatment, and outcome of DAVFs within the sphenoid wings. MATERIALS AND METHODS: We reviewed the clinical and radiologic data of 11 patients with DAVFs within the sphenoid wing that were treated with an endovascular or with a combined endovascular and surgical approach. RESULTS: Nine patients presented with ocular symptoms and 1 patient had a temporal parenchymal hematoma. Angiograms showed that 5 DAVFs were located on the lesser wing of sphenoid bone, whereas the other 6 were on the greater wing of the sphenoid bone. Multiple branches of the ICA and ECA supplied the lesions in 7 patients. Four patients had cortical venous reflux and 7 patients had varices. Eight patients were treated with transarterial embolization using liquid embolic agents, while 3 patients were treated with transvenous embo- lization with coils or in combination with Onyx. Surgical disconnection of the cortical veins was performed in 2 patients with incompletely occluded DAVFs. Anatomic cure was achieved in all patients. Eight patients had angiographic and clinical follow-up and none had recurrence of their lesions. CONCLUSIONS: DAVFs may occur within the dura of the sphenoid wings and may often have a presentation similar to cavernous sinus DAVFs, but because of potential associations with the cerebral venous system, may pose a risk for intracranial hemorrhage. -
Ardipithecus Ramidus and the Evolution of the Human Cranial Base
Ardipithecus ramidus and the evolution of the human cranial base William H. Kimbela,1, Gen Suwab, Berhane Asfawc, Yoel Raka,d, and Tim D. Whitee,1 aInstitute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287; bThe University Museum, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; cRift Valley Research Service, Addis Ababa, Ethiopia; dDepartment of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, 69978 Ramat Aviv, Israel; and eDepartment of Integrative Biology, Human Evolution Research Center, University of California, Berkeley, CA 94720 Contributed by Tim D. White, December 5, 2013 (sent for review October 14, 2013) The early Pliocene African hominoid Ardipithecus ramidus was di- We report here results of a metrical and morphological study agnosed as a having a unique phylogenetic relationship with the of the Ar. ramidus basicranium as another test of its hypothesized Australopithecus + Homo clade based on nonhoning canine teeth, phylogenetic affinity with Australopithecus and Homo. We ana- a foreshortened cranial base, and postcranial characters related to lyzed the length and breadth of the external cranial base and the facultative bipedality. However, pedal and pelvic traits indicating structural relationship between the petrous and tympanic elements substantial arboreality have raised arguments that this taxon may of the temporal bone in Ar. ramidus, Australopithecus (including instead be an example of parallel evolution of human-like traits Paranthropus of some authors), and mixed-sex samples of extant among apes around the time of the chimpanzee–human split. Here African hominoid (Gorilla gorilla, Pan troglodytes, Pan paniscus) we investigated the basicranial morphology of Ar. -
Spontaneous Encephaloceles of the Temporal Lobe
Neurosurg Focus 25 (6):E11, 2008 Spontaneous encephaloceles of the temporal lobe JOSHUA J. WIND , M.D., ANTHONY J. CAPUTY , M.D., AND FABIO ROBE R TI , M.D. Department of Neurological Surgery, George Washington University, Washington, DC Encephaloceles are pathological herniations of brain parenchyma through congenital or acquired osseus-dural defects of the skull base or cranial vault. Although encephaloceles are known as rare conditions, several surgical re- ports and clinical series focusing on spontaneous encephaloceles of the temporal lobe may be found in the otological, maxillofacial, radiological, and neurosurgical literature. A variety of symptoms such as occult or symptomatic CSF fistulas, recurrent meningitis, middle ear effusions or infections, conductive hearing loss, and medically intractable epilepsy have been described in patients harboring spontaneous encephaloceles of middle cranial fossa origin. Both open procedures and endoscopic techniques have been advocated for the treatment of such conditions. The authors discuss the pathogenesis, diagnostic assessment, and therapeutic management of spontaneous temporal lobe encepha- loceles. Although diagnosis and treatment may differ on a case-by-case basis, review of the available literature sug- gests that spontaneous encephaloceles of middle cranial fossa origin are a more common pathology than previously believed. In particular, spontaneous cases of posteroinferior encephaloceles involving the tegmen tympani and the middle ear have been very well described in the medical literature. -
MBB: Head & Neck Anatomy
MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina -
Craniofacial Resection of Advanced Juvenile Nasopharyngeal Angiofibroma
ORIGINAL ARTICLE Craniofacial Resection of Advanced Juvenile Nasopharyngeal Angiofibroma Christina Bales, BA; Mark Kotapka, MD; Laurie A. Loevner, MD; Mouwafak Al-Rawi, MD; Gregory Weinstein, MD; Robert Hurst, MD; Randal S. Weber, MD Objective: To describe the results of a craniofacial ap- Main Outcome Measures: Intraoperative and post- proach to resection of stage IIIB juvenile nasopharyn- operative morbidity. geal angiofibroma, performed by an integrated skull base surgical team. Results: The average operating time was 12 hours 47 minutes. Estimated blood loss ranged from 700 to 1750 Design: A retrospective case-series review was con- mL (mean, 1120 mL), with 2 patients requiring intra- ducted with postoperative follow-up ranging from 28 to operative transfusion. Patients were hospitalized for 63 months. a mean duration of 5.6 days. Long-term morbidity includes facial dysesthesia, nasal crusting, and malodor- Setting: Operations were performed at a tertiary medi- ous nasal discharge. No patients sustained stroke, ocu- cal center. lomotor dysfunction, vision loss, or auditory impair- ment. At most recent follow-up, which ranges from 28 Patients: A referred sample of 5 male patients, ranging to 63 months, tumor recurrence has been confirmed in in age from 10 to 23 years (mean, 15 years). 1 patient. Interventions: All patients underwent resection of na- Conclusions: A combined craniofacial approach is ap- sopharyngeal angiofibromas with intracranial exten- propriate for juvenile nasopharyngeal angiofibroma that sion. The procedure involved an infratemporal fossa ap- extends intracranially. Complete tumor removal with ac- proach via zygomatic osteotomy and subtemporal ceptable morbidity can be expected. craniectomy. Anterior exposure was gained through a standard facial translocation. -
Study of Craniometric Point As a Landmark in Performing Posterolateral Surgeries on Skull
Recent Advances in Pathology & Laboratory Medicine Volume 5, Issue 3 - 2019, Pg. No. 17-19 Peer Reviewed & Open Access Journal Research Article Study of Craniometric Point as a Landmark in Performing Posterolateral Surgeries on Skull Sachin Patil1, Dharmendra Kumar2 1Assistant Professor, Department of Anatomy, ANIIMS, Port Blair, Andaman and Nicobar Islands, India. 2Associate Professor & Head, Department of Physical Medicine and Rehabilitation, ANIIMS, Port Blair, Andaman and Nicobar Islands, India. DOI: https://doi.org/10.24321/2454.8642.201917 INFO ABSTRACT Corresponding Author: Introduction: The asterion is craniometric point on the lateral side Dharmendra Kumar, Department of Anatomy, of skull. Importance of asterion lies in that it is primary landmark in ANIIMS, Port Blair, Andaman and Nicobar Islands, performing posterolateral surgeries on skull. India. Material and Methods: In 100 adult dry skulls measurements were E-mail Id: taken on right and left sides of the skull using digital Vernier callipers. [email protected] Two parameters were noted: Distance of the asterion to the root of Orcid Id: zygoma and to the tip of the mastoid process. https://orcid.org/0000-0001-9722-5107 How to cite this article: Result: The mean distance of the asterion to the root of zygoma on Patil S, Kumar D. Study of Craniometric Point as a right side was 56.15+2.40 mm and on left side was 57.48+2.68 mm. The Landmark in Performing Posterolateral Surgeries mean distance of the asterion to the tip of the mastoid process on the on Skull. Rec Adv Path Lab Med 2019; 5(3): 17-19. -
INCIDENCE of TYPES of PTERION in SOUTH INDIANS – a STUDY on CADAVERIC DRY SKULLS Manjunath Halagatti 1, Channabasanagouda *2
International Journal of Anatomy and Research, Int J Anat Res 2017, Vol 5(3.2):4290-94. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2017.313 INCIDENCE OF TYPES OF PTERION IN SOUTH INDIANS – A STUDY ON CADAVERIC DRY SKULLS Manjunath Halagatti 1, Channabasanagouda *2. 1 Assistant Professor, Department of Anatomy, Koppal Instistute of Medical Sciences, Koppal, Karnataka, India. *2 Associate Professor, Department of Anatomy, Koppal Instistute of Medical Sciences, Koppal, Karnataka, India. ABSTRACT Introduction : Pterion is an important landmark in the temporal fossa. It is a significant area for the surface location of anterior branch of middle meningeal artery and stem of lateral sulcus of the cerebrum. Based upon the pattern of articulation of the bones, different varieties of pterion have been encountered. Knowing about the incidence of types of pterion is very important for neurosurgeons, anthropologists, forensic scientists and radiologists. Materials and methods : Current study was done on 282 dry adult human cadaveric skulls (564 sides), for the incidence of different types of pterion. Types of pterion are – sphenoparietal type, frontotemporal type, stellate type and epipteric type. Results : Out of the 564 pteria,we have identified 455 sphenoparietal type, 77 frontotemporal type, 17 stellate type and 15 epipteric types. The incidence of different types of pteria have been correlated and compared with the data available from previous studies. Conclusion : The current study on incidence of types of pterion will add further knowledge to the available data about types of pterion and it will be of immense help for neurosurgeons, orthopedic surgeons, pediatricians, radiologists and anthropologists for proper diagnostic and therapeutic purposes. -
Level I to III Craniofacial Approaches Based on Barrow Classification For
Neurosurg Focus 30 (5):E5, 2011 Level I to III craniofacial approaches based on Barrow classification for treatment of skull base meningiomas: surgical technique, microsurgical anatomy, and case illustrations EMEL AVCı, M.D.,1 ERINÇ AKTÜRE, M.D.,1 HAKAN SEÇKIN, M.D., PH.D.,1 KUTLUAY ULUÇ, M.D.,1 ANDREW M. BAUER, M.D.,1 YUSUF IZCI, M.D.,1 JACQUes J. MORCOS, M.D.,2 AND MUSTAFA K. BAşKAYA, M.D.1 1Department of Neurological Surgery, University of Wisconsin–Madison, Wisconsin; and 2Department of Neurological Surgery, University of Miami, Florida Object. Although craniofacial approaches to the midline skull base have been defined and surgical results have been published, clear descriptions of these complex approaches in a step-wise manner are lacking. The objective of this study is to demonstrate the surgical technique of craniofacial approaches based on Barrow classification (Levels I–III) and to study the microsurgical anatomy pertinent to these complex craniofacial approaches. Methods. Ten adult cadaveric heads perfused with colored silicone and 24 dry human skulls were used to study the microsurgical anatomy and to demonstrate craniofacial approaches in a step-wise manner. In addition to cadaveric studies, case illustrations of anterior skull base meningiomas were presented to demonstrate the clinical application of the first 3 (Levels I–III) approaches. Results. Cadaveric head dissection was performed in 10 heads using craniofacial approaches. Ethmoid and sphe- noid sinuses, cribriform plate, orbit, planum sphenoidale, clivus, sellar, and parasellar regions were shown at Levels I, II, and III. In 24 human dry skulls (48 sides), a supraorbital notch (85.4%) was observed more frequently than the supraorbital foramen (14.6%). -
Lecture 7 Anatomy the PTERYGOPALATINE FOSSA
د.احمد فاضل القيسي Lecture 7 Anatomy THE PTERYGOPALATINE FOSSA The pterygopalatine fossa lies beneath the posterior surface of the maxilla and the pterygoid process of the sphenoid bone. The pterygopalatine fossa contains the maxillary nerve, the maxillary artery (third part) and the pterygopalatine parasympathetic ganglion. Boundaries Anteriorly: posterior surface of maxilla. Posteriorly: anterior margin of pterygoid process below and greater wing of sphenoid above. Medially: perpendicular plate of palatine bone. Superiorly: greater wing of sphenoid. Laterally: communicates with infratemporal fossa through pterygomaxillary fissure Communications and openings: 1. The pterygomaxillary fissure: transmits the maxillary artery from the infratemporal fossa, the posterior superior alveolar branches of the maxillary division of the trigeminal nerve and the sphenopalatine veins. 2. The inferior orbital fissure: transmits the infraorbital and zygomatic branches of the maxillary nerve, the orbital branches of the pterygopalatine ganglion and the infraorbital vessels. 3. The foramen rotundum from the middle cranial fossa, occupying the greater wing of the sphenoid bone and transmit the maxillary division of the trigeminal nerve 4. The pterygoid canal from the region of the foramen lacerum at the base of the skull. The pterygoid canal transmits the greater petrosal and deep petrosal nerves (which combine to form the nerve of the pterygoid canal) and an accompanying artery derived from the maxillary artery. 5. The sphenopalatine foramen lying high up on the medial wall of the fossa.This foramen communicates with the lateral wall of the nasal cavity. It transmits the nasopalatine and posterior superior nasal nerves (from the pterygopalatine ganglion) and the sphenopalatine vessels. 6. The opening of a palatine canal found at the base of the fossa. -
Abnormal Facies, Myopia, Andshort Stature
Arch Dis Child: first published as 10.1136/adc.47.255.787 on 1 October 1972. Downloaded from Archives of Disease in Childhood, 1972, 47, 787. Abnormal Facies, Myopia, and Short Stature C. G. KEITH, R. H. DOBBS, D. G. SHAW, and K. COTTRALL From the Queen Elizabeth Hospital for Children, London Keith, C. G., Dobbs, R. H., Shaw, D. G., and Cottrall, K. (1972). Archives of Disease in Childhood, 47, 787. Abnormal facies, myopia, and short stature. Three members of a family are described who have a curious facies due to a severely depressed nasal bridge, anteverted nostrils, wide-set eyes, high myopia, and short stature. The facial appearance is due to faulty development of the ethmoid bone, which also causes a short anterior cranial fossa. One member of the family was autistic and had a cleft palate. These cases closely resemble, but are thought to be distinct from, a family described by Marshall (1958) whose members had a similar facies which appeared to be due to a defective maxilla, deafness, myopia, and cataracts which were subject to many complications. One further case is described resembling Marshall's cases even more closely; she is deaf but does not have cataracts. In 1958 Marshall described 7 members of a widely open sagittal suture. The lower jaw was very family who had the following characteristics: the small, both eyes were protuberant, the nasal bridge nasal bridge was flattened, the eyes wide set, the nostrils anteverted, the mandible hypoplastic, and copyright. the teeth abnormal. Ocularly, there was myopia with a fluid vitreous, congenital and infantile cataracts, spontaneous and sudden maturation and absorption of congenital cataracts, and subluxation of cataracts. -
Brain Is in Cranial Cavity; Cavity Molded to Brain Like Glove Fitting Hand; THERE IS NO OTHER ROOM INSIDE CRANIAL CAVITY SKULL IS DESIGNED to CONTAIN SPECIAL SENSES
SKULL: HEAD IS SPECIALIZED TO HOUSE AND PROTECT THE BRAIN gyri CEREBRAL HOLLOW CORTEX CEREBELLUM, BRAINSTEM ANATOMY OF SKULL IS COMPLEX; CLOSELY ASSOCIATED WITH AND CONTAINS BRAIN INSIDE CRANIAL CAVITY note: Brain is in cranial cavity; cavity molded to brain like glove fitting hand; THERE IS NO OTHER ROOM INSIDE CRANIAL CAVITY SKULL IS DESIGNED TO CONTAIN SPECIAL SENSES SKULL EYES IN SOCKETS - ORBITS (VISION) EAR TRANSMITS SOUND TO TYMPANIC NASAL CAVITY - CAVITY, COCHLEA LARGE CENTRAL SPACE (HEARING) (SMELL) MANDIBLE - ORAL CAVITY - (JAW BONE) SPACE BELOW SKULL, SURROUNDED BY MANDIBLE (TASTE) HEAD AND NECK IS COMPLEX, IN PART, BECAUSE SPECIAL SENSES ARE LOCATED IN HEAD: VISION, TASTE, SMELL, HEARING (EQUILIBRIUM); THESE STRUCTURES AREHAPPY INNERVATE HALLOWEEN! BY CRANIAL NERVES SKULL - bones rigidly connected by sutures to protect brain, attach move eyes Sutures Look like OUTLINE Cracks In I. CALVARIUM Bone II. SCALP III. CRANIAL NERVES IV. LANDMARKS/ BONES OF SKULL V. CRANIAL CAVITY Foramina covered in Skull sessions SKULL- bones rigidly connected by sutures to protect brain; also provides attachment to move eyes precisely SUTURES = FIBROUS CONNECTIVE TISSUE JOINTS BETWEEN BONES (LOOK LIKE CRACKS) Note: Sutures progressively fuse with age; extent of fusion can be used to estimate MANDIBLE - (JAW BONE) - age of skull. separate bone that is moveable SKULL - bones rigidly connected by sutures to protect brain, attach move eyes I. CALVARIUM = SKULL CAP - FRONTAL Consists of (1) bones linked by sutures BONES OF CALVARIUM = SKULL CAP PARIETAL (2) FRONTAL (1) SPHENOID (1) OCCIPITAL (1) NOSE TEMPORAL (2) SPHENOID (Gk) = wedge LOBES OF CEREBRAL CORTEX OF BRAIN ARE NAMED FOR BONES OF SKULL FRONTAL PARIETAL FRONTAL PARIETAL OCCIPITAL TEMPORAL OCCIPITAL TEMPORAL NOSE NOSE B. -
Study of Pterion: Its Clinical and Morphological Aspects
Original Research Article DOI: 10.18231/2394-2126.2017.0061 Study of pterion: Its clinical and morphological aspects Sowmya S1,*, Meenakshi B2, Priya Ranganath3 1Assistant Professor, 2Professor, 3Professor & HOD, Dept. of Anatomy, Bangalore Medical College & Research Institute, Bengaluru, Karnataka *Corresponding Author: Email: [email protected] Abstract Introduction: Essential precondition for keyhole surgeries are accurate preoperative planning and placement of craniotomy tailored to the individual case. The pterion at temporal fossa is an important surgical landmark for the key hole surgeries to reach the deeper structures of anterior and middle cranial fossa like sylvian point hence broca’s area and corresponds to the anterior ramus of middle meningeal artery. Hence precise anatomy and anatomical variation of surgical landmarks helps preventing surgical complications. Also its morphological knowledge is useful for anthropologist and forensic specialists. Materials and Method: The study was done on 50 dry skulls from the Department of Anatomy, Bangalore Medical College and Research Institute, Bangalore. Result: Out of 50 skulls, spenoparietal type was more observed and stellate type was not observed in this study. The average distance from upper border of middle of zygomatic arch on right side is 4.02 cm and on left side is 3.99 cm and from frontozygomatic suture on right side is 3.42cm and on left side is 33.3cm. Conclusion: The current study reappraises the surface anatomy of pterion, incidence of its various types and hence morphology. This study supporting other studies conducted on Indian population other than some variation in incidence of stellate variety. This study showed incidence of epipteric only on left side, which is a surgical pitfall due to lodging of sutural bone in between sutures.